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ABSTRACT

Extracting valuable information from 2D or 3D visual data plays an important

role in image and geometry processing. Surfaces obtained through a scanning process

or other reconstruction algorithms are inevitably noisy due to error in the scanning

process and resampling of the data at various processing steps. These surfaces need to

be denoised both for aesthetic reasons and for further geometry processing. Similarly,

extracting or removing texture patterns from 2D or 3D data is challenging due to

the complication of its statistical features. In this dissertation, I describe how to

remove surface noise and image texture patterns. In particular, I focus on denoising

triangulated models based on L0 minimization, in which a very important discrete

differential operator for arbitrary triangle meshes has been developed. Compared

to other anisotropic denoising algorithms, our method is more robust than other

anisotropic denoising algorithms, and produces good results even in the presence of

high noise. I also introduce how to use bilateral filter appropriately on image texture

removal by modifying its range image. While current existing methods either fail to

remove the textures completely or over blur main structures, our method delivers

best-in-class image detexturing performance.
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1. INTRODUCTION

With the increasing use of visual data to represent 2D scenes or 3D models, there

is a rising need for processing [31] those data. Image denoising has been studied

for decades, but even with the tremendous amount of work on the topic, current

techniques are far from perfection. Indeed, data acquisition always comes with some

kind of noise, so modeling this noise and removing it efficiently is important. In

this dissertation, I will focus on solving two visual data filtering problems: surface

denoising and image detexturing. Denoising is a classical and well studied problem,

while detexturing is relatively less studied.

1.1 Surface Filtering

Surface processing is a fast-growing area of research in the computer graphics do-

main and is mostly involved in applying a variety of algorithms, such as model repair,

surface smoothing, surface parameterization, remeshing, and surface deformation to

geometric models. Triangle meshes are a popular way to represent surfaces for geom-

etry processing because they are flexible and highly efficient. Triangle meshes come

from a variety of sources but can be generated through scans of real-world objects.

However, 3D scans often contain artifacts and noise. The goal of surface filtering is

to extract high quality surfaces from noisy scan data. While dealing with noise, this

refinement process is referred to as surface denoising. Surface denoising is an impor-

tant tool in geometry processing. Surfaces obtained through a scanning process or

other reconstruction algorithms are inevitably noisy due to error in scanning process

and resampling of the data at various processing steps. These surfaces need to be

denoised both for aesthetic reasons and for further geometry processing. Figure 1.1

shows a noisy model obtained by a laser range scanner. However, surface denoising

1



Figure 1.1: A real world face model. Model courtesy of the Factum Foundation for
Digital Technology in Conservation.

is inherently challenging as it can be difficult to distinguish features from noise. This

problem is especially problematic in the presence of sharp features that represent

high frequency information. Retaining such features can be difficult when high levels

of noise are present with the same frequency as sharp features.

Noise on surfaces is usually treated as perturbation. The most commonly used

additive model is

p∗ = p+ η, (1.1)

where the observed vertex p∗ is the addition of the original vertex p and the random

noise η, which is usually assumed to be Gaussian with zero mean and standard

2



deviation σ. Surface denoising boils down to recovering a 3D model contaminated

by noise η. The larger the noise intensity σ is, the harder it is for denoising algorithms

to distinguish noise from data.

In general, surface denoising methods can be classified into two categories: isotropic

and anisotropic. The former filters the noisy surface independently of surface ge-

ometry, while the latter takes geometry information into account and modifies the

diffusion equation in order to preserve sharp features.

An important goal of surface denoising is to preserve these sharp features, making

anisotropic methods preferred. However, in the presence of high levels of noise,

traditional anisotropic methods have trouble balancing noise removal and feature

preservation. As a result, there is still significant room for improving the quality of

mesh filtering that we use for fairing models.

1.2 Image Detexturing

Image processing is any form of signal processing for which the input is an image,

such as a photograph or video frame. The output of image processing is either an

image or a set of characteristics or parameters related to the image. Most image

processing methods treat the image as a two-dimensional signal and apply standard

signal processing techniques to it. In this field of research there are many problems

dealing with image processing, such as image enhancement, restoration, compression,

denoising and so on. While there are many interesting problems, this dissertation’s

secondary objective is to explore image detexturing.

Texture is one of the most fundamental elements in both 3D and 2D art work,

an example of this is shown in Figure 1.2. Physcial texture is defined as the tactile

quality of the surface of an object, which refers to how it feels if touched. Visual

texture is the visual expression of physical texture. Visual texture in general resides

3



Figure 1.2: Left: a 3D art statue [3]. Right: a 2D painting by Vincent Van Gogh [2].

in the media such as photography, drawlings and paintings. Texture in these media

is generally created by repeated shapes and lines either globally or locally, and stored

in images.

Creating visual textures could be time-consuming and tedious even for artists,

and some natural textures could even be impossible to reproduce by hand, let alone

unexperienced people. Therefore, extracting existing textures from various natural

scenes or human-created art work would be quite useful. For example, one can

transfer the texture pattern from one image to the other to create interesting image

mosaics. Also, similar to the goal of image denoising, removing textures will help us

acquire and better understand the latent structures underneath the textured scene.

Figure 1.3 shows the result of a detexturing method using relative total variation

model [62]. Compared to noise, texture is less studied in the the academic literature,

but it widely attracts more attention from artists. There are two main approaches

to analyze image texture in computer graphics: structured approach and statistical

approach. The structured approach treats an image texture as a set of primitive

4



Figure 1.3: Left: an input image with repeated texture patterns [63]. Right: results
of a detexturing method in [62].

texels in some regular pattern, so it works well when analyzing artificial textures.

The statistical approach sees an image texture as a quantitative measure of the

distribution of intensities (colors) in a region. This approach in general is easier to

compute and more widely used, given the fact that most textures in natural scenes

or even art work are made of irregular subelements. Standard approaches like edge

detection, co-occurrence matrix, laws texture energy measure and power spectrum

can be used to describe textures for different purposes.

While the goal is more towards identifying and extracting textures, I do not in this

dissertation answer questions like “what kinds of texture does the image contain?” or

“how dense is the texture?”. Instead, with an existing metric for detecting textures,

we focus on answering “how can we develop a better filtering algorithm to remove

or extract textures?”.

Similar to the noise model on surfaces, a image with texture patterns could be

5



modeled by

c∗ = c+ η, (1.2)

where c∗ is the input textured image, c is the original image without textures and η is

the texture. Ideally, we would like to extract the texture-free image c from the input

c∗ by removing the texture η. It is difficult to remove texture patterns by traditional

filtering methods, this dissertation proposes a technique to overcome this difficulty.

1.3 Data Collection and Representation

In technical applications of 3D computer graphics, surfaces are not the only way

of representing objects, other representations include wireframe, solids and point

clouds. However, this work only considers surfaces to represent 3D objects. As

mentioned before, we use triangle meshes, one of the most common polygon mesh

representations, as a discrete representation to approximate 3D objects. A triangle

mesh, see Figure 1.4, can be defined as M = (V , E), where V = {v1, v2, ..., vn} is the

set of vertices, E = {eij} is the set of edges. Each edge {eij} = [vi, vj] connects a

pair of vertices {vi, vj}. Those geometric elements are stored in a data structure to

easily obtain the geometry information associated with any element. For example,

one can access the local neighborhood of a vertex and use the neighboring vertices

to calculate the curvature at this vertex.

