1,632 research outputs found

    CTP: A New Constraint-Based Formalism for Conditional, Temporal Planning

    Full text link
    Temporal constraints pose a challenge for conditional planning, because it is necessary for a conditional planner to determine whether a candidate plan will satisfy the specified temporal constraints. This can be difficult, because temporal assignments that satisfy the constraints associated with one conditional branch may fail to satisfy the constraints along a different branch. In this paper we address this challenge by developing the Conditional Temporal Problem (CTP) formalism, an extension of standard temporal constraint-satisfaction processing models used in non-conditional temporal planning. Specifically, we augment temporal CSP frameworks by (1) adding observation nodes, and (2) attaching labels to all nodes to indicate the situation(s) in which each will be executed. Our extended framework allows for the construction of conditional plans that are guaranteed to satisfy complex temporal constraints. Importantly, this can be achieved even while allowing for decisions about the precise timing of actions to be postponed until execution time, thereby adding flexibility and making it possible to dynamically adapt the plan in response to the observations made during execution. We also show that, even for plans without explicit quantitative temporal constraints, our approach fixes a problem in the earlier approaches to conditional planning, which resulted in their being incomplete.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44793/1/10601_2004_Article_5141764.pd

    Partial Order Temporal Plan Merging for Mobile Robot Tasks

    Get PDF
    For many mobile service robot applications, planning problems are based on deciding how and when to navigate to certain locations and execute certain tasks. Typically, many of these tasks are independent from one another, and the main objective is to obtain plans that efficiently take into account where these tasks can be executed and when execution is allowed. In this paper, we present an approach, based on merging of partial order plans with durative actions, that can quickly and effectively generate a plan for a set of independent goals. This plan exploits some of the synergies of the plans for each single task, such as common locations where certain actions should be executed. We evaluate our approach in benchmarking domains, comparing it with state-of-the-art planners and showing how it provides a good trade-off between the approach of sequencing the plans for each task (which is fast but produces poor results), and the approach of planning for a conjunction of all the goals (which is slow but produces good results)

    Extending SATPLAN to Multiple Agents

    Full text link

    MuCIGREF: multiple computer-interpretable guideline representation and execution framework for managing multimobidity care

    Get PDF
    Clinical Practice Guidelines (CPGs) supply evidence-based recommendations to healthcare professionals (HCPs) for the care of patients. Their use in clinical practice has many benefits for patients, HCPs and treating medical centres, such as enhancing the quality of care, and reducing unwanted care variations. However, there are many challenges limiting their implementations. Initially, CPGs predominantly consider a specific disease, and only few of them refer to multimorbidity (i.e. the presence of two or more health conditions in an individual) and they are not able to adapt to dynamic changes in patient health conditions. The manual management of guideline recommendations are also challenging since recommendations may adversely interact with each other due to their competing targets and/or they can be duplicated when multiple of them are concurrently applied to a multimorbid patient. These may result in undesired outcomes such as severe disability, increased hospitalisation costs and many others. Formalisation of CPGs into a Computer Interpretable Guideline (CIG) format, allows the guidelines to be interpreted and processed by computer applications, such as Clinical Decision Support Systems (CDSS). This enables provision of automated support to manage the limitations of guidelines. This thesis introduces a new approach for the problem of combining multiple concurrently implemented CIGs and their interrelations to manage multimorbidity care. MuCIGREF (Multiple Computer-Interpretable Guideline Representation and Execution Framework), is proposed whose specific objectives are to present (1) a novel multiple CIG representation language, MuCRL, where a generic ontology is developed to represent knowledge elements of CPGs and their interrelations, and to create the multimorbidity related associations between them. A systematic literature review is conducted to discover CPG representation requirements and gaps in multimorbidity care management. The ontology is built based on the synthesis of well-known ontology building lifecycle methodologies. Afterwards, the ontology is transformed to a metamodel to support the CIG execution phase; and (2) a novel real-time multiple CIG execution engine, MuCEE, where CIG models are dynamically combined to generate consistent and personalised care plans for multimorbid patients. MuCEE involves three modules as (i) CIG acquisition module, transfers CIGs to the personal care plan based on the patient’s health conditions and to supply CIG version control; (ii) parallel CIG execution module, combines concurrently implemented multiple CIGs by performing concurrency management, time-based synchronisation (e.g., multi-activity merging), modification, and timebased optimisation of clinical activities; and (iii) CIG verification module, checks missing information, and inconsistencies to support CIG execution phases. Rulebased execution algorithms are presented for each module. Afterwards, a set of verification and validation analyses are performed involving real-world multimorbidity cases studies and comparative analyses with existing works. The results show that the proposed framework can combine multiple CIGs and dynamically merge, optimise and modify multiple clinical activities of them involving patient data. This framework can be used to support HCPs in a CDSS setting to generate unified and personalised care recommendations for multimorbid patients while merging multiple guideline actions and eliminating care duplications to maintain their safety and supplying optimised health resource management, which may improve operational and cost efficiency in real world-cases, as well

