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Abstract

This thesis analyzes the security of networks built upon the IEEE 802.15.4 standard, specif-
ically in regard to the ability of an attacker to manipulate such networks under real-world
conditions. The author presents a set of tools, both hardware and software, that advance
the state-of-the-art in reconnaissance and site surveying, intelligent packet generation, and
launching of attacks. Specifically, tools provide increased hardware support for the KillerBee
toolkit, a Scapy layer for forming 802.15.4 packets, reflexive jamming of packets, and other
research enablers. This work aims to advance the ability of security auditors to understand
the threats to IEEE 802.15.4 networks by providing auditors usable and low-cost tools to
carry out vulnerability assessments.
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Chapter 1

Introduction

Wireless isn’t intrinsically bad, but it has lots of room for failure. As the types of devices
which are networked expands from computers and phones to thermometers and power meters,
wireless is an attractive choice for implementation. Wireless networking technologies are
often faster to implement, especially where there is no network line available to the device’s
location. The “smart” power grid is receiving significant stimulus funding, and the short-lived
nature of these funds may inadvertently lead to rapid rather than secure implementation [27].
In a world where proprietary encryption is sometimes being used as a selling point [27], it is
vital for security researchers to be able to self-assess the security of these technologies.

The authors of “Wi-Foo: The Secrets of Wireless Hacking” emphasize “the value of view-
ing your network through the cracker’s eyes” [39, 20] as it relates to 802.11 Wi-Fi networks.
This paper will bring this ability to the 802.15.4 realm through research and usable tools
that enable the discovery of devices, fingerprinting devices, intelligent crafting of packets,
and constructing possible attacks.

The author shall address security issues in the 802.15.4 physical (PHY) radio-frequency
(RF) and media-access control (MAC) layers. Understanding and being able to manipulate
or defend these layers is critical to being able to exploit or defend the network (NWK) layer
protocols built atop it such as ZigBee and 6lowpan. In choosing this approach, the author
agrees with the statement that “Layer 1 security...should always be investigated first on
wireless nets” [39, 20].
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Chapter 2

Executing a Site Survey

2.1 Prior Work

Wireless security experts have emphasized the importance of determining where attackers
can position physically, detecting neighboring networks, and baselining RF interference (to
detect abnormal jamming levels in the future) [39, 20]. Techniques for network discovery
have evolved from passive listening on networks to active techniques where a tool sends out
probe requests and listens for a response. The active tools allow detection of some devices
which are not beaconing (by requesting a beacon to be sent), whereas the passive techniques
leave no trace and can detect clients, not just beaconing devices. Numerous tools using these
techniques have been produced that allow network discovery to be done on 802.11 WiFi
networks, including kismet, wellenreiter, airfraf, gtkskan, airfart, mognet, and wifiscanner.

However, there is a notable absence of such tools for auditing 802.15.4 and ZigBee net-
works. Joshua Wright’s initial KillerBee project release (this version will be referred to as
KillerBee 1.0 [43]) has produced tools that perform scanning for networks (zbstumbler and
zbfind) as well as a tool for packet capture (zbdump). These tools supported only the Atmel
RZUSBSTICK as a capture interface. The KillerBee 1.0 code provided the author a strong
basis to build on. Kevin Finisterre has also written some Ruby scripts and C programs for
trying to capture from a number of devices, specifically trying to deal with some of the USB
bus issues encountered when running through USB hubs. The author reviewed his code,
which is currently not released, but some of which is discussed at [15]. One of the main
efforts of Mr. Finisterre’s work is to be able to capture on many channels at once, using
different network interfaces, which enables capture on frequency hoping devices as well as
exploration of ZigBee-saturated areas. The author’s related work is discussed in 2.3.2.

2.2 Capture Devices

2.2.1 ZigBee Chip Enclosures

The author designed and produced physical tools to aid in assessment, including hardened
cases for ZigBee radio “dongles.” A chip that is too fragile to use outside a lab setting is
of little use for real-world security auditing. Enclosures were needed to make auditing tools
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requiring radio interfaces into truly field-usable security tools.
The removable casing for the Atmel RZUSBSTICK (see figure 2.1) was created to (1)

protect the hardware from handling and some enviromental hazards, (2) give the appearance
of a commonly accepted device, such as a USB memory stick, (3) be temporary and allow easy
access to the chip for updating firmware, and (4) minimize cost. Because the RZUSBSTICK
has an internal PCB trace antenna, it was important to ensure that the casing did not
decrease the radio strength by an unacceptable amount.

Figure 2.1: Author’s Two-Part Casing for an Atmel RZUSBSTICK

The final design consists of a casing and a cap prototyped on a 3D printer. The case has
a hole to allow the USB plug to protrude, and the case is contoured to reduce the amount
of plastic required. Slight grooves run in the bottom of the case to allow the RZUSBSTICK
to easily slide in and out while accomodating protrusions on the bottom of the device. Air
space is left above the device to prevent overheating of components. Tests using a DS18B20
digital thermometer probe showed only a 1 ◦F rise in temperature over 20 minutes while the
device was inside the casing transmitting, channel hopping, and receiving actively. This is
comparable to the 1 ◦F rise seen when the device was in the open air, even when it was not
actively transmitting or receiving. The cap slides into the end after the device is inserted and
clips into shallow recesses in the case (see Figure 2.2). The cap has grooves for easy removal
with a fingernail, but otherwise matches the rest of the case.

Figure 2.2: Atmel RZUSBSTICK Casing Interlock Detail

The design uses 0.567 in3 of material and 0.107 in3 of support material. On a FDM2000
printer at a slice height of 0.01 in, the build time is calculated at almost 3 hours, however it
seems to be below 2 hours in our tests. The materials cost for printing one was achieved at
$3.37 per unit.

2.2.2 “zbplant”: Standalone Sniffer Platform

The author prototyped a stand-alone data interceptor that could be emplaced by an auditor.
A small and wireless capture device could be concealed somewhere that an attacker could not
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stay (perhaps due to surveillance or other physical security) and would enable the attacker to
attain more distant access to the target’s radio frequencies. While such devices are available
for WiFi networks (one called the “Fon” is a commercial device with new software called
“Interceptor” installed on it [23]), the author is aware of only one limited wired analyzer for
ZigBee networks. This device, called the Q51 PANalyzer [5] requires Windows configuration
and access to a wired Ethernet jack as well as power via a wall plug or power-over-ethernet.
Such a device is not a candidate for “covert” use, especially with needing to have a constant
ethernet port available as it streams data live to a remote viewer.