Images are widely used to store and visualize 2D data intuitively. They are gener-

ally converted into bit information by image sampling. The images this dissertation

uses are diverse, they could be natural photos, paintings or even unrealistic scenes.

Like traditional image processing techniques, we perform image detexturing opera-

tions in a linear color space. In this work, images are represented in an approximate

linear color space. While all the data is discrete, we conduct experiments on both

synthetic and real world data to verify the effectiveness of the proposed algorithms.

6



Figure 1.4: A 3D model represented by a triangle mesh

1.4 Dissertation Overview

This dissertation proposes two filtering approaches for extracting smooth surfaces

and texture-free images. In particular,

• We extract smooth surfaces by denoising triangluated models with a large

amount of noise.

• We acquire texture-free images by detexturing various images with regular and

non-regular texture patterns.

7



2. MESH DENOISING VIA L0 MINIMIZATION

Mesh denoising is inherently challenging as it can be difficult to distinguish fea-

tures from noise. When the noise intensity is low, current anisotropic methods can

remove noise and preserve sharp feature quite well at the same time. However, things

become especially problematic in the presence of high levels of noise.

Generally, feature-preserving denoising is achieved by adjusting vertex positions

locally or globally while respecting the underlying geometric features. Anisotropic

filtering is often needed to preserve features such as sharp edges or corners. A wide

variety of mesh denoising algorithms already exist. While most early work focused

on isotropic algorithms that ignore sharp features, recent methods are anisotropic

and attempt to preserve share features in the data. These methods are divided into

two major approaches. The first approach, anisotropic diffusion flow, is global and

based on prescribed differential information such as mean curvature to adjust the

direction of diffusion of the high frequency noise. The second approach is to extend

the bilateral filter from 2D signal processing to arbitrary 3D meshes by filtering ei-

ther spatial locations or differential information locally. For example, one can apply

bilateral filters on face normals, then use the filtered face normals to guide surface

reconstruction. Instead of directly using vertex locations, most advanced mainstream

methods adopt differential information such as normals and curvatures to describe

the surface’s local appearance. That differential information is either explicitly fil-

tered to guide the vertex updating afterwards, or is implicitly incorporated into an

energy minimization framework. It is crucial to choose an appropriate differential

shape descriptor not only for denoising methods, but also for other geometry process-

ing algorithms that use differential representations. For instance, a shape descriptor,
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which contains desirable anisotropic information of features, may not be well defined

within regions with sharp features.

In this chapter, we take a different approach to mesh denoising using L0 mini-

mization. In our context, we use the L0 norm, which directly measures sparsity, to

preserve sharp features and smooth the remainder of the surface. However, the L0

norm can be difficult to optimize due to its discrete, combinatorial nature. We base

our approach on recent work on L0 minimization for images [61]. Doing so requires

extending various elements of the minimization from 2D grids of pixels to unstruc-

tured triangle meshes representing two-manifolds in R3. Moreover, our goal is not

to create piecewise constant functions as was done for images, but to minimize the

curvature of the surface except at sharp features. The benefit of L0 minimization is

that our method handles large amounts of noise and produces higher quality results

than current algorithms.

2.1 Related Work

Most early surface smoothing methods are isotropic, which means the filter is

independent of surface geometry. Laplacian smoothing [59] is an example of a sim-

ple smoothing algorithm that filters noise efficiently but does not preserve features

and shrinks the surface. Taubin [54] approaches surface smoothing from a signal

processing perspective and proposes a non-shrinking, two-step smoothing algorithm.

Desbrun et al. [13] introduces a version of mean curvature flow [17] for surface fair-

ing using a simplified mass matrix. Kim et al. [29] combine these two approaches

to design a filtering framework for lowpass/highpass filtering with exaggeration and

attenuation options. Liu et al. [34] present a smoothing approach for triangle meshes

that preserves volume. Others construct isotropic smoothing methods using global

systems of equations [40, 49].
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Given that isotropic methods do not preserve sharp features in the object, many

recent techniques have focused on anisotropic approaches. Several authors explore

anisotropic diffusion algorithms for surfaces [14, 12, 53, 8] or images [57] based on

PDEs. Hildebrandt et al. [24] propose a smoothing algorithm using prescribed mean

curvature flow to preserve surface features.

Another approach to anisotropic smoothing has been to extend the bilateral fil-

ter [56] from image processing to 3D geometry. Fleishman et al. [22] propose a

bilateral filter inspired approach that filters vertices of the mesh in the normal di-

rection of the surface using local neighborhoods. Jones et al. [26] present a similar

approach as well based on robust statistics. El Ouafdi et al. [19] present a probabilis-

tic smoothing algorithm that designs a Riemannian distance based diffusion tensor

for filtering neighboring vertices.

Several researchers have also explored the idea of filtering face normals instead

of directly filtering vertex coordinates. Many of these methods follow a two-step

framework: filtering surface normals followed by updating vertex positions [55, 64,

65, 47, 30, 51, 20, 67]. While updating vertices is trivial, filtering normals is im-

portant in the quality of the final surface. Yagou et al. [64] use mean and median

filters for estimating face normals and later use alpha-trimming filters [65]. Shen et

al. [47] propose a fuzzy median filter to better estimate face normals. Sun et al. [51]

improve upon this method by ignoring neighboring normals with large differences

when computing face normals and propose a new vertex updating algorithm. These

authors then introduce a random walk model to determine the filtering weights [52].

The bilateral filter has been used in normal filtering as well [30, 60]. Most recently

Zheng et al. [67] propose a mesh denoising scheme using a global bilateral normal

filter and achieve impressive results.
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2.2 L0 Minimization for Images

We will briefly review L0 minimization in the context of images before extending

this algorithm to surfaces. The L0 norm of a vector is the number of non-zero entries,

which directly measures sparsity. L0 minimization has applications in compressed

sensing [15]. However, this norm is difficult to optimize directly due to its combina-

torial nature. Candes et al. [10] show that L1 minimization can also provide a good

measure of sparsity. Lipman et al. [32] also used the “L1” norm in the context of

point denoising.

Recently Xu et al. [61] provide an algorithm for directly optimizing the L0 norm

in the context of image smoothing to create piecewise constant images. Let c be a

vector of pixel colors and ∇c be a vector of gradients of these colors. The authors

attempt to minimize |c − c∗|2 + |∇c|0 where |∇c|0 is the L0 norm of ∇c and c∗

represents the original image colors to as a data fidelity term.

To minimize this expression, the authors introduce a set of auxiliary variables δ.

The minimization problem then becomes

min
c,δ
|c− c∗|2 + β|∇c− δ|2 + λ|δ|0

where λ controls the level of detail in the final image. The authors optimize this

expression with an alternating optimization. First, the authors hold c constant and

only minimize for δ.

min
δ
β|∇c− δ|2 + λ|δ|0

In this minimization, each entry δi will either be 0 or ∇ci to either minimize the L0

norm of δi or the L2 difference with ∇ci. Therefore, if
√

λ
β
> ∇ci, δi will be set to 0;
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Figure 2.1: Left: an input image. Right: the result of L0 minimization [61].

otherwise δi = ∇ci. Next, the authors hold δ fixed and optimize for c.

min
c
|c− c∗|2 + β|∇c− δ|2

This expression is quadratic in c and trivial to minimize. Both of these optimizations

alternate until convergence, except the authors multiply β by 2 each iteration to

eventually force ∇c to match δ. Figure 2.1 shows a smoothing result of this method.

