15 research outputs found

    Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall

    Full text link
    To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in ∼\sim 60 % of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes

    Amplification of actin polymerization forces.

    Get PDF
    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments

    CPI motif interaction is necessary for capping protein function in cells

    Get PDF
    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells

    Cell–cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction [version 1; referees: 2 approved]

    Get PDF
    The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell–cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell–cell adhesion interface

    Modeling Mechanisms Behind Force Generation By Actin Polymerization

    Get PDF
    Actin polymerization is the primary mechanism for overcoming the large turgor pressure that opposes endocytosis in yeast. While generation of pushing forces by actin polymerization is fairly well understood, it is not clear how actin polymerization produces pulling forces. In order to understand this process, it is necessary to simulate polymerization of filaments having various types of interactions with the membrane. Since existing methodologies in the literature do not treat such problems correctly, we develop a thermodynamically consistent methodology for treating polymerization of filaments having arbitrary interaction potentials with the membrane. Then I perform stochastic simulations for a system of 144 semiflexible actin filaments in a square array, treating all subunits explicitly. Each filament interacts with the membrane via an interaction potential that has both attractive and repulsive components. The crucial protein Sla2, which binds actin filaments to the membrane, is assumed to slow the growth of the filaments near the array center by having a strongly attractive potential. The (de)polymerization rates are potential-dependent and thus vary with the filament-membrane gap. We model the elasticity of the actin network by linear springs connecting adjacent filaments to each other. The simulation results show that the outer filaments push on the membrane, while the inner filaments pull on it. I calculate the force distribution for various model parameters, including the potential depths, the free filament on- and off-rates, the numbers of fast- and slow-growing filaments, and the network rigidity. Under the most favorable conditions, the total pulling force is the sum of the stall forces of all the pushing filaments. The filament-membrane detachment occurs for softer gels with weaker central bindings, and it propagates like a crack in brittle regime. The steady-state force distributions are flat over the pulling and pushing regions, indicating the uniform polymerization rates across the pulling and pushing regions after reaching steady-state
    corecore