In addition to the ability to perform passive collection over long periods of time with less
chance of detection, this device could be paired with software that could correlate data from
multiple units to triangulate nodes based on RSSI, or simply see which devices are visible
in various areas (basic topology based on coverage zones). Especially because devices using
technologies like ZigBee often interact with the physical world, geo-location of network nodes
is crucial to understanding how the topology of a network relates to a physical installation.
Understanding where the coordinator and end-node devices physically sit can lead to identi-
fying weak points in the mesh network as well as providing an idea of what some devices may
be monitoring or doing (especially if their traffic is encrypted or non-descriptive). For exam-
ple, geo-locating a number of end-node devices broadcasting similar traffic near the doorways
of a facility may indicate these are door security sensors, as opposed to temperature sensors
for an HVAC control system. Also, geo-location can help a user choose the best position to
listen to the traffic of a specific node.

Furthermore, the more precisely a node’s location is pinpointed, the easier it is for an
attacker to perform what is referred to as a node capture attack. Perrig, Stankovic, and
Wagner consider “node capture [to be] one of the most vexing problems in sensor network
security” [32, 56], and Travis Goodspeed’s work on ZigBee chips [19, 20] is one of many
examples why this is such a large issue. As can be seen, the additional understanding provided
by geo-location of nodes is crucial to fully analyzing a network. Unfortunately, determining
radio direction in a ZigBee network is very difficult. ZigBee devices are inherently quiet and
use limited transmit power, by design. Furthermore, many networks have nodes in fixed
positions. Thus, analysis of packet captures over time may outperform traditional direction
finding techniques such as real-time signal strength monitoring.

The author’s “zbplant” device (see Figure 2.3) seeks to overcome both the difficulty of
obtaining data covertly as well as provide multiple data points to enable direction-finding.
This prototype is built on the Arduino platform and consists of components providing ZigBee,
Global Positioning System (GPS), power, and storage. The Arudino platform was chosen
because of its ubiquitous use in protyping and the number of peripherals (storage/GPS/wifi
interfaces) which are tested and have libraries written for the platform.

However, one challenge was capturing 802.15.4 packets in promiscuous mode (i.e. getting
all packets including ones not addressed to the device) onto the Arduino platform. Originally,
the plan was to do this using an Arduino with an XBee radio chip (which is the standard
Arduino solution for ZigBee/802.15.4), but upon further research and discussion with the
manufacturer, it became clear that the XBee was unable to do promiscuous capture under any
configuration. The design needed direct access to the registers of a 802.15.4 radio chip. Akiba,
the author of the FreakLab’s blog, recently produced an Arduino clone called “Freakdruino,”
which integrates an Atmel AT86RF230 radio chip on the SPI bus [7].
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Figure 2.3: zbplant Prototype Device

A GPS chip is added to correlate the location of the unit, in case it is placed somewhere
mobile, or so that a user can drop a number of these without having to record precisely where
each one is located. In the prototype, the chip is set to send position messages to the Arduino
at 1Hz as this helps to reduce battery drain and processing time, and is plenty frequent unless
the sniffer is in a fast moving vehicle or aerial platform. The Arduino program (“sketch”)
only writes the location fix to the log when it changes, instead of coupled with every packet.
When the data is being read from the device, the downloader needs to remember the last
location update read and use this to mark the location for a specific packet. However, this
is easily implemented and reduces the storage requirements on the zbplant device. The
initial GPS chip used was a 65 Channel SUP500F 10Hz GPS Receiver with Smart Antenna
[2] configured to 1Hz and outputting NEMA-0183 GPRMC and GPGGA sentences which
communicate the position, date, time, and altitude data from the GPS chip. These sentences
are read over Arduino NewSoftSerial (to avoid sitting on the main hardware serial bus used
for the USB FTDI chip) and are fed to the TinyGPS library for parsing [21, 22]. However,
due to issues with the reliability of the SUP500F receiver, the author switched the design to
use the 66 Channel LS20031 GPS 10Hz Receiver [29]. This receiver’s specifications have a
little higher power usage, but the reliability also improves greatly. The device is configured
the same as the SUP500F described above, with the circuitry for power and input/output
levels redesigned to the appropriate levels for the LS20031 (see Figure 2.4).

Data logging is supplied in the prototype by external EEPROM modules. The design
uses Microchip 24LC1025 I2C (2-Wire Serial) CMOS Serial EEPROM modules with a 1M
(128K x 8) capacity in 8-DIP packages [30]. The address space allows for 4 of these chips to
be wired to the I2C bus (see Figure 2.5), and each chip has an internal addressing boundary
limitation which divides it into two segments of 512K bits. Data cannot be read/written
sequentially across this boundary or across devices. As such, logic is required in the Arduino
sketch to implement reliable logging and reading that packs data into all available bytes.
This presents complexity especially as page writes are limited by the Arduino Wire (I2C)
library to 30 bytes, and the 24LC1025 EEPROM has a 128 byte page size (see Figure 2.6).
This effectively limits logging to byte writes if one wishes to use more than the first 30 bytes
of the pages. In order to allow the logging to recover from resets and power loss, the zbplant
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Figure 2.4: zbplant Expansion Board Schematic and Board Layout

Figure 2.5: Wiring of zbplant EEPROM Modules

stores logging state information in the first page of memory. When reads or writes are done,
this information is read, used, and updated. The function boolean i2c eeprom log(char

*data, int i) handles the writing of data with the complexity abstracted by “rolling over”
between pages, internal boundaries, and device boundaries as needed.