2.3 L0 Minimization for Surfaces

Assume that we are given a triangulated manifold M = (V , E), with or without

boundary, containing vertices p ∈ V . For surfaces, we can simply replace c with p

and its initial positions p∗. However, we must design a discrete differential opera-

tor to replace ∇c that is zero when the surface is flat for arbitrary triangulations

irrespective of the rotation or translation of the surface. The reason is that using

gradients on the surface will generate piecewise constant surfaces, which are not de-

sirable. This constraint implies that we need some form of second order information

rather than the first order information provided by ∇c. While there are several
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Figure 2.2: From left to right: noisy input surface with σ = 0.3le, vertex-based
cotangent operator, our cotangent edge operator, our area-based edge operator. The
bottom row shows wireframes with flipped triangles denoted by red edges. None of
these results use regularization.

candidates for measuring this information on surfaces [36], an obvious choice is the

discrete Laplacian operator [43], which is computed as a weighted combination of a

vertex and its one-ring where the weights are given by cotangents of angles of the

triangles. This operator has found numerous applications in Computer Graphics and

has the property that its value, when applied to the vertices, yields a vector normal

to the surface whose magnitude is proportional to the mean curvature of the surface

at that point [13]. Figure 2.2 shows a noisy input surface (left) and the effect of us-

ing the discrete Laplacian operator in this L0 minimization framework (middle left).

While the surface is smoother, the optimization fails to reproduce sharp features and

shrinks the surface away from the features. The problem is that the vertex-based

Laplacian only constrains the mean curvature vector as opposed to a metric that

directly measures sharpness per edge. Figure 2.3 shows such an example, in which
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we modify the planar mesh on the left by lifting up a pair of diagonal vertices and

pulling down the other pair by same amount of offset. According to the traditional

vertex-based Laplacian operator, the Laplacian of the center vertex in the right mesh

is zero in this case. However, the local region around the centering vertex is appar-

ently not flat, so vertex-based discrete Laplacian is not appropriate for measuring

sharpness. Mathematically, since the Laplacian of a vertex is calculated based on

its one-ring neighborhood, there might be too many degrees of freedoms, we will

give more explanations on this in the next section. When observing the sharpness

or smoothness of a triangle mesh, we notice that the angle formed by two adjacent

triangle faces intuitively measures the sharpness around the targeting edge. Hence,

we would like to use the Laplacian of edges on the mesh to measure the sharpness.

We will generalize the construction of the vertex-based cotan operator to an operator

that acts directly on an edge.

Figure 2.3: Left: a planar mesh formed by four triangles. Right: a modified mesh
with zero curvature at the centering vertex.
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2.3.1 Differential Edge Operator

To make the operator independent of translations and rotations, we desire a set

of weights wj that annihilate constant and linear functions; that is,

∑
j wj = 0∑

j wjpj = 0
(2.1)

when pj are planar, which are similar to the properties of generalized barycentric

coordinates [23]. While there have been many different derivations of the cotan

Laplacian operator in Computer Graphics, we focus on the barycentric construc-

tion that makes the properties in Equation 2.1 obvious. We will then extend this

construction to build a differential edge operator.

Figure 2.4: Based on divergence theorem, the curvature over a region can be calcu-
lated indirectly without directly integrating curvatures.
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Figure 2.5: The normal vector (red) can be written as a weighted combination of
two edge vectors (blue).

One method of building barycentric coordinates is through the use of the diver-

gence theorem [46] illustrated in Figure 2.4, which states that the integral of an

outward facing normal over a closed shape is zero. Figure 2.6 (left) shows a one-ring

of a central vertex and outward facing normals (pj − pj+1)⊥ whose lengths are equal

to the lengths of the corresponding edge and are planar with the triangle formed

between pj, pj+1, and p0. Representing (pj − pj+1)⊥ as a weighted combination

(illustrated in figure 2.5) of the vertices of its triangle yields

(pj − pj+1)⊥ = cot(θ0,j,j+1)(pj+1 − p0) + cot(θj,j+1,0)(pj − p0).

Summing these weights around the central vertex gives the discrete Laplacian
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Figure 2.6: Our notation for the one-ring of a vertex and an edge.

from Pinkall et al. [43]. If the pj are planar, then

∑
j

(pj − pj+1)⊥ =
∑
j

wjpj = 0

and the weights trivially satisfy Equation 2.1.

We can apply the same construction to build an edge operator. Figure 2.6 (right)

shows an edge, e, and the labels we use to identify the vertices. If we apply the same

construction and represent the vectors (pi− pi+1)⊥ as a weighted combination of the
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vertices of their triangle, we obtain the differential operator D(e) for the edge as

D(e) =



− cot(θ2,3,1)− cot(θ1,3,4)

cot(θ2,3,1) + cot(θ3,1,2)

− cot(θ3,1,2)− cot(θ4,1,3)

cot(θ1,3,4) + cot(θ4,1,3)



T 

p1

p2

p3

p4


, (2.2)

which also satisfies Equation 2.1. Moreover, when the pj are not planar, the

magnitude of the weights applied to the vertices is equal to 2 sin
(
γ
2

)
|p3 − p1| where

γ is the dihedral angle between the two polygons. 2 sin
(
γ
2

)
is a good approximation

of γ for angles less than 90◦. Hence, the magnitude of the weights applied to the

vertices is approximately the dihedral angle times the shared edge length, which

provides a measure of the mean curvature.

Following the discussion of the vertex-based discrete Laplacian in the last section,

here we can review the vertex-based discrete Laplacian again. When there are more

than or equal to four vertices in the one-ring neighborhood of a vertex, equation 2.1

will be underdetermined and will have multiple solutions. Some solutions would

be undesirable even they can easily satisfy equation 2.1, because the corresponding

one-ring configurations are not flat, see figure 2.3. In contrast, the edge-based Lapla-

cian derived from equation 2.1 is always zero, each feasible solution in the family

guarantees that the local surface configuration is planar.

Figure 2.2 (middle right) shows the effect of using this cotan edge operator in

the L0 optimization. The result is significantly improved, but there are still shape

quality problems. The issue stems from degenerate triangles where the cotan weights

approach infinity as an angle approaches zero. In practice, this behavior leads to nu-

merical problems and never allows folded triangles to unfold in planar configurations
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Figure 2.7: An example showing that the folded triangle may not be unfolded due
to the potential numerical issue.

since the vertex must pass through a singularity in the weights. Figure 2.7 shows

such an example. Kazhdan et al. [28] have noted this problem before for the cotan

vertex operator in the context of mean curvature flow.

