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Partial Order Temporal Plan Merging
for Mobile Robot Tasks

Lenka Mudrova1 and Bruno Lacerda1 and Nick Hawes1

Abstract. For many mobile service robot applications, planning
problems are based on deciding how and when to navigate to certain
locations and execute certain tasks. Typically, many of these tasks
are independent from one another, and the main objective is to ob-
tain plans that efficiently take into account where these tasks can be
executed and when execution is allowed. In this paper, we present
an approach, based on merging of partial order plans with durative
actions, that can quickly and effectively generate a plan for a set of
independent goals. This plan exploits some of the synergies of the
plans for each single task, such as common locations where certain
actions should be executed. We evaluate our approach in benchmark-
ing domains, comparing it with state-of-the-art planners and showing
how it provides a good trade-off between the approach of sequencing
the plans for each task (which is fast but produces poor results), and
the approach of planning for a conjunction of all the goals (which is
slow but produces good results).

1 INTRODUCTION
Consider a mobile service robot operating in an office building for a
long period of time, where it autonomously performs tasks to assist
the occupants in their everyday activities. One can imagine a wide
array of tasks for such a robot to execute, for example:

• “Bring me a cup of coffee.”
• “Check if there are people in office 123.”
• “Check if the emergency exits are clear.”

Note that these tasks have common properties that one can take
advantage of:

1. They require the robot to navigate to certain locations to execute
certain actions, i.e., they include spatial constraints;

2. The actions associated with them can be executed concurrently.
For example, a sensing action is often fixed to a location, but pro-
cessing and reasoning about the sensed data can be done in parallel
with the robot’s movement;

3. Their goals are independent, in the sense that executing a cer-
tain task ωi is not a precondition to successfully execute task ωj .
This means that they can be straightforwardly split into as separate
planning problems.

Furthermore, even though the goals are independent, the existence
of spatial constraints means that there might be “synergies” between
the independent plans, i.e. the locations visited while executing task
ωi might also be of use for executing task ωj .
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In this paper, we build on these insights to present an algorithm
that, given a plan for each task, efficiently merges them into a single
plan for all tasks, interleaving actions which work towards different
goals.

Our merging algorithm is based on partial-order planning (POP),
a least-commitment search in the space of (partial order) plans. POP
presents clear benefits for our robot-oriented merging approach, in-
cluding:

1. The least-commitment approach of POP yields more “merging
points” between plans, when compared to a totally ordered plan;

2. POP presents a flexible approach to temporal planning with dura-
tive concurrent actions, allowing parallel action execution;

3. POP produces plans with more flexibility in execution as commit-
ments can be determined at execution time when temporal infor-
mation is more certain.

The main contributions of this paper are (i) the definition of a class
of planning problems that are well-suited for the specification of ex-
ecution routines for mobile service robots; and (ii) a partial order
plan merging algorithm that is able to generate a plan for a large
number of tasks, while taking advantage of possible synergies be-
tween such tasks, thus improving the overall robot’s behaviour. For
the class of problems we tackle in this paper, our approach is compet-
itive with the performance of state-of-the-art forward chaining plan-
ners on benchmarking domains. Furthermore, the use of POP allows
us to easily tackle concurrent actions, which allows us to outperform
the state-of-the-art forward chaining planners in domains where rea-
soning about concurrent actions is required.

The structure of the paper is as follows. In Section 2, we provide
an overview of state-of-the-art planners, and their limitations for our
domain. In Sections 3 and 4 we introduce the background on partial
order planning we rely on, formalise the problem we tackle, and de-
scribe possible solution approaches. Finally, Sections 5 and 6 present
our novel plan merging algorithm, and its evaluation.

2 RELATED WORK
2.1 Temporal planners
In order to compare our proposed algorithm with state-of-the-art tem-
poral planners, we focus on those that successfully participated in
the temporal track of the latest International Planning Competition
(IPC) in 20141. The 6 following planners participated in the com-
petition: YAHSP3 [30] pre-computes relaxed plans for estimated fu-
ture states which are then exploited to speed-up the forward state-
space search. YAHSP3-MT [31] is a multi-threaded extension of

1 https://helios.hud.ac.uk/scommv/IPC-14/index.html



YAHSP. The YASHP3 planner is also exploited by another contes-
tant, DAEY AHSP [3]. DAE uses a Divide-and-Evolve strategy in
order to split the initial problem into a set of sub-problems, and to
evolve the split based on the solutions found by its wrapped planner.
In general, DAEX can be used with any planner, with the version
we evaluate wrapping YAHSP. Two other participants extend well-
known approaches to the temporal domain. First, the temporal fast
downward (TFD) planner [9] expands the fast downward algorithm
[12]. The search state is extended with a discrete timestamp com-
ponent, and state expansion can be performed either by inserting an
action or by incrementing the timestamp. Second, ITSAT [21] ex-
pands a satisfiability checking (SAT) approach to the temporal do-
main. ITSAT is the only planner from the aforementioned to handle
concurrent actions properly.