The author’s prototype is not equipped with hardware (such as wifi or cell chips) to
report its findings back wirelessly in real time largely due to cost and power consumption
issues, although future work adding such optional expansions may be beneficial to some
use cases. Currently, this device is supported with a KillerBee driver (see 2.3.1). This
driver, dev freakduino.py, implements the SNIFF and SET CHAN capabilities. Functionality
includes promiscuous capture and the input of captured data to a centralized database schema
(see 2.4) or pcap file over a USB link (real time or retreived from the device’s onboard storage).
The author provides a utility called zbdumpeeprom.py to create a pcap file from packets
retrieved from the device. A database logging implementation could easily be implemented
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#define EEPROM PAGE LENGTH 128 //number of bytes in one page

#define EEPROM CONSEC PAGES 512 //number of consecutive pages in EEPROM

#define EEPROM DEV COUNT 2 //number of installed EEPROM devices

#define EEPROM DEV 0 0x50 //i2c address of EEPROM first device

Figure 2.6: zbplant EEPROM Logging Defines

based on this code.
Future work could port the zbplant features to other platforms like the Tmote Sky, al-

though support for features like GPS and Wifi interfacing would be more difficult. However,
different use cases may find different implementations with varying feature sets and form
factors to be useful.

2.2.3 Tmote Sky/TelosB GoodFET Drivers

As mentioned above, the Tmote Sky (also branded as the TelosB) is another platform that
supports 802.15.4 radio. It consists of a Texas Instruments MSP430 family microcontroller
and a Chipcon CC2420 radio chip. These were originally designed at UC Berkeley as a
platform for wireless sensor network research. Due to this heritage, some have temperature,
light, and humidity sensors on board, as well as EEPROM for data logging. The GoodFET
project [18], led by Travis Goodspeed, began as an open-source JTAG adapter and offers a
slimmed-down framework (as compared to something like TinyOS or Contiki) for interacting
with MSP430 family microprocessors. Using the GoodFET CCSPI “application,” GoodFET
can also interact with the CC2420 radio chip on the device.

The GoodFET firmware compiled with CCSPI support can be loaded from the pre-
compiled version in KillerBee’s svn repository, which is highly suggested to avoid depen-
dency requirements. From within killerbee/firmware, run ./goodfet.bsl --telosb -e

-p gf-telosb-001.hex. The firmware can also be compiled from the GoodFET repository
if updates are needed, as seen in Figure 2.7. This requires that the GoodFET SVN project
and the msp430-gcc compiler are installed.

From within goodfet/trunk/firmware, run:

export platform=telosb

export mcu=msp430x1611

export config=’monitor ccspi spi’

make clean install

../client/goodfet.bsl --speed=38400 -e -p goodfet.hex

Figure 2.7: Compiling TelosB Firmware from GoodFET Repository

Mr. Goodspeed implemented basic frameworks in the goodfet.ccspi client for sniff-
ing and injection, and the author has contributed to testing and improving these capabili-
ties. The author has ported the classic TinyOS example application RadioCountToLeds to
goodfet.ccspi and verified compatibility [18, revision 954]. The author also refined the
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GoodFET injection code to correctly handle lengths and checksum calculation. The advan-
tage of this device over the Atmel RZUSBSTICK is that it can be reflashed with goodfet.bsl

over USB with no need for a JTAG programmer, making it easier and less-expensive for a user
to start using. Due to these features, the author provided a KillerBee driver for the Tmote
Sky or TelosB running the GoodFET firmware (see 2.3.1). This driver, dev telosb.py,
implements the SNIFF, SET CHAN, INJECT, and PHYJAM REFLEX capabilities.

2.3 Software Tools

2.3.1 KillerBee Expansion

As discussed in 2.1, Joshua Wright’s KillerBee 1.0 code offered a good base for 802.15.4/Killer-
Bee software tools. The author’s work in this section expanded upon the codebase to add
several additional features useful for security assessments.

The first addition was supporting more devices. Both the Tmote Sky/TelosB (2.2.3)
and Dartmouth Freakduino (2.2.2) previously described were supported by the author in a
driver model. The driver model was designed to remove device-specific code from KillerBee’s
init .py file and move it to files specific to that device. Those files contain classes imported

by KillerBee after the type of device being used as an interface is identified. Much work
needed to be done to support serial USB devices (such as FTDI UART chips) which mount
like /dev/ttyUSB0 in addition to the standard USB bus supported by Wright’s KillerBee 1.0.

Support for logging packets to a database schema has also been added by dblog.py and
is discussed in 2.4. A tool called zbdblog provides packet capture to a database similar to
zbdump for saving to Pcap.

In addition to the driver model, design changes were made to move a number of functions
out of the KillerBee class. These functions, like dev list(), do not need any of the infor-
mation from the KillerBee class or its initialization. Thus, we are able to run these functions
without the overhead of initializing the KillerBee class.

With additional support for capture interfaces and tools such as zbwardrive (see 2.3.2)
that use KillerBee to monitor multiple frequencies, the data capture framework needs to
support these. For large amounts of data, the added database logging functions (see 2.4)
provide the ability to store metadata, but many users may not need or desire the overhead
required to configure and run a MySQL database. The industry standard PCAP file is a good
capture format, and was supported by the original KillerBee tool to store 802.15.4 packets.
The author added support for the dBm (signal strength) and frequency (channel) data using
the CACE Per-Packet Information [12] header format. Specifically, the 80211-Common field
(which is modeled after the common Radiotap header) was used, as it is recognized by the
standard and implemented by Wireshark and Scapy, among other tools. After discussions
with Joshua Wright and Gerald Combs, the author has determined that future work should
entail registering a IEEE 802.15.4 Common field with the specification, consisting of at least
RSSI, capture interface, dBm, and channel or MHz fields. This type will have to be supported
both by the KillerBee PCAP writer, but also should be implemented in Wireshark and Scapy.
Finally, the author recommends that future work include implementation of the CACE PPI
GEOLOCATION header, to support capture of latitude, longitude, and altitude to the PCAP
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format integrated with the packets.