To improve our edge operator, we return to the properties in Equation 2.1. If we

assume that the pj are in 2D, then Equation 2.1 represents three equations with four

unknowns that has exactly a one-dimensional null space of solutions spanned by the

vector

{−∆2,3,4,∆1,3,4,−∆1,2,4,∆1,2,3}

where ∆j,k,` refers to the area of the triangle with vertices pj, pk, and p`. These

weights are not scale-independent and require normalization. We use ∆1,3,4 + ∆1,2,3

to normalize the result. Note that this denominator may be zero if both triangles

become degenerate. For the cotan weights from Equation 2.2, the weights are unde-

fined if either triangle becomes degenerate. We use this local normalizer for all of our

results and never had any issue on any of the surfaces we tried, though we typically

saw numerical problems with the cotan weights for meshes with large amounts of
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Figure 2.8: Two different per-edge planar configurations.

noise. However, it is also possible to use a global normalizer such as the surface area

of the model to avoid all but global degeneracies. Note that our cotan weights in

Equation 2.2 are a scalar multiple of this null space vector. Therefore, the magnitude

of these new weights applied to the vertices is also proportional to mean curvature.

Computing these area weights is trivial in 2D, but requires some thought when

pj are in 3D. Moreover, the weights do not take into account the asymmetry in the

vertices due to the edge between p1 and p3. Figure 2.8 shows two different planar

configurations, if p1 lies in the triangle defined by p2, p3, and p4, the shape is a valid

planar triangulation whose outer edges represent a concave polygon and our operator

should return zero. However, if p2 lies in the triangle defined by p1, p3, and p4, the

configuration is that of a folded-back triangle and our operator should be non-zero.

Our solution is to compute the areas ∆2,3,4 and ∆1,2,4 using an isometric unfolding of

the surface around the shared edge (i.e.; ∆2,3,4 = 1
2
|p2 − p3||p4 − p3| sin(θ1,3,4 + θ2,3,1)
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Figure 2.9: From left to right: the ground truth, the input mesh with large noise in
random directions, our method without regularization, our method with regulariza-
tion.

). Expanding this equation yields our area-based edge operator.

D(e)=



∆1,2,3((p4−p3)·(p3−p1))+∆1,3,4((p1−p3)·(p3−p2))

|p3−p1|2(∆1,2,3+∆1,3,4)

∆1,3,4

∆1,2,3+∆1,3,4

∆1,2,3((p3−p1)·(p1−p4))+∆1,3,4((p2−p1)·(p1−p3))

|p3−p1|2(∆1,2,3+∆1,3,4)

∆1,2,3

∆1,2,3+∆1,3,4



T

p1

p2

p3

p4


Figure 2.2 (right) shows the effect of this area-based operator. The result is a much

improved surface with far fewer folded triangles.

2.3.2 Regularization

For surfaces with relatively uniformly shaped triangles, the method in Section 2.3.1

works well. However, under high amounts of noise with non-uniformly shaped trian-

gles, the optimization still produces flat surfaces but polygons can fold and overshoot
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sharp edges as shown in Figure 2.9 (middle right). Our solution is to add a triangle

shape regularizer for each edge given by the quadratic

(p1 − p2 + p3 − p4)2. (2.3)

Figure 2.9 (right) shows the result of adding such a regularizer. Not only are the

triangles better shaped, but the spurious overshoots and fold-backs have been elim-

inated.

Figure 2.10: From left to right shows the results of our method using different speeds
µ of 2.0, 1.414 (default) and 1.090. In this example, smaller values of µ produces
near ideal results.
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2.3.3 Optimization

Our optimization follows that of Section 2.2, and we minimize

min
p,δ
|p− p∗|2 + α|R(p)|2 + β|D(p)− δ|2 + λ|δ|0 (2.4)

where p are the vertices of the shape, p∗ are their initial positions, D(p) is a vector

where the ith entry corresponds to the area-based edge operator applied to the ith

edge, and R(p) is a vector whose ith entry is the edge regularizer from Equation 2.3

applied to the ith edge. We again perform an alternating minimization where we

hold p fixed to solve for δ,

min
δ
β|D(p)− δ|2 + λ|δ|0 (2.5)

and then hold δ fixed and solve for p in the same way as Section 2.2. When p is

fixed, D(p) is a constant, Equation 2.5 can be solved locally for each vertex.

min
p
|p− p∗|2 + α|R(p)|2 + β|D(p)− δ|2, (2.6)

which represents a sparse quadratic in p. Minimizing this energy function only

requires solving a linear system of equations. This entire procedure is summarized

in Algorithm 1.

In this procedure µ is the speed at which we increase β. We multiply the weight

of the regularizer by 1
2

at each iteration to exponentially decrease the effect of the

regularizer during the optimization. This choice gives high weight to the regularizer

at the beginning of the optimization when the surface is very noisy and reduces its

effect to zero as the optimization continues.
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Figure 2.11: The performance of several methods with different amount of noise.
Each row shows different levels of noise in random directions (σ = 0.3le top, σ = 0.6le
bottom). From left to right: noisy input, bilateral filtering [22], prescribed mean
curvature flow [24], mean filtering [64], bilateral normal filtering [67], our method.
Model courtesy of the AIM Shape Repository [1].

2.4 Results

Equation 2.4 contains several parameters. In all of our results, unless otherwise

noted to show the effect of a particular parameter, we use default values and do

not optimize the parameters for a particular surface. We use µ =
√

2, α0 = 0.1γ̄,

and λ = 0.02l2e γ̄ where le is the average edge length of the initial surface and γ̄

is the average dihedral angle measured in radians from the initial surface, which

provides a measure of the initial amount of noise in the surface. Since the L0 norm

does not change with the scale of the surface, we scale λ by l2e to make the result

scale independent. In Figures 2.2 and 2.9 where we do not use regularization (i.e.;

α0 = 0), we increase λ by a factor of four to make up for the lack of smoothing from

the regularizer in the first few iterations.

As in Section 2.2, λ provides a measure of the level of detail to preserve in the
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Algorithm 1 Surface smoothing via L0 minimization

Input:surface with vertices p∗

Initialization: compute λ, p← p∗, β ← 10−3, α← α0

repeat
fix p, solve for δ in Eq. 2.5.
fix δ, solve for p in Eq. 2.6.
β ← µβ, α← 1

2
α

until β ≥ 103

input surface. Figure 2.12 shows the effect of different values of λ on a surface without

noise. A small value for λ only removes small scale details in the surface such as the

bumps along the dragon’s body. Increasing the value of λ gradually removes more

details until only large-scale features are preserved.

Figure 2.10 shows the effect of changing the speed µ at which we increase β

for the input from Figure 2.13. Xu et al. [61] use µ = 2.0, but we found that the

results typically had more rounded corners with this choice. As µ decreases, edges

and corners become sharper at the cost of more iterations. In this example, the

surface is a platonic solid and using a small value for µ (1.090) can provide an even

better result than our default parameter. However, for shapes with curved regions

such as in Figure 2.11, we have found that µ =
√

2 tends to work best, which is the

parameter we used in Figure 2.13.

We have also compared our method against several popular and recent anisotropic

smoothing methods. For each model we create an input surface corrupted by Gaus-

sian noise with a standard deviation σ. In these comparisons, we show both the

surface and a wireframe model. We highlight edges with a red color when the di-

hedral angle is greater than 150◦ to show folded triangles. Figure 2.13 illustrates

a comparison between bilateral filtering [22], prescribed mean curvature flow [24],
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Figure 2.12: The effect of the L0 weight. Top left: an input mesh without any noise,
top right: λ = 1

16
default, bottom left: λ = default, bottom right: λ = 16 default.