2.2 Temporal Partial Order Planners
Another important class of temporal planners are those that provide
a temporal partial order plan as a solution. Versatile Heuristic Partial
Order Planner (VHPOP) [24] is one of the pioneers in this field. It
builds on the classical backward plan-space search used by partial
order planners, adding to it a set of different heuristics that allow
for a more informed choice of which flaw to solve, or which plan
to explore. The use of these heuristics yields large improvements in
terms of speed, when comparing to previous partial order planners. In
contrast, the more recent OPTIC [1] planer combines advantages of
partial order planning with forward chaining techniques, which are
very popular in current planners, due to their speed and scalability.

2.3 Planning & Execution for Service Robots
The CoBot service robots [29] operate in an office building perform-
ing several predefined tasks. A server-based architecture [8] man-
ages incoming tasks from a web-based user interface, schedules tasks
across several robots [7], and keeps track of task execution. A simi-
lar centralised system architecture is used by the mobile service robot
Tangy [16] which performs a sequence of predefined tasks, taking the
schedules of users into account. This problem is modelled by mixed-
integer programming and constraint programming techniques [4].
Mixed-integer programming is also used for scheduling in the inte-
grated control framework presented in [18]. In this work, a stochastic
high-level navigation planner provides expectations on travel times
between different locations to the scheduling algorithm. In contrast
to the previous architectures, robots Rin and Rout use a constraint
network [22]. This network is continuously modified by an executor,
a monitor and a planner in order to create configuration plans which
specify causal, temporal, resource and information dependencies be-
tween individual actions. All the above works are based on schedul-
ing approaches, which rely on a coarse-grained model of the envi-
ronment, where tasks are seen as black-boxes, being pre-specified
instead of planned for, and with the scheduler trying to order them
such that a set of timing constraints is satisfied. This does not al-
low for direct reasoning over the possible synergies between differ-
ent tasks, and the possibility to interleave actions from different tasks
in order to minimise execution time.

In recent years, there has also been work aiming at closing the loop
between task planning and real world execution on a robot platform.
The ROSPlan framework [5] is a general framework that allows for a
task planner to be embedded into the Robot Operating System (ROS),
a middleware widely used in the robotics community. As a proof of
concept, ROSPlan has integrated the POPF planner [6], an ancestor

of OPTIC. This integration with execution is also part of our future
work, and we plan to explore how our techniques can be integrated
in such an execution framework.

Additionally, some modelling languages have been developed
with the goal of having a closer integration between planning and ex-
ecution. Of particular interest are the NDDL [2] and the ANML [25]
modelling languages. These are based on the notion of timelines, i.e.,
sequences of tokens. A token is a timed predicate that holds within
a start and end time. The timeline representation was developed by
NASA and used in open-source project EUROPA [13] in order to
model and plan for real world problems and to allow a close integra-
tion with the execution of such plans. This representation was also
exploited in T-REX [17], a model-based architecture for robot con-
trol which used a tight integration of planning and execution. Another
system closely integrating planning and execution is FAPE [20], built
on the ANML language. Unfortunately, these system based on time-
lines do not have the scalability of the state-of-the-art planning ap-
proaches presented above.

2.4 Merging Algorithms

The first planning system to use merging was probably NOAH [23],
as described in [10]. In NOAH, three criteria were introduced to han-
dle possible interactions between plans: eliminate redundant precon-
ditions, use existing operators, and optimise disjuncts. NONLIN [26]
is also able to recognise if any goal is achievable by an operator al-
ready in a plan. If such operator is detected, then ordering constraints
and variable bindings are used to change the plan such that the found
operator is used to fulfil the goal.

Temporal and conditional plan merging is done in [27] which ex-
tends the work of Yang [33]. For two input plans, the algorithm pro-
vides a new order of actions while detecting and removing redundant
actions, by checking if their effects are already fulfilled by some pre-
ceding action.

Related techniques to plan merging are plan repair and plan re-
finement. Refinement planning focuses on how to introduce a new ac-
tion to an existing plan, and was introduced in [15]. Work in [14] uses
a partial plan to save current refinements. The opposite case, i.e., re-
moving an action from the plan, is handled in unrefinement planning
[28]. This addresses the plan repair problem of changing a plan when
it cannot be executed. Despite the fact that it was proved that mod-
ifying an existing plan is no more efficient than a full (re)planning
in the general case [19], plan repair might still be efficient in cer-
tain domains. An example of recent plan refinement is planning for
highly uncertain domains, such as underwater robotics [11]. In this
case, one plan achieving a subset of tasks is produced. While it is ex-
ecuted, the current state is observed in order to limit uncertainties. If
the robot has unexpected available resources, allowing it to perform
more tasks, a pre-computed plan achieving another task is inserted
into the global plan. Our proposed algorithm combines ideas from
aforementioned merging approaches in order to allow flexible execu-
tion on a mobile robot.