2.3.2 zbwardrive: Automated Wardriving Tool

In addition to strengthening and expanding the KillerBee framework, the author also created
some new tools to take advantage of the increased flexibility and tackle specific problems
posed by practical security assessments. The zbwardrive tool is optimized for more active
“wardriving” of ZigBee networks. Currently, of the many network discovery tools available
for WiFi networks, only Kismet offers a plug-in framework with very rudimentary 802.15.4
support [1]. It was a difficult decision to develop a new tool instead of building upon the
Kismet framework, but a tool was needed that addresses the specific challenges of wardriving
802.15.4/ZigBee networks, such as the need for injection to stimulate a quiet network to
respond. Furthermore, in the initial stages of a security assessment, an auditor will not
typically know the channels a target network is operating on, and if the auditor is trying to
cover large geographic areas for analysis, they will need an automated way of finding these
channels and then capturing data from them.

The author expanded beyond Mr. Wright’s active scanning tools (zbstumbler and
zbfind) to create a truly automated system that is feasible for wardriving. The result-
ing program utilizes multiple capture interfaces (that have been supported with KillerBee
drivers) in an intelligent way between active network scanning (by injecting beacon request
frames onto every ZigBee channel) and listening for a beacon response. If the zbwardrive tool
receives a frame that decodes to an 802.15.4 beacon response when listening, this indicates
that a network is currently operating on this frequency (and beaconing is enabled), and a free
capture interface will be assigned to capture any traffic. If the packets on a channel subside
for a period of time, the capturing device will be freed so it is available to capture other
discovered networks. The desire to capture all active 802.15.4 based networks is not new,
however previous implementations (such as Kevin Finisterre’s work [16, 15]) are based on us-
ing one capture interface for each channel that a network might be on. The author’s approach
aims to more efficiently allocate physical capture device resources, hoping to have both less
power and hardware demands as well as a lower visual profile. The wardriving software will
be flexible in order to support other capture devices and schemes, including a directional
antenna interface for use in capturing packets for direction finding. If the wardriving user
has network connectivity, data collected from this tool will be transferred to the centralized
database schema (see 2.4) for use by other tools, such as the author’s packet generation tool.

2.4 Data Aggregation Schema and Database

2.4.1 Introduction

Typical network reconnaissance involves generating pcap files with file names describing
where and when they were taken. However, flat-file data logging on individual devices is not
a sustainable way to carry out a large scale assessment of a ZigBee network, due to both the
multiple possible ways of obtaining the data, and the metadata which we wish to associate.
For example, both the “zbplant” hardware (see 2.2.2) and the wardriving setup (see 2.3.2)
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may gather information, including GPS coordinates and RSSI indicators, in addition to
actual packet captures. Other tools, such as the intelligent packet generation and network
visualization software can access this information in order to build inferences upon it. For
these reasons, the author presents a database schema which will include the ability to store
parsed 802.15.4 packets, store cached inference data such as network flows and relationships
between devices, and store GPS and received signal strength indicator (RSSI) metadata for
the packets captured. This schema – and its MySQL implementation – is a research enabler
for other tools described in this work, and can be adopted as a platform for future work in
this subject area.

2.4.2 Prior Work

Although network tools typically log to a pcap or Daintree file format, there is precedent
for database logging of network captures due to the advantages in searching and correlating
large amounts of data, especially when it is gathered from multiple sensors. SNORT is the
most widely deployed intrusion detection and prevention (IDS/IPS) system worldwide, and
it supports a database capture module [33, 117] for SQL logging. The author is not aware of
any tools intended for network analysis on wireless networks.

2.4.3 Implementation

To create this database, the author first designed the schema and then implemented it in
MySQL data-definition language. The central table in the schema holds packets, which are
time-stamped, labeled by channel, and dissected. Foreign key relations link this to a capture
type table (i.e. if this was imported from a Pcap file or sent live to the database by a
connected sniffer), as well as tables for location and devices. The device table stores devices
by PAN identifier and long/short device addresses, and entries in this are linked by ID to
source or destination fields in captured packets.

The data manipulation language for basic packet logging is handled by the KillerBee
dblog.py extension. Adding a packet will call the author’s Scapy dot15d4 dissection, if
it is not already dissected, and extract any available source or destination. If a database
query finds that the device identified by the packet already exists in the devices table, it
will reference that entry; otherwise it will add the entry first and then reference it. The
same methodology is used for capturing location. If the KillerBee reports a location to the
database logging module, it is searched to see if the location is already entered in the database
(as determined equivalent by longitude, latitude, and elevation). If this is the case, the pre-
existing entry is linked to the new packet; otherwise a new entry is created and linked. This
system ensures that when the database is capturing data from the same device, or if it is
capturing in a stationary position, that correlations are maintained and extra data is not
stored when it contributes no additional information.

In order to quickly retrieve data for intelligent packet crafting, a number of MySQL
views were created. Currently devstatus is used to retrieve the most up-to-date status for
a given device, and linkstatus retrieves the current status between two devices. These are
computed through intermediate views and depending on the implementation choice can be
cached to provide performance improvements.

11



Figure 2.8: Entity-Relationship Diagram

This schema operates separately from Community Resource for Archiving Wireless Data
At Dartmouth (CRAWDAD) [4] for logistical reasons, however the schema and sample cap-
tures have been made available for inclusion in the CRAWDAD project.
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Chapter 3

Intelligent Crafting of Packets

3.1 Prior Work

Packet injection capability is necessary for an attacker to launch anything more than an
attack on the confidentiality of a network, and in the case of ZigBee’s encryption capabilities,
even most confidentiality attacks may require injection capabilities. [9] points to “the logical
next step after observing the system or network [is] testing its behaviors by manipulating
the systems internal data or injecting custom-formatted messages into the network.” As this
statement alludes to, being able to inject packets into a network is critical for conducting a full
security assessment, but this is only part of the puzzle. An effective attack requires packets
tailored to the specific network environment in regards to the devices, the network topology,
and even the current state of each device, such as its current sequence number. Thus, many
attacks are not successful simply with a replay of packets or a pre-constructed packet. This
leaves a security auditor needing to provide appropriate bytes of data for packets, in real
time, while auditing, and possibly in the field under time pressure.