Model courtesy of the Stanford 3D Scanning Repository [6].

mean filtering [64], and bilateral normal filtering [67]. All of these methods have

some parameters that control their results. While we use default parameters for our

method, we searched the parameter space of the other methods to find an optimal

set of parameters for each model. As Figure 2.10 illustrates, we can improve upon

our result by tuning parameters. However, our default parameters provide a superior

solution by themselves.

Figure 2.11 shows a comparison where we vary the level of noise for the different
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Figure 2.13: From left to right: initial surface, surface corrupted by Gaussian noise
in random directions with standard deviation σ = 0.4le (le is the mean edge length),
bilateral filtering [22], prescribed mean curvature flow [24], mean filtering [64], bilat-
eral normal filtering [67], our method. The wireframe shows folded triangles as red
edges.

methods. In low noise situations, all of the methods perform well. As the noise

level increases, other methods are unable to remove all of the noise in the resulting

surface, whereas our method still produces a high quality result. Figures 2.16, 2.14,

and 2.15 also compare these methods on a variety of different surfaces.

We tested our algorithm on different kinds of models. Among these examples

provided in this dissertation, three of them are real world models such as the models

in figure 2.16, 2.17, 2.18, and others are with synthetic noise added by ourselves for

verifying our method.

Our implementation uses TAUCS [48] to solve the system of sparse equations in

each iteration of the optimization. We used a Intel Core i7 3770K to perform our

tests and our times range from about less than half second for Figures 2.13 and 2.9,

which have about 3800 vertices each, to about 8 minutes for the model in Figure 2.19,

which has over seven million vertices. Table 2.1 provides the running time of most

examples provided in this dissertation. The provided running time measures the

entire process, including loading mesh data, filtering process by optimization and

saving mesh data. We have found that 90% of the execution time is taken by solving
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Figure 2.14: From left to right: the input mesh with large noise in random direc-
tions, bilateral filtering [22], prescribed mean curvature flow [24], mean filtering [64],
bilateral normal filtering [67], our result. We show the wireframe of each surface
below. Model courtesy of the AIM Shape Repository [1].

the system of equations. Since the equations change at each iteration, we cannot

simply pre-factor the matrix, which leads to longer running times.

From table 2.1, we can see that the running time is basically proportional to the

vertex number except for the face model. The reason is that the optimization time

is not only governed by the vertex number, but is also controlled by the intermediate

surface shape. As the optimization goes, the surface becomes smoother and the mean

curvatures of more edges would be quite small. More likely, those low-curvature

edges would be judged by the local optimization to be smooth edges. In this case,

there will be more and more zero entries in the B vector if we simply write the

linear system as AX = B. As a result, more and more vertices would start moving

as the optimization goes and this will slow down the optimization. In Table 2.1,

deadseascrolls and anubis are two such models, which are quite flat and with zero

curvature for most edges. The increasing number of non-zero entries will slow down

the performance of solving linear systems in TAUCS [48].
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2.5 Applications of Differential Operators

In this section, we briefly introduce several extended applications of edge-based

differential operator. Our metric can uniquely measures the planarity of the local

shape, it can easily be incorporated into a feature-preserving minimizer based appli-

cation, which could be but not limited to surface diffusion and 3D mesh planarization.

2.5.1 Surface Diffusion

We demonstrate the power of our differential operator on feature-preservation by

fitting it into a surface diffusion method, specifically mean curvature flow. Mean

curvature flow is one of the fundamental flows that has been used to evolve the

surface geometry. Mathematically, it can be conducted by either minimizing the

gradient of surface or minimizing surface area. Kazhdan et al. [28] recently proposed

a modified mean curvature flow method to avoid the numerical instability by fixing

the Laplacian matrix in the linear system for each iteration. We take our new

area-based differential operator into their framework to calculate the a new stiffness

matrix to replace the Laplacian matrix. As a result, our system evolves the surface

with an undefined flow, we call it feature preserving flow in this dissertation. Our

Table 2.1: Performance of our algorithm

model name vertex number running time (s)
dedecahedron 3643 0.33

fandisk 6475 0.58
lion 17578 1.52

dragon 50000 9.32
teeth 116604 11.96
igea 134345 12.37
face 3511328 494.01

deadseascrolls 4359035 141.57
anubis 7192875 451.41
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Figure 2.15: From left to right: the input mesh with large noise in random di-
rections, bilateral filtering [22], prescribed mean curvature flow [24], mean filtering
[64], bilateral normal filtering [67], our result. Model courtesy of the AIM Shape
Repository [1].

feature preserving flow is able to smooth the surface and also preserve the prominent

features, see figure 2.20.

2.5.2 Quadrilateral Mesh Planarization

Constraining 3D meshes to restricted classes is important in architectural and in-

dustrial design. Contemporary modeling methods for polygon meshes generally start

with a free-form surface. Once the final shape is finalized, it needs to be converted

into a mesh with planar faces for future use [44]. Quadrilateral meshes with planar

faces are particularly suitable for the design of free-form glass structures [35]. Roi

et al. [44] recently introduces an interactive optimization framework for generating

planar quadrilateral meshes by enforcing a very intuitive nonlinear metric to measure

planarity of a quad face. To measure the planarity of a quad face, we instead apply

the area-based differential operator on both of its diagonals, where each diagonal

splits the quad into two triangles. The sum of the planarity energy of each quad
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Figure 2.16: A model scanned with a laser range scanner. The noisy input surface
(left) and our result (right). Model courtesy of the AIM Shape Repository [1].

forms the planarity and data fidelity terms of the objective function

min
S

∑
p∈S

|p− p∗|2 +
∑
q∈S

α · |D(eq)|2,

where p represents the vertices, q represents the quads, eq is the diagonal of q and

α controls the planarization strength. Figure 2.21 provides shows an example by

using this method, the resulting mesh has almost zero curvatures on each face, this

demonstrates that our metric can measure the quad planarity very well. Note that

we neither intended to choose an optimal α nor tried to introduce more appropriate

constraints to preserve the mesh quality. Also, our planarity metric is linear in terms

of the vertex positions, so we only need to solve a quadratic minimization problem

at each iteration. The resulting quads under our minimization framework, like some

existing methods, are not completely planar though.
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Figure 2.17: Left: a noisy face model with 3511328 vertices. Right: our smoothing
result. Model courtesy of the Factum Foundation for Digital Technology in Conser-
vation.

2.6 Discussion

2.6.1 Surface Quality Evaluation

While our algorithm is able to produce high quality results, it is quite difficult

to evaluate it quantitatively. One popular quantitative evaluation method is to

measure the L2 vertex-based error between the denoised surface and the ground-

truth model [67]. However, this evaluation metric cannot truly tell us how good

the surface quality is. It only takes vertex positions into account and neglects any

other differential properties such as normal and curvature, which can be better used

to analyze the local shape. In addition, our goal is not to reconstruct the vertex

positions of the original surface, but to reconstruct the entire shape of the unknown

ground truth underneath the noisy model. Besides considering the shape similarity,

we also desire the mesh to have high quality, which can be measured by some common
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Figure 2.18: Left: a part of a noisy model with 4359035 vertices. Right: our smooth-
ing result. Model courtesy of the Factum Foundation for Digital Technology in
Conservation.

metrics such as smoothness. We are currently lacking of a well-rounded metric that

is able to measure the shape similarity and quality by combining them together, thus

we have not evaluated our method quantitatively in this dissertation. We leave this

as an area for future work.