3 PARTIAL ORDER PLANNING

We start by introducing the definitions for POP that will be used
throughout the paper. For a thorough overview of POP see [32]. Our
merging algorithm assumes that plans have already been generated,
so all actions we deal with are grounded. Thus, we omit details about
lifted actions and bindings when describing the planning problems.
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We start by defining a task in our framework. A task domain is a
set D = {f1, .., fn} of atomic formulas (atoms); literals – formulas
and their negations LD = {f1,¬f1, . . . } – are used to describe a
given state of the world. A state in this domain is represented by
L ⊆ LD , such that either f or ¬f are in L. A literal l is satisfied in
L if l ∈ L.

A durative action a ∈ A consists of its start point a` and end point
aa, and we define the sets A` and Aa of action start points and end
points, respectively. Preconditions pre(a) of a durative action a are
a set of timed literals, which are literals which must hold at a specific
action point. We recognise the at start literal which must hold at the
action start point a`, the at end literal which holds at the action end
point aa and the over all literal which must hold during whole action.
Hence, if we refer to pre(a`) we mean only those literals which are
meant to hold at start or over all, etc. A set of action effects eff (a) is
a set of timed literals as well but only at start or at end extensions are
assumed, as an over all effect is same as at start effect. The duration
of an action is d(a) ∈ R.

Finally, a planning problem is defined as P = (I,G), where I ⊆
LD is the initial state, and G ⊆ LD is the goal. We say that a state L
achieves the goal ifG ⊆ L. A task is then defined as ω = 〈D,A, P 〉.

A partial order plan (POP) is a tuple π = 〈A,L,O〉, where:

• A is a set of actions;
• L is a set of causal links. A causal link aj

l−→ ak represents that
literal l ∈ pre(ak) is fulfilled as an effect of action aj ;

• O is a set of ordering constraints defining a partial order on the set
A. An ordering constraint aj ≺ ak represents that action aj must
finish before action ak can start.

Given a causal link aj
l−→ ak, we refer to aj as the producer of

literal l and to ak as the consumer of literal l. Given a POP π, an
open condition l−→ aj means that literal l ∈ pre(aj) has not yet
been linked to the effect of any action. An unsafe link (or a threat)
is a causal link aj

l−→ ak such that there is an action am ∈ A that
could possibly be ordered between aj and ak and threatens aj

l−→ ak
by having ¬l ∈ eff (am). The set of flaws of a POP π is given by
the union of its open conditions and unsafe links. A POP planner
searches through the space of POPs trying to resolve all flaws of π.
To do that, the planner tries to close open conditions by adding new
actions to A and new causal links to L, and solve threats by adding
new orderings toO to make sure that the threatening action am does
not occur between the unsafe link aj

l−→ ak. This can be done by,
for example, promotion, i.e., adding the constraint ak ≺ am to O,
or demotion, i.e., adding am ≺ aj to O. In this work, we use the
VHPOP planner as described in Section 2.2.

4 PROBLEM DEFINITION AND SOLUTION
APPROACHES

In this paper, we are interested in solving the problem of finding a
POP for a given set of input tasks. More specifically, given a set of
tasks Ω = {ω1, . . . , ωn}, where ωi = 〈Di, Ai, (Ii, Gi)〉 and the ini-
tial states of each problem are mutually consistent (Ij is consistent
with Ik if for all l ∈ LDj ∩ LDk , l ∈ Ij if and only if l ∈ Ik), we
want to find a plan that achieves G1, ..., Gn. There are several ways
of solving such a problem. In this section, we present three different
approaches: unifying, sequencing and plan merging. We argue that
the merging approach provides a good trade-off between the plan
quality of the unifying approach and the efficiency of the sequenc-

ing approach, hence, in the next section we present a plan merging
algorithm to solve our problem.

4.1 Unifying planning algorithm

This approach relies of unifying the set of tasks into a single task, i.e.,
ω =

〈⋃
i∈{1...n}Di,

⋃
i∈{1...n}Ai, (

⋃
i∈{1...n} Ii,

⋃
i∈{1...n}Gi)

〉
Then, one can use an appropriate planning algorithm to find a solu-
tion for the single unified task. While this approach can more easily
take advantage of relations between goals in different tasks (e.g., two
tasks that should be executed in the same location), it can suffer from
scalability issues as finding a plan for the unified task can be much
harder than finding plans for each individual task by itself. This ap-
proach is used by most planners, such as VHPOP, OPTIC and all
presented planners from IPC 2014. Generally, the unified tasks are
modelled a priori and passed directly as an input to such systems.