    Konsistente Feature Modell gesteuerte Softwareproduktlinien Evolution

    Get PDF
    SPLs are an approach to manage families of closely related software systems in terms of configurable functionality. A feature model captures common and variable functionalities of an SPL on a conceptual level in terms of features. Reusable artifacts, such as code, documentation, or tests are related to features using a feature-artifact mapping. A product of an SPL can be derived by selecting features in a configuration. Over the course of time, SPLs and their artifacts are subject to change. As SPLs are particularly complex, their evolution is a challenging task. Consequently, SPL evolution must be thoroughly planned well in advance. However, plans typically do not turn out as expected and, thus, replanning is required. Feature models lean themselves for driving SPL evolution. However, replanning of feature-model evolution can lead to inconsistencies and feature-model anomalies may be introduced during evolution. Along with feature-model evolution, other SPL artifacts, especially configurations, need to consistently evolve. The work of this thesis provides remedy to the aforementioned challenges by presenting an approach for consistent evolution of SPLs. The main contributions of this thesis can be distinguished into three key areas: planning and replanning feature-model evolution, analyzing feature-model evolution, and consistent SPL artifact evolution. As a starting point for SPL evolution, we introduce Temporal Feature Models (TFMs) that allow capturing the entire evolution timeline of a feature model in one artifact, i.e., past history, present changes, and planned evolution steps. We provide an execution semantics of feature-model evolution operations that guarantees consistency of feature-model evolution timelines. To keep feature models free from anomalies, we introduce analyses to detect anomalies in feature-model evolution timelines and explain these anomalies in terms of their causing evolution operations. To enable consistent SPL artifact evolution, we generalize the concept of modeling evolution timelines in TFMs to be applicable for any modeling language. Moreover, we provide a methodology that enables involved engineers to define and use guidance for configuration evolution.Softwareproduktlinien (SPLs) ermöglichen es, konfigurierbare Funktionalität von eng verwandten Softwaresystemen zu verwalten. In einem Feature Modell werden gemeinsame und variable Funktionalitäten einer SPL auf Basis abstrakter Features modelliert. Wiederverwendbare Artefakte werden in einem Feature-Artefakt Mapping Features zugeordnet. Ein Produkt einer SPL kann abgeleitet werden, indem Features in einer Konfiguration ausgewählt werden. Im Laufe der Zeit müssen sich SPLs und deren Artefakte verändern. Da SPLs ganze Softwarefamilien modellieren, ist deren Evolution eine besonders herausfordernde Aufgabe, die gründlich im Voraus geplant werden muss. Feature Modelle eignen sich besonders als Planungsmittel einer SPL. Umplanung von Feature Modell Evolution kann jedoch zu Inkonsistenzen führen und Feature Modell Anomalien können im Zuge der Evolution eingeführt werden. Im Anschluss an die Feature Modell Evolution muss die Evolution anderer SPL Artefakte, insbesondere Konfigurationen, konsistent modelliert werden. In dieser Arbeit wird ein Ansatz zur konsistenten Evolution von SPLs vorgestellt, der die zuvor genannten Herausforderungen adressiert. Die Beiträge dieser Arbeit lassen sich in drei Kernbereiche aufteilen: Planung und Umplanung von Feature Modell Evolution, Analyse von Feature Modell Evolution und konsistente Evolution von SPL Artefakten. Temporal Feature Models (TFMs) werden als Startpunkt für SPL Evolution eingeführt. In einem TFM wird die gesamte Evolutionszeitlinie eines Feature Modells in einem Artefakt abgebildet, was sowohl vergangene Änderungen, den aktuellen Zustand, als auch geplante Änderungen beinhaltet. Auf Basis einer Ausführungssemantik wird die Konsistenz von Feature Modell Evolutionszeitlinien sichergestellt. Um Feature Modelle frei von Anomalien zu halten, werden Analysen eingeführt, welche die gesamte Evolutionszeitlinie eines Feature Modells auf Anomalien untersucht und diese mit verursachenden Evolutionsoperationen erklärt. Das Konzept zur Modellierung von Feature Modell Evolutionszeitlinien aus TFMs wird verallgemeinert, um die gesamte Evolution von Modellen beliebiger Modellierungssprachen spezifizieren zu können. Des Weiteren wird eine Methodik vorgestellt, die beteiligten Ingenieuren eine geführte Evolution von Konfigurationen ermöglicht