2.6.2 Limitations

Our method can fail to produce good results in some cases. Figure 2.23 shows

a CAD shape with an extreme triangulation in that the only vertices that exist lie

at sharp features in the model. In this case our method does a good job in some of

the cylindrical areas but fails to reproduce the teeth in the gears as the noise level

exceeds the feature size.

Our edge-based smoothness metric is specific to triangulated surfaces. There-

fore, it cannot be applied to any other non-triangle meshes such as quadrilateral
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Figure 2.19: Left: a part of a noisy model with 7192875 vertices. Right: our smooth-
ing result. Model courtesy of the Factum Foundation for Digital Technology in
Conservation.

meshes. Even for triangle meshes, our algorithm may not be appropriate for some

non-manifold models. For example, there is no clear way for edge-based Laplacian

operator to measure the sharpness of the non-manifold edge in Figure 2.22. However,

it is not clear how to measure smoothness at all along this edge since the surface is

not manifold.
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Figure 2.20: From left to right: input mesh, the result under mean curvature flow,
the result under our feature preserving flow.
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Figure 2.21: Top: input mesh. Bottom: the resulting planar quad mesh with our
planarity metric. The coloring model on the right most denotes the planarity error:
the darker, the less error.
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Figure 2.22: Examples of non-manifold vertices and edges.

Figure 2.23: A failure case. From left to right: the ground truth with an extreme
triangulation, the noisy input, our result.
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3. IMAGE DETEXTURING

Textures exist in natural scenes as well as man-made art pieces captured in an

image. Textures appears in various forms that include but are not limited to sand,

wood grain, fur, canvas, glass and leather. Examples like drawings on brick walls,

patterns on wool knits, and image mosaics using different materials are all textured

materials. Our work focuses on images of these objects. While some images may

just have pure textures in them such as Figure 3.1, others like examples in Figure 3.2

consist of structure and texture layers.

Decomposing an image into meaningful components is an important and chal-

lenging inverse problem in image processing [7]. Perhaps the most studied problem

of this form is image denoising. In this problem, the target image is assumed to

have been corrupted by noise, and the goal is to separate the structure of the image

from the noise. The problem we address in this dissertation is a related but differ-

ent problem. The goal is to decompose a textured image into structural parts and

texture parts. While human perception is fully capable of understanding those tex-

tured images, the definition of texture is even more vague than noise. For example,

a “structure” at a fine scale could be considered as “texture” in a larger scale.

In this work, we present a simple and effective approach for texture removal by

modifying the traditional bilateral filter in a novel way. Since the range kernel in

the bilateral filter is designed to preserve sharp edges, an ideal range image needs to

solely have the latent structures embodied. However, the original image may contain

too many strong textures and be incapable of capturing the structural information

precisely. Hence, we propose to obtain an approximate range image for better esti-

mating the range kernel that performs like an edge-stopping function. The modified
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Figure 3.1: Examples of pure-texture images [38].

filter not only makes the texture and major structure highly distinguishable, but also

preserves both sharp and shallow edges. Note that our filter is also a joint (cross)

bilateral filter and shares the same motivation with filtering techniques introduced

by [42, 18], in which the flash image has been used to compute range kernel instead

of the input no-flash image.

3.1 Background

A popular image structure-texture decomposition model, originally proposed

in [45], builds up an optimization framework by regularizing total variation. Based on

this model, several image decomposition approaches have been developed [37, 58, 66,

7]. By weighting textures and structures indiscriminatingly during optimization, this

framework cannot distinguish textures from latent structures very well. The result-

ing images are generally over-blurred. Most recently, a modified regularizer related

to total variation has been proposed by [62] to achieve high quality results. However,

this method still tends to eliminate weak yet important structural information.

Many feature preserving image filtering methods can also be used for removing
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Figure 3.2: Examples of structure+texture images [9, 5].

textures, even though these algorithms are not initially designed to solve the de-

texturing problem. Local filters such as the bilateral filter [56, 16, 42, 18, 11] and

histogram based filters [27] are more suitable for smoothing out small-scale details

while preserving sharp edges. Similar to the structure-texture decomposition model,

global methods generally build up an energy minimization problem by replacing the

regularization term with other constraints, such as weighted least squares [21] and

L0 gradient minimization [61]. Subr et al. [50] develop a model for capturing oscil-

lations, which can be used to distinguish high-contrast details like textures, but this

method tends to suppress details.

Our image detexturing process is highly related to two image processing tech-

niques: bilateral filter and total variation (TV) model.

3.1.1 Bilateral Filter

Bilateral filter, first introduced by [56], is a non-linear and local edge-preserving

and noise-removing filter for images. Sylvain et al. [41] provide a detailed description

of its theory and applications.

Following the concept of Gaussian filtering, the bilateral filter is also defined as
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a weighted average of the intensity of neighboring pixels. The difference is that the

weights depend not only on the spatial distance of pixels, but also on the range

differences (e.g. intensity differences). The bilateral filter is defined as

Ibfp =
1

Wp

∑
q

Gσs(‖p− q‖)Gσr(|Ip − Iq|)Iq, (3.1)

where the normalization factor Wp ensure the weights sum to 1.0:

Wp =
∑
q

Gσs(‖p− q‖)Gσr(|Ip − Iq|). (3.2)

The Gaussian kernel function is defined as

Gσ(x) = e−
x2

2σ2 . (3.3)

The entire filtering is controlled by two parameters σs and σr. As the range param-

eter σr increases, the filter gradually approximate a Gaussian filter and fewer edge

features are expected to be preserved. The spatial parameter σs is depending on

the scale of the textures. While the users may choose these parameters arbitrarily,

it is also possible to adaptively select parameters [33] by estimating the local noise

level. Figure 3.3 shows some results of the bilateral filter with different parameters.

This example demonstrates that it is difficult if not impossible to find an appropriate

parameter for the bilateral filter to clearly separate the texture and structure.

3.1.2 Total Variation Model

Aujol et al. [7] have studied four total variation models and advocate the TV −L2

model in a general case, when no prior knowledge of the texture is known. This TV

model introduces a quadratic data fidelity term to enforce the similarity between the
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(a) structure+texture (b) σr = 0.2 (c) σr = 0.4

(d) σr = 0.6 (e) σr = 0.8 (f) ground truth

Figure 3.3: a an input image, b−e results of BF with different range parameters, f
ground truth.
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original textured image and the resulting structure image. It solves the following

minimization problem:

min
I

∑
p

|Ip − I∗p |2 + λ|∇Ip|, (3.4)

where
∑

p |∇Ip| is the total variation. Here I∗ is the original image to decompose, I

is the unknown structural image. The regularizer can be written as

∑
p

|∇Ip| =
∑
p

|(∂xI)p|+ |(∂yI)p|,

where (∂xI)p and (∂yI)p are the gradients at p in two directions.