4.2 Sequencing planning algorithm

This approach generates a set of independent plans Πω =
{π1, . . . , πn}, one for each task ωi, and then sequences them to cre-
ate a single final plan. For the resulting plan to be valid, one needs to
decide on an ordering of the tasks and then modify the initial states
of each task according to the final state of the plan for the preceding
task. The ordering of the tasks can be done using a scheduling algo-
rithm that can take into account extra timing constraints on the exe-
cution of tasks. This approach is common for mobile service robots,
e.g., [29, 18], due to its simplicity and efficiency. This is because
the planning problems to be solved when planning for the tasks in-
dependently will in general be much smaller than the single unified
one problem. However, simple sequencing comes at the price of plan
quality: this approach does not allow for the interleaving of actions
from plans for different tasks, taking advantage of synergies between
them.

4.3 Merging planning algorithm

This approach combines both aforementioned methods. It also plans
for tasks separately, obtaining Πω = {π1, . . . , πn} but then it rea-
sons over each plan, merging them together into a better plan than
the one obtained by simple sequencing. The final plan πf consists of
parts of the task plans in Πω and newly created plans Πjoin which
are used in order to connect these parts such that the final plan is
free of flaws. Furthermore, while the merging procedure adds an
overhead at plan generation time when compared to the sequencing
approach, it allows us to find synergies between plans for different
tasks, interleaving execution for different goals. A typical benefit of
this approach in the mobile robot domain is the possibility to exe-
cute actions from different tasks when these actions share a common
location. The algorithm we present in the next section follows this
approach.

5 PROPOSED ALGORITHM

In this section, we present our merging algorithm. Before we describe
it, we need to address an issue that can hinder the performance of the
merging algorithm, and present a solution for it.
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(move s0 s1)

(load pack1 s1)

(move s1 s2)

(unload pack1 s2)

(at s0)
(pack1 s1)

(at s2)
(pack1 s2)

(a) Plan π1a

(move s0 s2)

(load pack2 s2)

(move s2 s0)

(unload pack2 s0)

(at s0)
(pack2 s2)

(at s0)
(pack2 s0)

(b) Plan π2a

(move s0 s1)

(load pack1 s1)

(move s1 s2)

(unload
 pack1 s2)

(at s0), (pack1 s1)
(pack2 s2)

(at s0), (pack1 s2)
(pack2 s0)

(load 
pack2 s2)

(move s2 s0)

(unload pack2 s0)

(c) Plan πfa

Figure 1. Single plans π1a, π2a for tasks ω1, ω2 respectively and the
merged plan πfa. The arrows represent the causal links between actions.
The order of actions in the plan corresponds to the orderings, for example

two concurrent actions are parallel in the final plan.

5.1 Dependency Caused by External Constraints

5.1.1 Problem Illustration

As stated in the introduction, we assume independent tasks, i.e., tasks
where the goals can be partitioned and for which the execution of a
plan for task ωi is not a precondition to successfully execute task
ωj . However, these tasks can become dependent due to external con-
straints. In mobile robots domains, these are typically spatial con-
straints. We will illustrate this problem on the following example.

DeliveryBot A mobile robot delivers packages around a building.
A robot can move between locations (with duration 10), load pack-
ages (with duration 2), and unload packages (with duration 2). The
robot receives two tasks:

1. ω1: ”Deliver package1 to location s2.”
2. ω2: ”Deliver package2 to location s0.”

Assume the initial state is I = {(at s0), (pack1 s1), (pack2 s2)},
and a partial order planner produces optimal plans π1a and π2a, as
depicted in Fig. 1a and Fig. 1b. An example of a final merged plan,
πfa, with makespan 38 is also given in Fig. 1c. Notice that action
(move s0 s2) from plan π2a is not used as its effects are satisfied
by action (move s1 s2) from plan π1a. However, if the initial state
would be I = {(at s0), (pack1 s1), (pack2 s3)}, a partial order planner
would produce the plan π2b which is again optimal, see Fig. 2b. In
this case, action move(s0 s3) will need to be merged as well as its
effects are not satisfied. Hence, the output plan has makespan 58,
see Fig. 2c. However, an optimal plan will not contain (move s2 s0),
(move s0 s3) and will instead directly use action (move s2 s3). Thus,
the optimal plan for the two goals has makespan 48.