The 802.11 WiFi space has seen a number of tools emerge to help inject frames, and even
provide some level of automation for crafting frames. These tools, such as airjack [6], file2air
[42], libwlan [38], fakeap [8], and void11 [3], however, are often driver-specific for WiFi cards
and do not understand the 802.15.4 or ZigBee networks or even the frame structure. Known
packet injection tools which are currently available for ZigBee and 802.15.4 require the user
to provide the bytes they wish to inject. This is either in the form of a libpcap or Daintree
packet capture file being supplied to a utility such as KillerBee’s zbreplay, or writing code
that uses the KillerBee library to inject bytes that the user provides [43, tools/zbreplay,
killerbee/ init .py]. A BlackHat EU 2010 paper [17] suggests a tool that collects data
and creates attack frames for wireless sensor networks, but the specific protocols targeted are
unclear and the author cannot find any proof of a tool being produced. Some implementation
of 802.15.4 packet generation was done in Metasploit as part of a project targeting the
6loWPAN protocol, however this work is based on a number of other modifications to the
“firmware and processing daemon” which this work avoids in order to keep the tools portable
and easier to use [10, 22, 17].

In summary, a tool to allow auditors to specify minimal data, and the type of frame to
generate, and have the program determine the additional variables, craft a valid frame, and
inject the frame is needed to enable serious security auditing for 802.15.4 and ZigBee net-
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works. [9] points out that releases of tools and frameworks that provide such capabilities both
provide the groundwork for future tools, but also provide a major educational opportunity,
as studying the source and methods of such tools “benefits both attackers and defenders”.

3.2 Scapy dot15d4 Extension

The author wrote a layer extension for Scapy, called dot15d4, which implements the most
useful subset of the IEEE 802.15.4 protocol. The definition of the protocol was taken from
a variety of sources, including the IEEE 802.15.4 Specification [24, 25], ZigBee Specification
[45], and Daintree Network’s Getting Started with ZigBee and IEEE 802.15.4 primer [13].
The current status of the implementation is shown in Table 3.1.

Table 3.1: Implementation Status of Frame Types in Scapy dot15d4

Class Name Notes

Dot15d4
Dot15d4FCS Calculates and appends FCS checksum when built
Dot15d4Ack
Dot15d4Data
Dot15d4Beacon GTS and Pending addresses not fully implemented
Dot15d4Cmd
Dot15d4CmdAssocReq Not yet implemented
Dot15d4CmdAssocResp Not yet implemented
Dot15d4CmdDataReq Not yet implemented
Dot15d4CmdPANIDConflictNotify Not yet implemented
Dot15d4CmdOrphanNotify Not yet implemented
Dot15d4CmdBeaconReq Not yet implemented
Dot15d4CmdCoordRealign
Dot15d4AuxSecurityHeader

In Figure 3.1, the complexity that occurs within beacon frames, as an example, is shown.
The 802.15.4 Beacon specification alone, not even including the ZigBee beacon specification,
has a number of variable length list fields, fields whose values are dependent on other fields,
and fields whose existence is dependent on other fields. The Scapy dot15d4 layer handles
the relation between these interconnected fields for the subset of the 802.15.4 which is imple-
mented. For example, one simple example is that the frame control field source addressing
mode is used to determine the existence and length of the frame’s source address field.

Although Scapy provides ConditionalField interfaces that can be adapted to work well
for most questions of fields existing based on other fields values, it is more difficult to force
the value of a field based on the value of another field. In many cases, we wish to leave this
untouched by Scapy, so as to allow security researchers to craft frames that do not adhere
strictly to the 802.15.4 standard for applications such as intelligent fuzzing or fingerprinting.
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However, the author implements one such check to ensure that a basic constraint for acknowl-
edgment frames is satisfied. This implementation demonstrates how other such constraints
could be added, if needed. The constraint ensures that the frame control field addressing
modes are both set to 0 (“None”) when an acknowledgment frame is set, ensuring that the
default is “x02x00” for the frame control field bytes. This implementation is currently done
in the post build method of the Dot15d4 class, which means that it is always satisfied after
a build (triggered by str() or show2()), but it may not be reflected otherwise. This could
also be implemented by creating a special field class for the field that the constraint is based
upon, which has an any2i() method defined which performs the constraint checking and
adjusting the dependent field’s value if needed. However, this requires both a special field
class being defined and it would not enforce the constraint if the dependent field was changed
after the constraining field was set.

Figure 3.1: Relationships and dependencies between fields in 802.15.4 Beacon Frames

Additionally, the author’s Scapy dot15d4 layer has been adopted as the base layer for
the Scapy 6loWPAN layer written by Cesar Bernardini.
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3.3 Inferenced Packet Generation

As discussed in 2.3.2, the author constructed techniques for gathering data about networks
from a combination of active and passive listening. This information is loaded into the central
database schema (2.4) over a “learning period” and data from multiple frames captured can
be merged to inference data which may not be available from any single frame. Using this,
tools can craft packets with the user having to define only minimal data. For example, given
a type of frame and a target (destination) short address, the tool (a number of functions in
zbForge.py) can pick an appropriate source address that has been observed having commu-
nication with the target, and use that address in the packet being constructed. The tool will
also use a sequence number that follows from the most recent number observed, with some
randomization added. The goal of this tool is to require minimal user interaction yet produce
realistic looking packets that are more likely to be accepted by target devices, and which are
more difficult to detect in packet analysis than packets generated without inferencing.

The database is programmed with a number of views to quickly return the most recent
“inferred” status between devices. The tool retrieves this data based on the parameters
supplied to it in the makeLinkData function, which can take None for one of its arguments.
This function returns data, which along with the desired type of frame (as defined by the
IEEE 802.15.4 standard), and uses the dot15d4 scapy module to produce a scapy object
which can be injected. Figure 3.2 provides an example use of these functions to send a data
frame.

kb = killerbee.getKillerBee(channel)

link = makeLinkData(srcTarget, destTarget)

byteframe, scapy = create(link, FRAME_802_DATA)

print "Sending forged frame:"

scapy.show2()

kb.inject(byteframe)

Figure 3.2: Example Usage of zbForge Functions

If a user specifies that they would like a beacon frame to be sent, they need only specify
the sending device, and the remaining information (such as the sequence number, network
PAN ID, long address) will be inferred. Many other types of packets similarly need only
minimal information (usually sender and receiver) specified by the user, and the remainder
of fields are calculated.
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Chapter 4

Proof-of-Concept Attacks

The creation of attacks is a logical extension of being able to craft packets. After many types
of packets can be generated on demand in an intelligent way to adapt to the current network
state, a security auditor must be able to use these packets to implement a proof-of-concept
attack.