Xu et al. [62] modified this model to achieve much better performance on dis-

tinguishing strong edges from textures by introducing relative total variation as the

regularizer. The authors minimize

min
I

∑
p

(Ip − I∗p )2 + λ · ( Dx(p)

Lx(p) + ε
+

Dy(p)

Ly(p) + ε
), (3.5)

where Dx(p)
Lx(p)+ε

+ Dy(p)

Ly(p)+ε
is the new regularizer. Dx(p) and Dy(p) measure the windowed

total variation at pixel p in two directions, which are written as

Dx(p) =
∑

q∈N(p) Gσ(‖p− q‖)|(∂xI)q|,

Dy(p) =
∑

q∈N(p) Gσ(‖p− q‖)|(∂yI)q|,

where the Gaussian kernel Gσ(·) is defined in Equation 3.3 and N(p) is the neigh-

borhood of pixel p.

In Equation 3.5, the functions Lx(p) and Ly(p) are the windowed inherent varia-
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(a) (b)

Figure 3.4: (a) A textured image [63], (b) a detextured image by the RTV model.

tion and used to better distinguish sharp structures from the textured image.

Lx(p) = |
∑

q∈N(p) Gσ(‖p− q‖)(∂xI)q|,

Ly(p) = |
∑

q∈N(p)Gσ(‖p− q‖)(∂yI)q|.

While the windowed total variation has the ability to identify textures just like

the total variation introduced in Equation 3.4, the windowed inherent variation helps

to further prohibit textures. The key point is that the windowed inherent variation

of a texture region is much smaller than that of the region with structures as well.

Xu et al. [62] has verified the superiority of this new regularizer on removing textures

by various tests. Figure 3.4 shows a result of this method.

3.2 Image Detexturing via Filtering

In this section, we first introduce how the bilateral filter can be modified to a

joint bilateral filter (JBF) to handle the image detexturing problem. Then we show

44



how to filter images in practice.

3.2.1 Modified Bilateral Filter

We focus on processing general images with unknown texture patterns, so we

assume that no prior knowledge about the textures can be used. Given an input

image I, our goal is to decompose it into the structure Is and the texture It such

that I = Is + It. While directly applying bilateral filter to I is difficult to remove

the textures, we use a joint bilateral filter, in which instead of I, a different image I ′

has been used to compute the range kernel. This filter is defined as

Ijbfp =
1

Wp

∑
q

Gσs(‖p− q‖)Gσr(|I ′p − I ′q|)Iq. (3.6)

When I ′ = I, Equation 3.6 reduces to the bilateral filter, which cannot satisfyingly

remove textures. Hence, we need to find the optimal image I ′, so that Ijbf approaches

Is. Note that under a fixed range image I ′, the joint bilateral filter is linear in Ip, so

Equation 3.6 can be rewritten as

Ijbf = Ijbfs + Ijbft . (3.7)

Directly seeking the optimal I ′ is quite complicated. Instead, we attempt to answer

if there is a suboptimal I ′ that is solely depending on the structure image Is and

independent of It. If there exists such a suboptimal range image I ′opt for our filter

to produce a resulting image Ijbf that can approach the ground truth Is, the second

part Ijbft in Equation 3.7 should approach 0. However, filtering a texture image

without any structural information would ideally result in an image with constant

color. Note that this constant is not necessarily 0 in practice. Therefore, we claim

that if and only if the mean of the texture image is 0, the resulting image then
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Figure 3.5: From left to right: structure+texture image I, structure image Is, texture
image It, results of filtering Is using I and Is as the range images. σs = 5.0, σr = 0.25.

approaches the structural image Is. Otherwise, it approaches the latent structural

image plus an image with constant color Is+C, in which C is an image with constant

color. Because it is impossible to infer C, our filter will always assume that C = 0,

which means It is a zero-mean texture image. This is a very natural choice given no

prior information about the textures. The suboptimal I ′opt is then constrained by

Ijbfs = Is,

Ijbft = 0.
(3.8)

The first constraint says that filtering the structure image should result in the same

structure image, while the second one says that filtering the pure-texture image

should just simply remove it. Based on the constraints in Equation 3.8, we claim

that the unknown structure image I ′ = Is is a good choice for estimating the range

kernel.

Structure preserving. When we apply the joint bilateral filter to the pure

structure image Is, with Is as the range image, this filter is identical with the bilateral

filter. The performance of our filter relies on the performance of bilateral filter on

structural images. Note that bilateral filter has been proved to be good at preserving

46



Figure 3.6: From left to right: structure+texture image I, structure image Is, texture
image It, results of filtering It using I and Is as the range images. Both filters are
with the same parameters: σs = 5.0, σr = 0.25.

features when the input image is noise free. Figure 3.5 shows the performance of

bilateral filter on an artificial structural image using either I or Is as the range image.

We can see that the texture in the range image interrupts the structure information,

and it prevents the filter from estimating a precise range kernel to measure the range

difference. The first constraint in Equation 3.8 is approximately satisfied in practice

when using structure image to estimate the range kernel.

Texture removal. We use different range images to filter the texture image

It to evaluate their performance, Figure 3.6 shows that using the input image I

cannot remove the textures very well and even tends to preserve the textures. We

propose to use Is as the range image, the advantage is two-fold. First, Is contains the

essential structural information in order to preserve edge features. Second, it helps

to distinguish textures clearly and prevent the filter from incorrectly parsing the

textures as structural content, so that textures can be removed completely. Note that

the mean of the texture image in Figure 3.6 is not zero but some positive constant.

Figure 3.7 compares three different filters: Gaussian filter, BF and the proposed

JBF. We also show the operator masks of a pixel for each method to demonstrate

that our filter outperforms the other two filters. Compared to the Gaussian filter,
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Figure 3.7: From left to right: structure+texture image Is + It, structure image
(ground truth) Is, operator masks of a pixel (top) and results (bottom) for Gaussian
filter, bilateral filter and our filter. σs = 5.0, σr = 0.25.

our filter precisely captures the edges and preserves them better. Compared to the

BF, our filter overcomes the obstruction from the textures by using the structure

image itself to compute the range kernel.

3.2.2 Approximate Range Image

Section 3.2.1 has reasoned the effectiveness of choosing the structure image Is for

computing the range kernel. However, the structure image is unknown and is the

ideal result that we are actually looking for. We propose to acquire an approximate

range image first, then fit it into our filter.

Figure 3.8 shows the effect of the approximate range image. From 3.8 (b)

to 3.8 (e), As the structure information of range images is gradually reduced, the

result becomes blurrier. Figure 3.8 (b) demonstrates that it is not necessary to have

48



(a) (b) (c) (d) (e)

Figure 3.8: (a) An input image and its texture image [63], (b)-(e) each includes a
range image (top) and a resulting image (bottom).

I ′ = Is to achieve good results. It is also clear that all the resulting texture images

have higher quality than their corresponding range images.

Figure 3.4 shows the effectiveness of the relative total variation model [62] on

removing textures and preserving edge features, we choose this method to estimate

the range image for our filter. However, other methods can be also used to estimate

the range image to produce high quality results. Figure 3.9 shows the results of our

filter by applying different range images, which are produced by different detexturing

methods. In all of our other results, unless noted, we use RTV model to estimate

the range image. Figure 3.9 also shows the superiority of our filter over the bilateral

filter with a better range image. Certain parameters are provided for most results:

the spatial parameter σ and regularizer weight λ for the RTV model, the spatial

parameter σs and range paramter σr for BF and JBF and number of iterations n for
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(a) (b) BF

(c) TV (d) RTV

(e) JBF using TV. (f) JBF using RTV.