The problem during merging is that an action in an input plan is
linked to a preceding state which contains all its preconditions. How-
ever, during merging, the action might be chosen to be merged into
the final plan in a state which does not achieve all of the action’s pre-
conditions. In such cases, filling actions (i.e., actions whose effects

(move s0 s1)

(load pack1 s1)

(move s1 s2)

(unload pack1 s2)

(at s0)
(pack1 s1)

(at s2)
(pack1 s2)

(a) Plan π1b

(move s0 s3)

(load pack2 s3)

(move s3 s0)

(unload pack2 s0)

(at s0)
(pack2 s3)

(at s0)
(pack2 s0)

(b) Plan π2b

(move s0 s1)

(load pack1 s1)

(move s1 s2)

(unload pack1 s2)

(at s0), (pack1 s1)
(pack2 s3)

(at s0), (pack1 s2)
(pack2 s0)

(load pack2 s3)

(move s3 s0)

(unload pack2 s0)

(move s2 s0)

(move s0 s3)

(c) Plan πfb

Figure 2. Single plans π1b, π2b for tasks ω1, ω2 respectively and the
merged plan πfb. The arrows represent the causal links between actions.

The order of actions in the plan corresponds to the orderings.

change the current state to contain all needed preconditions) need
to be added to the final plan before the candidate action is merged.
This extends the makespan of the final plan, hence we would like
to minimise the occurrence of such filling actions. Furthermore, we
note that actions related to the external constraints cause unneces-
sary joining actions. For example, action (move s2 s0) in plan πfb
is a filling action, required for action (move s0 s3) from the original
plan to be merged.

As discussed in the introduction, actions related to robot move-
ment (in this case, action move) are typically a significant contribu-
tor to the makespan of plans generated on a mobile service robot do-
main. Hence, minimising their occurrence in the plan generally also
allows for reducing on the makespan. Therefore, addressing these de-
pendencies caused by external constraints before merging can lead to
significant improvements to the quality of the merged plans.

5.1.2 Preprocessing External Constraints

In order to address the problem described above, we create relaxed
planning problems that have their initial states extended by literals
which satisfy the external constraints. Therefore the resulting plans
for these relaxed problems will not contain any external constraints.
By removing the external constraints from the input problems, we al-
low more freedom for the merging algorithm o merge them together,
resulting in a final plan with better makespan.

In mobile service robot domains, the external constraints are re-
lated to the position of the robot. Therefore in our in the DeliveryBot
example we add (at s0), (at s1), (at s2) to the initial states for the
individual task plans, see Fig. 3a and Fig. 3b. We will address the
automated detection of external constraints in future work.
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(load pack1 s1)

(unload pack1 s2)

(at s0), (at s1),
(at s2), (pack1 s1)

(at s0), (at s1),
(at s2), (pack1 s2)

(a) π×1

(load pack2 s2)

(unload pack2 s0)

(at s0), (at s1),
(at s2), (pack2 s2)

(at s0), (at s1),
(at s2), (pack1 s2)

(b) π×2

Figure 3. Relaxed plans created by adding all locations to the initial states.

5.2 Plan Merging Algorithm

Given a set of relaxed plans, the proposed algorithm for plan merging
POMerX incrementally extracts actions from the input plans and
greedily adds an action start point a` or an action end point aa per
iteration to the merged plan. Action end points are added depending
on their temporal constraints, but action start points are added based
on whether they require a joining subplan. A joining subplan is re-
quired by an action start if its preconditions are not satisfied by the
effects of actions already merged into the final plan. This is caused by
two factors. First, the relaxation of the input plans removes external
constraints that need to be addressed during plan merging. Second,
the greedy merging of actions might cause for an interleaving of ac-
tions from different plans that yield certain action inapplicable. We
refer to an action requiring a joining plan as inapplicable in the cur-
rent state.

If there exists action starts which do not require a joining plan,
the algorithm picks one of them to be merged. Otherwise, POMerX
calls its wrapped POP planner X in order to find the joining subplan
that satisfies the preconditions and connects the current state of the
merged plan to the preconditions of the new action start point. Then,
the greedy decision is made over all joining subplans, with a single
joining subplan with the minimal duration being chosen; its actions
are then extracted and picked to be merged the same way as actions
from the input plans.

Furthermore, POMerX allows for backtracking when the greedy
choices result in an intermediary plan that does not satisfy the tem-
poral constraints or causal links of the input plans. Thus, while not
optimal, POMerX is guaranteed to find a solution for the merging,
if one exists.