4.1 Prior Work

Such work has been done extensively in the 802.11 WiFi realm. AirJack’s monkey jack does
a man-in-the-middle to move a client off of its legitimate access point and associate it with an
attacker-controlled access point [39, 174]. Other tools that implement disassociation attacks
include wlan jack and fata jack [39, 175]. Authentication and association frames are sent
in floods to the network by Void11 [3] to try to de-authenticate many hosts or overwhelm an
access point [39, 175].The routing protocols can also be targeted, such as how the Ettercap
plugin lamia tries to make an attacker into a root bridge (so most traffic flows through it)
[39, 177].

There is literature discussing possible attacks on 802.15.4 and ZigBee, but these are theo-
retical in nature, and many of them discuss attacks that may be applicable more generally to
wireless sensor networks (of which some 802.15.4 networks are a subtype). A review of current
literature finds many interesting ideas about different attacks that may work on “wireless sen-
sor networks” (WSNs), however the actual ability to implement these depends heavily on the
routing protocols employed and the amount of security enabled in the network. Giannetsos,
Dimitriou and Prasad propose an attack tool [37] for WSNs that will implement data replay,
sinkhole, selective forwarding, flooding, and device reprogramming/code injection [17, 2].
This tool, however, currently focuses on the simple MultiHopLQI and MintRoute protocols.
Hu proposes a defense against wormhole attacks [11], a concern which is echoed by Karlof
and Wagner [26, 6], however such an attack may only be effective on specific geographic
routing algorithms. A wormhole attack captures packets or individual bits at one location in
the network and injects them, possibly after selectively discarding some packets, at another
location. One outcome of a wormhole attack is to make nodes that are not neighbors believe
that they may be within range of each other. Karlof and Wagner also discuss the possi-
bility of spoofing, altering, or replaying routing information, as well as performing selective
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forwarding, a sybil (multiple identity) attack, a HELLO flood attack, or acknowledgment
spoofing [26]. It is known that acknowledgment spoofing is possible on 802.15.4 networks, as
acknowledgment (ACK) frames are not protected [35, 18]. However, implementing an effec-
tive attack with ACK spoofing requires implementing selective jamming, which is a difficult
problem due to the actual radio interfaces and processing time. Krontiris, Dimitriou, and
Giannetsos describe how the sinkhole attack might apply to two WSN routing protocols,
MintRoute and MultiHopLQI, but do not offer an implementation or provide information
relevant to ZigBee routing [28]. Wood discusses denial of service attacks such as jamming,
tampering, collision, exhaustion, unfairness, neglect and greed, homing, misdirection, black
holes, flooding, and desynchronization, but there is again no indication which of these may
be relevant to ZigBee networks [40].

A few publications have focused more specifically on attacks on 802.15.4 and ZigBee net-
works. Zheng, Lee and Anshel discussed PHY and MAC layer attacks on 802.15.4 including
jamming, capture and tamper, exhaustion, collision, and unfairness. Collision is basically
selective jamming, and they point out that “collision with an acknowledgment frame will
cause the sender to back off exponentially; collision with an association response frame will
force the device to start the multi-step association procedure from the very beginning; and
collision with several beacon frames from a beacon enabled coordinator will cause its children
to get orphaned” [44, 5]. The paper concludes that “collision attacks are very effective and
difficult to detect,” but it is important to note that these attacks have a moderate to high
implementation complexity as well. They also discussed some ZigBee attacks including route
disruption by a compromised device or coordinator, a “void address” attack, and introducing
a loop in a cluster tree. However, it is not clear which of the ZigBee attacks proposed are
implementable, especially without having full access to a captured node. In analyzing the
security protection offered by 802.15.4 and ZigBee, Silva and Nunes suggest several attacks
including a compelling idea for instant DoS on networks using AES-CTR security with se-
quential freshness protection enabled and possible cases for cryptographic nonce reutilization
[35, 34].

4.2 Reflexive Jamming

To make several of these attacks possible, specifically selective forwarding and acknowledge-
ment spoofing, we need to be able to reflexively jam some transmissions. Notably, this
technique will avoid some jamming defense strategies which try to differentiate jamming (in-
tentional denial-of-service) from other non-malicious issues in the network. Wood claims that
“a node can easily distinguish jamming from the failure of its neighbors by determining that
constant energy, not lack of response, impedes communication” [40, 50]. However, a reflexive
jamming attack, as implemented here, has no constant energy, and most devices – even those
listening in a monitor/promiscuous mode – will not see the jamming frame independently
of the frame that it jammed. Many authors classify such an attack as a collision attack, to
separate it from “traditional” jamming. Wood states that these malicious collisions “create
a kind of link-layer jamming, but no completely effective defense is known” [40, 51]. Some
mitigation techniques are discussed in 4.4.1.
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4.2.1 Prior Work

A brief paper on implementing reflexive jamming against IEEE 802.15.4 frames is [14], sched-
uled for presentation in two weeks. This paper provides good background on why such re-
flexive jamming is important, and benchmarking techniques for its effectiveness. However,
this paper implements their jammer on a USRP2, calling it a “low-cost” system. The imple-
mentation presented here uses only a Tmote Sky (readily available at under $40), whereas
the USRP2 system has a base price of $1,400 plus the $275 to $400 radio interface board1.
[31] accomplishes reflexive jamming with a lower hardware cost (the presentation for the
paper cites 80 Euros), specifically what seems to be two Atmel evaluation boards connected
together. However, this paper unfortunately does not specify the specific Atmel hardware to
use, the wiring between these two boards, and furthermore does not provide any source code
to implement the results they discuss.

This thesis contributes an implementation that is publicly available, implementable on
only one low-cost device, and the setup requires no physical alterations or wiring of the
device.