Figure 3.9: (a) An input image with textures [63], (b) BF with σs = 5.0, σr = 0.4, n =
4, (c) TV with σ = 1.0, λ = 0.1, n = 3, (d) RTV with σ = 1.0, λ = 0.01, n = 3, (e)(f)
our method with different range images by TV and RTV models, σs = 5.0, σr =
0.1, n = 2.
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(a) (b) (c)

Figure 3.10: (a) input, (b) our filter with σs = 1.0, (c) our filter with σs = 5.0. For
both, σr = 0.1, n = 2.

all of them.

3.3 Results

3.3.1 Parameters

We scale all the pixel values to the range [0, 1]. The spatial parameter σs con-

trols the local shape of the spatial Gaussian kernel, it depends on the scale of the

textures. Figure 3.10 shows the effect of this parameter, σs needs to be large enough

to effectively cover enough amount of texture elements, empirically σs = 5.0 is a

good choice for most examples provided. Since the range kernel is computed based

on an approximate structure image, it is easier to find a proper range parameter σr.

Figure 3.11 shows the effect of the range parameter. While a small value for σr is

not enough to remove textures, a too large σr over-blurs the structures.

In terms of the parameters for RTV and TV models, we follow the parameter

choice proposed by Xu et al. [62]. The only exception is the detexturing strength λ

in Equation 3.5. Our values of λ are generally smaller, this difference may be due to

the discretization of the Gaussian kernel. According to our experience on these two

models, without the inherent total variation as the denominator in the regularizer,

51



(a) Input (b) Range image

(c) JBF,σr = 0.004 (d) JBF, σr = 0.02

(e) JBF, σr = 0.1 (f) JBF, σr = 0.5

Figure 3.11: Top: (a) input [63], (b) RTV with σ = 2.0, λ = 0.004, n = 2, (c)-(f) our
filter with increasing range parameters.
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(a) (b) (c)

Figure 3.12: (a) input [63], (b) RTV with σ = 2.0, λ = 0.01, n = 2, (c) our filter with
σs = 5.0, σr = 0.1, n = 2.

the TV model requires relatively higher λ.

3.3.2 Quality

We compare our method mainly with the RTV model [62] since it outperforms

other methods on image detexturing. We have tuned the parameters a bit for all the

methods to generate best results possible. Various examples with both uniform (Fig-

ure 3.12, 3.13) and non-uniform textures (Figure 3.14, 3.15 and 3.16) demonstrate

that the proposed JBF can better avoid over-blurring and preserve the edge features,

see the close-ups in Figure 3.13 and 3.14. In terms of the RTV model, each iteration

of the filtering process is much like a weighted Laplacian smoothing. Consequently,

there must be a trade-off between saving the original colors and removing textures.

As a result, the recovered image loses its original contrast. In all the tested images,

our filter is able to recover the original colors greatly. Note that both RTV model

and the proposed JBF assumes that the mean of the texture image is zero; so color

loss is unavoidable due to the local averaging if the actual mean of texture intensity
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: (a) input [63], (c) RTV with σ = 4.0, λ = 0.002, n = 3, (e) our filter
with σs = 5.0, σr = 0.1, n = 3, (b)(d)(f) close-ups.
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Top: (a) input [39], (b) RTV with σ = 2.0, λ = 0.008, n = 2, (c) our
filter with σs = 5.0, σr = 0.06, n = 2. Bottom: Close-ups.

is not zero.

3.3.3 Robustness

Figure 3.9 (e) shows a result of our filter with the range image estimated by the

traditional TV model. Even though the range image is over-blurred, it is still able to

provide enough structure information for our filter. To further verify the robustness

of our filter on the intensity correctness of the range image, we manually scale down

and up the range image. As the scaled range image can still capture the major

structure changes, the JBF works well.
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(a) (b) (c)

Figure 3.15: (a) input [4], (b) RTV with σ = 3.0, λ = 0.005, n = 3, (c) our filter with
σs = 5.0, σr = 0.1, n = 3.

3.3.4 Running Time

The entire filtering process includes two steps: estimating the range image and

filtering the image using JBF. In general, the second step takes much less time than

the first one. So the total running time of our algorithm depends on the performance

of the selected algorithm for estimating the range image. It is safe to say that our

method is comparable to most existing image filtering algorithms.

3.4 Conclusions

We present a novel filtering algorithm for extracting main structural information

from textured images. We demonstrate that by using an appropriate range image,

the proposed joint bilateral filter can remove textures quite effectively. While the

unknown texture image itself is a great choice, we propose to preprocess the original

textured image to obtain an approximate range image.

3.4.1 Limitations

The performance of our filter relies on the quality of the range image. If the

approximate range image cannot exemplify the structural information, our method

56



(a)

(b)

(c)

Figure 3.16: (a) input [25], (b) RTV with σ = 4.0, λ = 0.001, n = 4, (c) our filter
with σs = 5.0, σr = 0.1, n = 3.
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may fail to separate the structures and textures like the traditional bilateral filter.

This limitation has also been mentioned by Xu et al. [62] for the RTV model, which

may not be able to distinguish between texture and structure that have similar scales.
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4. FUTURE WORK

Currently, I have identified following topics for the future work:

Applications of Our Differential Operators Although the potential applications

of our differential operator has been roughly discussed in Section 2.5, in-depth

research work still needs to be done. For example, compared to the mean curva-

ture, our differential operator can greatly preserve the major features in surface

diffusion. We already know that the converged the shape of the modified mean

curvature flow on a genus-0 surface is a sphere citeKazhdan12. However, it is

unknown that what the converged surface is for the new flow defined by our

differential operator. According to our basic test, if the surface converges, it

converges to a shape that is dependent on the original shape.

Surface Quality Evaluation While there exist a large number of surface denoising

algorithms, it is still hard to evaluate the quality of the results. We have dis-

cussed the drawback of a current quantitative evaluation metric in Section 2.5,

a desirable evaluation metric has to take both shape similarity and quality into

account. A possible choice is to borrow the idea from image domain and use

the signal-to-noise ratio (SNR) to evaluate the surface quality. We can use the

ground truth as the reference signal for artificial models to compare different

algorithms.

Modified Bilateral Filter for Surface Denoising and Detexturing We have al-

ready verified the effectiveness of the modified bilateral filter on image detex-

turing. A natural choice is to extend this filter to either surface denoising or

detexturing. Similar to the 2D JBF, a 3D JBF would also need to use a new
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range surface for computing the range kernel. However, what the range surface

should be or how to obtain such a surface is still an open question.
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5. SUMMARY

In this dissertation, I have described two visual data processing techniques: sur-

face denoising and image detexturing. In particular, I have presented:

1. An automatic and robust method for effectively recovering a smooth surface

from noisy triangle meshes. The method builds up an energy minimization

framework using the L0 norm of our differential metric. As a part of this work,

a novel edge-based discrete differential operator has been developed to measure

the planarity locally that is unconditionally stable.

2. A simple and effective method for extracting meaningful structural information

from textured images. This method first explores the importance of the range

image for a bilateral filter and verifies that a good range image should be able

to exemplify the structure changes and neglect the textures in the original

input. With an approximate structural image as the range image, the modified

bilateral filter can achieve state-of-the-art performance.
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