We now describe the main steps of the algorithm. Let Ω =
{ω1, ..., ωn} be a set of tasks, with ωi = 〈Di, Ai, (Ii, Gi)〉, and
Π× = {π×1 , ..., π×n } be a set of relaxed plans, where π×i is the plan
obtained for some relaxation 〈Di, Ai, (I×i , Gi)〉 of ωi. The input
of Algorithm 1 is the initial state of the (unrelaxed) global prob-
lem I = ∪i∈{1,...,n}Ii, the set Π× of relaxed plans, and the set
G = ∪i∈{1,...,n}Gi, of goal states for each task. The algorithm then
calculates a merged plan πs such that all goals G1, ..., Gn are sat-
isfied, when applying plan πs to the initial state I. To construct the
final plan πs, the algorithm searches over merging states of the form

S = 〈t, L,A+,A−, Q`, Qa, Lblock,Πjoin,Π
×
ω , πs〉 (1)

where:

• t is duration of the current plan πs;

• L = {F+,¬F−} is the set of literals that hold in S, where sets
F+, F− contains atoms that hold and do not hold in the current
state, respectively.

• A+ is the set of achievers of all atoms that hold in the current state.
The achiever of f , denotedA+(f), is the last action a added to πs
such that f ∈ eff (a).

• A− is the set of deleters of all atoms that do not hold in the current
state. The deleter of f , denoted A−(f), is the last action a added
to πs such that ¬f ∈ eff (a).

• Q` ⊆ A` is a queue of action start points that are extracted from
the input plans to be merged into plan πs;

• Qa ⊆ Aa×R is a queue of action end points for actions for which
the start point has already been merged into πs. Each end point is
of the form (aa, ta` + d(a)), where ta` is the time point when
the start of a was merged into πs;

• Lblock ⊆ L× A` is a set of blocked literals. Each blocked literal
(lblock, a`) ∈ Lblock is such that the starting point a` of action
a has been already merged to πs in some previous state, the end
point aa of a is not yet merged, lblock ∈ pre(a), and it must hold
over all duration of the action. Therefore, lblock must hold until
aa is merged, thus removing the blocked literal; the validity of
blocked literals cannot be changed by other actions in the merging
process.

• Πjoin is a set of joining POPs satisfying preconditions of actions
in Q`.

• Π×ω is the set of all input plans for all tasks.
• πs = 〈Aπs ,Lπs ,Oπs〉 is the POP that reaches the current state.

At each step on its main loop, Algorithm 1 starts by analysing
the queue of action end points Qa to check if there are action end
points that must be merged into the plan at the current state, given
their temporal constraints. If so, the action end point is merged into
πs. Otherwise, the algorithm proceeds by adding to Q` the starts
points of actions a in each relaxed input plan for which the follow-
ing three conditions hold. First, a has not been merged before; sec-
ond, the producing actions in the input causal links where a is a con-
sumer have already been merged; and third, the actions that must be
ordered before a are already merged (lines 8–14). The merged ac-
tions, links and orderings 〈Am,Lm,Om〉 are obtained by a method
merged-subplan(π×i ) which for a given plan returns a subplan that
is already merged in the current state S, i.e., Am ⊆ Aπs ,Lm ⊆
Lπs ,Om ⊆ Oπs . If all merged subplans are equal to the input
plans, the algorithm successfully merged all the plans and it re-
turns the final plan. (line 17). Otherwise, if Q` is not empty, method
pickActionStart(Q`) (see Algorithm 2) will choose an action start
point that is not affecting any of the blocked literals in Lblock. All
action starts affecting blocked literals are removed from Q`.

In the cases where Q` is empty, i.e., no action start points can be
extracted from the input plans, or all action start points were removed
due to affecting blocked literals, there is no action start point that can
be merged at the current state. Hence, the next action end point to be
merged (i.e., the one with the earliest deadline) is merged instead, if
one exists. If no action end point exists either, then we have reached
a state for which it is not possible to merge actions while satisfying
the input plans constraints. Therefore, the algorithm backtracks to
the parent state, removing the last merged action from the plan and
propagates it as an invalid choice. If the initial state is reached by
backtracking, it means that the plans cannot be merged while main-
taining their individual constraints, and the algorithm outputs that
there is no solution.

Algorithm 2 chooses one action start point a` ∈ Q` to be merged
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Algorithm 1 POMerX (Π×, I,G)

1: S = 〈0, I,A+
0 ,A

−
0 , ∅, ∅, ∅, ∅, Π̌×ω , 〈{start}, ∅, ∅〉〉

2: while true do
3: if ∃(aa, ta) ∈ Qa such that t = ta then
4: remove (aa, ta) from Qa
5: merge(aa)
6: else
7: allMerged = true
8: for π×i = 〈A×,L×,O×〉 ∈ Π× do
9: 〈Am,Lm,Om〉 =merged-subplan(π×i )