    A proposal for a global task planning architecture using the RoboEarth cloud based framework

    Get PDF
    As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans

    Temporal and Hierarchical Models for Planning and Acting in Robotics

    Get PDF
    The field of AI planning has seen rapid progress over the last decade and planners are now able to find plan with hundreds of actions in a matter of seconds. Despite those important progresses, robotic systems still tend to have a reactive architecture with very little deliberation on the course of the plan they might follow. In this thesis, we argue that a successful integration with a robotic system requires the planner to have capacities for both temporal and hierarchical reasoning. The former is indeed a universal resource central in many robot activities while the latter is a critical component for the integration of reasoning capabilities at different abstraction levels, typically starting with a high level view of an activity that is iteratively refined down to motion primitives. As a first step to carry out this vision, we present a model for temporal planning unifying the generative and hierarchical approaches. At the center of the model are temporal action templates, similar to those of PDDL complemented with a specification of the initial state as well as the expected evolution of the environment over time. In addition, our model allows for the specification of hierarchical knowledge possibly with a partial coverage. Consequently, our model generalizes the existing generative and HTN approaches together with an explicit time representation. In the second chapter, we introduce a planning procedure suitable for our planning model. In order to support hierarchical features, we extend the existing Partial-Order Causal Link approach used in many constraintbased planners, with the notions of task and decomposition. We implement it in FAPE (Flexible Acting and Planning Environment) together with automated problem analysis techniques used for search guidance. We show FAPE to have performance similar to state of the art temporal planners when used in a generative setting. The addition of hierarchical information leads to further performance gain and allows us to outperform traditional planners. In the third chapter, we study the usual methods used to reason on temporal uncertainty while planning. We relax the usual assumption of total observability and instead provide techniques to reason on the observations needed to maintain a plan dispatchable. We show how such needed observations can be detected at planning time and incrementally dealt with by considering the appropriate sensing actions. In a final chapter, we discuss the place of the proposed planning system as a central component for the control of a robotic actor. We demonstrate how the explicit time representation facilitates plan monitoring and action dispatching when dealing with contingent events that require observation. We take advantage of the constraint-based and hierarchical representation to facilitate both plan-repair procedures as well opportunistic plan refinement at acting time

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade
    • …
    corecore