23 research outputs found

    Feature preserving smoothing of 3D surface scans

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 63-70).With the increasing use of geometry scanners to create 3D models, there is a rising need for effective denoising of data captured with these devices. This thesis presents new methods for smoothing scanned data, based on extensions of the bilateral filter to 3D. The bilateral filter is a non-linear, edge-preserving image filter; its extension to 3D leads to an efficient, feature preserving filter for a wide class of surface representations, including points and "polygon soups."by Thouis Raymond Jones.S.M

    Feature preserving noise removal for binary voxel volumes using 3D surface skeletons

    Get PDF
    Skeletons are well-known descriptors that capture the geometry and topology of 2D and 3D shapes. We leverage these properties by using surface skeletons to remove noise from 3D shapes. For this, we extend an existing method that removes noise, but keeps important (salient) corners for 2D shapes. Our method detects and removes large-scale, complex, and dense multiscale noise patterns that contaminate virtually the entire surface of a given 3D shape, while recovering its main (salient) edges and corners. Our method can treat any (voxelized) 3D shapes and surface-noise types, is computationally scalable, and has one easy-to-set parameter. We demonstrate the added-value of our approach by comparing our results with several known 3D shape denoising methods

    Robust Feature-Preserving Mesh Denoising Based on Consistent Sub-Neighborhoods

    Get PDF
    published_or_final_versio

    Segmentation Based Mesh Denoising

    Full text link
    Feature-preserving mesh denoising has received noticeable attention recently. Many methods often design great weighting for anisotropic surfaces and small weighting for isotropic surfaces, to preserve sharp features. However, they often disregard the fact that small weights still pose negative impacts to the denoising outcomes. Furthermore, it may increase the difficulty in parameter tuning, especially for users without any background knowledge. In this paper, we propose a novel clustering method for mesh denoising, which can avoid the disturbance of anisotropic information and be easily embedded into commonly-used mesh denoising frameworks. Extensive experiments have been conducted to validate our method, and demonstrate that it can enhance the denoising results of some existing methods remarkably both visually and quantitatively. It also largely relaxes the parameter tuning procedure for users, in terms of increasing stability for existing mesh denoising methods

    Mesh denoising via L

    Full text link

    Surface Denoising based on Normal Filtering in a Robust Statistics Framework

    Full text link
    During a surface acquisition process using 3D scanners, noise is inevitable and an important step in geometry processing is to remove these noise components from these surfaces (given as points-set or triangulated mesh). The noise-removal process (denoising) can be performed by filtering the surface normals first and by adjusting the vertex positions according to filtered normals afterwards. Therefore, in many available denoising algorithms, the computation of noise-free normals is a key factor. A variety of filters have been introduced for noise-removal from normals, with different focus points like robustness against outliers or large amplitude of noise. Although these filters are performing well in different aspects, a unified framework is missing to establish the relation between them and to provide a theoretical analysis beyond the performance of each method. In this paper, we introduce such a framework to establish relations between a number of widely-used nonlinear filters for face normals in mesh denoising and vertex normals in point set denoising. We cover robust statistical estimation with M-smoothers and their application to linear and non-linear normal filtering. Although these methods originate in different mathematical theories - which include diffusion-, bilateral-, and directional curvature-based algorithms - we demonstrate that all of them can be cast into a unified framework of robust statistics using robust error norms and their corresponding influence functions. This unification contributes to a better understanding of the individual methods and their relations with each other. Furthermore, the presented framework provides a platform for new techniques to combine the advantages of known filters and to compare them with available methods

    Robust feature-preserving mesh denoising based on consistent subneighborhoods

    Get PDF
    In this paper, we introduce a feature-preserving denoising algorithm. It is built on the premise that the underlying surface of a noisy mesh is piecewise smooth, and a sharp feature lies on the intersection of multiple smooth surface regions. A vertex close to a sharp feature is likely to have a neighborhood that includes distinct smooth segments. By defining the consistent subneighborhood as the segment whose geometry and normal orientation most consistent with those of the vertex, we can completely remove the influence from neighbors lying on other segments during denoising. Our method identifies piecewise smooth subneighborhoods using a robust density-based clustering algorithm based on shared nearest neighbors. In our method, we obtain an initial estimate of vertex normals and curvature tensors by robustly fitting a local quadric model. An anisotropic filter based on optimal estimation theory is further applied to smooth the normal field and the curvature tensor field. This is followed by second-order bilateral filtering, which better preserves curvature details and alleviates volume shrinkage during denoising. The support of these filters is defined by the consistent subneighborhood of a vertex. We have applied this algorithm to both generic and CAD models, and sharp features, such as edges and corners, are very well preserved. © 2010 IEEE.link_to_subscribed_fulltex

    Differential Filtering and Detexturing

    Get PDF
    Extracting valuable information from 2D or 3D visual data plays an important role in image and geometry processing. Surfaces obtained through a scanning process or other reconstruction algorithms are inevitably noisy due to error in the scanning process and resampling of the data at various processing steps. These surfaces need to be denoised both for aesthetic reasons and for further geometry processing. Similarly, extracting or removing texture patterns from 2D or 3D data is challenging due to the complication of its statistical features. In this dissertation, I describe how to remove surface noise and image texture patterns. In particular, I focus on denoising triangulated models based on L0 minimization, in which a very important discrete differential operator for arbitrary triangle meshes has been developed. Compared to other anisotropic denoising algorithms, our method is more robust than other anisotropic denoising algorithms, and produces good results even in the presence of high noise. I also introduce how to use bilateral filter appropriately on image texture removal by modifying its range image. While current existing methods either fail to remove the textures completely or over blur main structures, our method delivers best-in-class image detexturing performance
    corecore