10: if 〈Am,Lm,Om〉 6= 〈A×,L×,O×〉 then
11: allMerged = false
12: end if
13: {a ∈ A× \ Am | ∀(a′

l−→ a ∈ L×), | ∀(a′ ≺ a ∈
O×), a′ ∈ A×m}

14: Q` = Q` ∪ a`
15: end for
16: if allMerged= true then
17: return πs
18: end if
19: if Q` 6= ∅ then
20: {a,Q`}=pickActionStart(Q`)
21: if a 6= ∅ then
22: merge(a)
23: continue
24: end if
25: end if
26: if Q` = ∅ then
27: if Qa 6= ∅ then
28: pick aa ∈ Qa with the soonest deadline
29: merge(aa)
30: else
31: S = backtrack()
32: end if
33: else
34: go to line 19
35: end if
36: end if
37: end while

into the final plan. It starts by checking which actions in Q` are in-
applicable. An action start a` is inapplicable in the current state if
at least one of its preconditions do not hold in the current state. This
can happen if another action deleting literal l was merged after the
achiever of l; or the literal was relaxed in the input plan. Thus, in line
1, we build the set of applicable of action starts, i.e., the set of ac-
tion start points that are not inapplicable at the current search state.
If there are no applicable actions at the current state, we generate,
for each avdash ∈ Q`, joining plans. To do so, we use a call to the
wrapped POP planner, defining the current set of literal L as the ini-
tial state, and the preconditions of the action as the goal state (line
3). From the set of joining plans, we then choose the one that has the
shortest duration, and insert its applicable actions to the applicable
set (lines 4 and 5).

Then, we remove from applicable and Q` all actions that affect
the blocked literals in Lblock. Note that the actions removed fromQ`
will, in some future state, be again extracted from the input plans and
will be potentially merged into the final plan. If after removing the
actions that affect Lblock, applicable is empty, then the algorithm re-
turns an empty action, else it non-deterministically picks and returns

Algorithm 2 pickActionStart(Q`)
1: applicable = {a` ∈ Q` | pre(a`) ⊆ L}
2: if applicable = ∅ then
3: Πjoin = {X(D,A, 〈L, pre(a`)〉) | a` ∈ Q`}
4: pick πjoin = 〈Ajoin,Ljoin,Ojoin〉 from Πjoin that has the

shortest duration
5: applicable = {a` ∈ A`join | pre(a`) ⊆ L}
6: end if
7: remove from Q` and applicable all actions a that do not affect
Lblock, i.e., ∀l ∈ eff (a) : (¬l, .) /∈ Lblock

8: if applicable = ∅ then
9: return {∅, Q`}

10: else
11: pick action a from applicable
12: return {a,Q`}
13: end if

an action start point a` ∈ applicable .
Finally, Algorithm 3 updates the current state S depending on the

chosen action point, i.e., an action start or end, and merges it into
the plan πs. It proceeds as follows. First, if an action end is being
merged, the time is updated by the corresponding time deadline of
the action. An action start cannot move the time forward. Then, the
set of active literals, achievers and deleters are updated by the effects
of the action point; additionally the set of blocked literals is updated
by preconditions (line 11 – 16). The action point is removed from
the particular queue and added to the set of actions Aπs . For each
precondition of the action point, new causal link and corresponding
ordering is added between achiever or deleter (for negative literals)
and the merged action point. Finally, the added action point might be
ordered in parallel to another action and it might threaten an existing
causal link (line 22). In such a case, the action point is promoted.

Algorithm 3 merge(ainst)
1: t = (ainst ∈ Qa) ? t = Qa[ainst]
2: L = L ∪ eff (ainst)
3: for all f ∈ eff +(ainst) do
4: A+(f) = ainst
5: end for
6: for all f ∈ eff −(ainst) do
7: A−(f) = ainst
8: end for
9: (ainst ∈ Q`) ? Q` = Q` \ ainst

10: (ainst ∈ Qa) ? Qa = Qa \ ainst
11: for all l ∈ pre(ainst) do
12: if ainst ∈ Q` and l is over all then
13: Lblock = Lblock ∪ l
14: end if
15: if ainst ∈ Qa and l is over all then
16: Lblock = Lblock \ l
17: end if
18: end for
19: Aπs = Aπs ∪ ainst
20: ∀l ∈ pre+(aachi) : Lπs ∪ 〈A+(l)

l−→ ainst〉,
O ∪ 〈A+(l) ≺ ainst〉

21: ∀l ∈ pre−(ainst) : Lπs ∪ 〈A−(l)
l−→ ainst〉,

O ∪ 〈A−(l) ≺ ainst〉
22: Athreat = threats(ainst)
23: ∀athreat ∈ Athreat : Oπs ∪ 〈athreat ≺ ainst〉
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5.3 Example