4.2.2 Implementation on Tmote Sky with GoodFET

The author implemented reflexive jamming on the Tmote Sky device using GoodFET firmware.
The author’s code is in the GoodFET CCSPI firmware application, with the verb 0xA0.
The goodfet.ccspi application first places the radio into promiscuous mode, disables CRC
checking, and tunes to the desired channel before placing the firmware into reflexive jam-
ming mode. Reflexive jamming has been tested against communications and seems to have
constant effectiveness against packets greater than 12 bytes in length. Corruption seems to
typically occur on the 12th byte of the frame. The jam is triggered by the SFD (start of
frame deliminator) line on the Chipcon2420 radio going high, as shown in Figure 4.1. When
the firmware application observes this condition, it immediately shifts the radio into TX
mode, loads a frame into the TXFIFO buffer, and sends the STXON strobe command to
start transmission without the radio performing a CCA (clear channel assessment) which is
designed to prevent collisions.

Figure 4.2 shows a series of beacon frames, with frame 13 and 14 being sent when jamming
was not enabled, and frames 15 and 16 being sent once reflexive jamming was enabled. Note
that the eighth byte (0x46) in the frame is the first byte to be corrupted by the reflexive jam.
In the author’s tests, this is the earliest byte jammed, due to the turn-around time between
modes and the processor’s clock cycle. This means that in the current implementation,
frames of 7 bytes or shorter cannot be reflexively jammed, however, most frames of interest,
including virtually any frame with a payload, will be of sufficient length to jam with this
technique. The Chipcon2430 chip, which has the radio and an 8051 MCU on the same die,
may enable successful jamming on shorter frames in future work.

If this attack is done without acknowledgment spoofing, the sending device may repeatedly
try to transmit its packet as it is not being acknowledged. This means that an exhaustion
attack on a sending device can be implemented using this technique, if the sending device is
configured to continually attempt retransmission. The sending device would not know where

1Prices as of 5.31.2011 from http://www.ettus.com/order.
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Figure 4.1: Chipcon 2420 Receive Operation Pin Values [36, 34]

in the frame the collision occurred in the frame, as it cannot monitor while it is transmitting
due to the basic properties of radio media. An intrusion detection system may be able to
monitor frames if it knew the expected frames to determine if collisions were occurring later
in the frame, which may be unusual in non-malicious interference.

4.2.3 Acknowledgment Spoofing

In an acknowledgement spoofing attack, we want to prevent some frames from being received
at their destination, while making the sender believe that these have been received. In the
IEEE 802.15.4 specification, the acknowledgment bit is set in the frame control field if a
sender desires their transmission to be acknowledged by the receiver. The acknowledgment
frame type simply consists of a 2 byte frame control field (FCF), 1 byte sequence number
(matching the sequence number of the frame being acknowledged), and a 2 byte frame check
sequence (FCS). The FCF is known in advance for the acknowledgement field, and the FCS
is a non-cryptographic checksum that can be calculated prior to sending the packet. The one
piece of data which needs to be captured from the original packet is the sequence number.
The sequence number is always the third byte of a 802.15.4 frame.

Most collision attacks need a frame to be generated and transmitted after another one
is jammed, and these depend on the specific style of the attack. Implementation can be
done using Scapy dot15d4 and KillerBee, even using the zbForge library to assist in packet
generation, and then the frame can be transmitted either by the reflexive jamming device
or another radio interface. Choosing the proper frames to jam, and generating the proper
preceding or follow-up frames is key to making an effective, as well as targeted, attack.
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4.3 Attack on AES-CTR with Replay Protection En-

abled

One attack suggested by Silva and Nunes [35, 34] is an instant denial-of-service attack on
networks using AES-CTR security with sequential freshness (replay) protection enabled. The
802.15.4 standard has several security suites. First, it could use no security. The second suite
is AES-CTR, which provides data confidentiality. The standard also has AES-CBC-MAC
(with 32, 64, or 128 bits of MAC) which provides authentication. Finally, the AES-CCM
(with 32, 64, or 128 bits of MAC) provides both confidentiality and authentication. Because
in AES-CTR the frame is not authenticated, and the payload does not need to be something
that decrypts correctly (it is not validated), then a forged frame could be sent by the attacker
with crafted fields. If freshness protection is enabled, the attacker can set the frame counter
to the maximal value (0xFFFFFFFF) and the key sequence counter to maximal value (0xFF)
and the receiver will check these, see that they are higher than the current counters, and
begin to process the frame. It will perform decryption, which could result in a non-sensical
decrypted payload, but this payload is not checked at the MAC layer. The MAC layer then
updates the internal frame and key sequence counters in the access control list for the source
to the last received values (which are the maximum values), and waits for more packets.
However, these legitimate incoming frames will have frame and key sequence counter values
less than the maximum values, and these will be dropped as soon as the MAC layer begins
checking for sequential freshness, before any payload is decrypted and forwarded to the upper
layers in the network stack.

The author did not have access to any commercial devices that seem to be functioning in
this mode, but was able to write a proof-of-concept implementation using the Scapy dot15d4
layer. Figure 4.3 demonstrates the ease of crafting specialty packets using zbForge and Scapy
dot15d4. For such a simple attack, moreover, the zbForge capability is not needed, and the
attack could be written in in a single line of code using Scapy and KillerBee. The zbForge
functionality, however, is demonstrated as an example.

4.4 Remediation

4.4.1 Mitigation of Frame Collisions

The reflexive jamming attack presents a number of problems for mitigation. At a fundamental
level, frames are sometimes corrupted by the natural environment and a protocol must be
able to treat this as a normal case. However, detection of malicious (intentional) interference
is difficult if reflexive jamming (collisions) are used. Most radio chips will not see the second
frame as an anomaly, because they will receive the frame length from the original legitimate
frame, and their radios will then listen for that many bytes. The jamming frame begins
partly through the legitimate frame and alters multiple bytes by collision. However, any
excess bytes in the jamming frame that are sent after the legitimate frame has ended will
not be heard by most radios (a software-defined radio could watch for and analyze these).
However, even if these bytes could be examined, the attacker could vary the content of the
jamming frame to make these bytes appear as natural noise in the environment. Intrusion-

21



detection systems may need to consider the frequency of collisions, developing a model for the
percent of frames which are corrupted by the RF environment during normal operation and
comparing this model against current conditions to see if a significant increase has occurred
in the number of corrupted frames. An attacker may be able to be successful in running their
attack undetected, however, if they do selective reflexive jamming. In such a technique, the
attacker does not simply jam each time a start-of-frame is heard, but instead examines the
first few bytes – for example the 2-byte frame control sequence – to determine if the frame is
of interest. For example, only beacon frames could be jammed in order to try and segment
a network, but the attacker may not interfere with other types of frames. This may lead to
a race between defenders to develop accurate models of normal network error rates versus
attackers to craft their attacks such that they fit into the accepted “normal” model. Defense
in this way is unlikely to be a viable long-term solution against determined attackers.

Wood proposes using error correcting codes to mitigate the issue of collisions, but notes
that these add overhead to the network, and although these may work well against environ-
mental or probabilistic errors, an attacker can corrupt more bytes than the error-correcting
code can correct for, and accomplish an effective collision in this way. Also, other protocols
could be used, such as [41], which is specifically designed to fight against jamming.

4.4.2 Mitigation of Forged Acknowledgment Frames

Silva and Nunes propose remediation against forged ACK frames by introducing a new frame
type to 802.15.4 that is an acknowledgement frame secured by the same security suite as the
rest of the messages, which they call a “protected ACK”. This frame would be significantly
longer in length than the current ACK frame, however, and Silva and Nunes propose that it
carries a payload of the Frame Counter and Key Sequence Counter, the External Optional
Frame Counter, and the External Optional Key Sequence Counter [35, 23]. Implementation
of this will need to be added to the standard, and implemented in chip designs. This imple-
mentation cycle would take a long time, and new chips would likely need to be backwards
compatible given the long deployment lifetime expected of devices already deployed in the
field.

4.4.3 Mitigation of Fast DoS Attacks

Another remediation proposed by Silva and Nunes aims to prevent fast DoS attacks on
devices using the AES-CTR security suite as well as replay protection. The proposal is to
keep a Trust Reference Value (TRV) that is used to validate the incoming frame counter and
key sequence counter. First the frame counter and key sequence counter are validated as
they are currently, to ensure they exceed the values stored in the access-control list (ACL)
for the given source address. If they pass this test, they are also examined to ensure that
their values are not more than the TRV above the values stored in the ACL [35, 24]. If the
distance between the new value and the stored value exceeds the amount allowed by the TRV
check, Silva and Nunes suggest that the receiver “asks” the sender to verify the given value.
This query and response would need to be protected as well. This ensures that large jumps
are not possible in these values, such as immediately maximizing the value of these fields.
However, this does not prevent an attacker from slowly ramping up the values using jumps
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slightly smaller than that disallowed by the TRV check. If this technique was combined with
intrusion-detection or intrusion-prevention systems, such systems may be able to detect a
pattern before the attack increases the value of the counters significantly. However, even
raising it by a few iterations would deny service for some number of frames.
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Frame 13 (13 bytes on wire, 13 bytes captured)

[Time delta from previous captured frame: 0.999994000 seconds]

Frame Length: 13 bytes

IEEE 802.15.4 Beacon, Src: 0xef01

Frame Control Field: Beacon (0x8000)

FCS: 0x9fba (Correct)

0000 00 80 ac 01 39 01 ef 46 cf 00 00 ba 9f ....9..F.....

Frame 14 (13 bytes on wire, 13 bytes captured)

[Time delta from previous captured frame: 0.999993000 seconds]

Frame Length: 13 bytes

IEEE 802.15.4 Beacon, Src: 0xef01

Frame Control Field: Beacon (0x8000)

FCS: 0xd247 (Correct)

0000 00 80 ad 01 39 01 ef 46 cf 00 00 47 d2 ....9..F...G.

Frame 15 (13 bytes on wire, 13 bytes captured)

[Time delta from previous captured frame: 0.000094000 seconds]

Frame Length: 13 bytes

IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS

Frame Control Field: Beacon (0x8000)

FCS: 0x3b7c (Incorrect, expected FCS=0x215a

[Expert Info (Warn/Checksum): Bad FCS]

[Malformed Packet: IEEE 802.15.4]

[Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]

0000 00 80 ae 01 39 01 ef 93 99 99 b9 7c 3b ....9......|;

Frame 16 (13 bytes on wire, 13 bytes captured)

[Time delta from previous captured frame: 0.999994000 seconds]

Frame Length: 13 bytes

IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS

Frame Control Field: Beacon (0x8000)

FCS: 0x3a42 (Incorrect, expected FCS=0xcbea

[Expert Info (Warn/Checksum): Bad FCS]

[Malformed Packet: IEEE 802.15.4]

[Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]

0000 00 80 af 01 39 01 ef 33 33 33 33 42 3a ....9..3333B:

Figure 4.2: Jammed 802.15.4 Beacon Frames
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#Usage: clear; sudo python dos_aesctr_replay.py -c 15 -s ’2add’ -d ’0000’ -v

kb = getKillerBee(channel)

link = makeLinkData(srcSearch, destSearch)

_, scapy = create(link, FRAME_802_DATA) # get our basic data frame

# If "force" src/dest/pan provided, change from those that

# our search automatically filled in to the user specified settings

if srcTarget is not None:

scapy.src_addr = int(srcTarget, 16)

if destTarget is not None:

scapy.dest_addr = int(destTarget, 16)

if panTarget is not None:

scapy.src_panid = scapy.dest_panid = int(panTarget, 16)

# Weaponize this frame for the DoS Attack on AES-CTR

scapy.fcf_security = True

scapy.aux_sec_header.sec_framecounter = 0xFFFFFFFF

scapy.aux_sec_header.sec_sc_keyidmode = "KeyIndex"

scapy.aux_sec_header.sec_keyid_keyindex = 0xFF

scapy.aux_sec_header = scapy.aux_sec_header #needed to update main packet

# Output and send frame

print "Sending forged frame:", toHex(str(scapy))

scapy.show()

kb.inject(str(scapy))

Figure 4.3: Proof-of-Concept Implementation of a Single-Frame DoS Attack on AES-CTR
Security with Replay Protection Enabled
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