The flow of the algorithm is illustrated on the DeliveryBot example.
The input to the algorithm is the conjunction of the original initial
states, i.e., I = {(at s0)}, the conjunction of the goals G = {(pack1
s2), (pack2 s0)} and the extracted plans π×1 , π

×
2 , see Fig. 3a and

Fig. 3b. At the first iteration, the merged-subplans are empty, hence
Algorithm 1 on line 13 chooses from all actions in the input plans.
First, actions from the input plan on Fig. 3a are being extracted; ac-
tion (load pack1 s1) has two preconditions: (at s1), (pack1 s1). The
achiever of both preconditions is the start action in the relaxed plan.
Hence, this action is extracted in order to be merged. Then, (unload
pack1 s2) action is tested. This action has two preconditions as well:
(pack1 truck) and (at s2). The achiever of the first precondition is
the action (load pack1 s1), however that action is not yet merged in
plan πs. Hence, action (unload pack1 s2) cannot be extracted to be
merged. The same reasoning is done for the second plan π×2 .

After that, Algorithm 2 proceeds by extracting applicable actions
from Q` = {(load pack1 s1), (load pack2 s2)}. Even though both
actions have satisfied preconditions in the input relaxed plan, they
are not satisfied in the current set of literals L =(at s0) due to relax-
ation. Therefore, the applicable set is empty and the wrapped planner
X is called in order to obtain joining plans to achieve the precondi-
tions of actions in Q`. The plan πjoin−1 = 〈{a1−1 =(move s0

s1)}, {start
(at s0)−−−−→ a1−1}, {start ≺ a1−1}〉 is obtained, as is the

similar πjoin−2 containing only action (move s0 s2). In this partic-
ular case, the plans contain only a single action but in general, they
can contain more. The temporary plan with the minimal duration is
chosen; in this example, both plans have same duration, hence one
plan is chosen randomly and applicable actions are extracted from
the plan, i.e. applicable =(move s0 s1). Finally, one action’s start, in
this case (move s0 s1)` is merged into the plan πs.

Now we illustrate the meaning of blocked literals. In the third iter-
ation, the action (load pack1 s1) is chosen; it has precondition (at s1)
which must be valid over all duration of the action. Hence, Lblock =
(at s1). In the next iteration, actions’ start (move s1 s2)` from the ap-
plicable set has ¬(at s1) as an effect which will change the blocked
literal. Therefore, it cannot be chosen and setQ` will become empty.
Thus, Algorithm 1 proceeds to line 28 and chooses (load pack1 s1)a
from the queue Qa and merges it.

6 EVALUATION

We have developed a version of our algorithm POMerVHPOP which
embeds the VHPOP planner [24] for plan generation for individual
tasks2. In this section, we evaluate the POMerVHPOP algorithm and
compare it with other temporal planners based on plan quality, mea-
sured using the makespan of the found solution, and scalability. For
each found plan, we run VAL, the validator of PDDL plans 3 in order
to ensure that the plan is valid for domain and problem. The eval-
uated planners maximum memory usage was limited to 8 GB. All
evaluation was run on Lenovo ThinkPad E-540 with Intel i74702MQ
Processor (6MB Cache, 800 MHz).

6.1 Domains and problems

We evaluate using domains taken from IPC 2014. However, we gen-
erate our own planning problems in these domains, as our algorithm

2 Available at https://github.com/mudrole1/POMer
3 http://www.inf.kcl.ac.uk/research/groups/PLANNING/

is based on the assumptions that tasks, i.e., goals in problems, are in-
dependent. Moreover, we assume only a single agent performing the
actions.

6.1.1 Drivelog domain

The Drivelog domain is the IPC 2014 domain closest to our main
focus of mobile service robots as it has spatial constraints. In order
to generate problems, we take the hardest problem from IPC 2014,
i.e., problem P23, and modify it so that it has a single agent, i.e., one
truck with the driver already boarded. Then, we split the 23 goals
for package placing into 23 single tasks. For the merging algorithm
the initial state of these single tasks is extended by adding all atoms
related to the spatial constraints, i.e., all (at ?loc) where ?loc stands
for any location in the problem.

6.1.2 TMS domain

This domain is another benchmarking domain for IPC 2014 which
requires concurrent actions, a type of problem for which POP prob-
lems are especially suited. Even though this domain is about produc-
ing ceramic pieces, we choose it in order to demonstrate the capa-
bility of POMerVHPOP to handle concurrent actions. In this domain,
a kiln represents the agent. Hence, our problems contain initial state
that a kiln is always ready. We take the hardest problem from IPC
2014 and from it create 17 problems. The smallest problem contains
2 goals and the largest 50 goals.

6.2 POMerV HPOP in comparison to VHPOP

First, we analyse how our proposed algorithm improves over its
wrapped planner, in this case VHPOP. Thus we compare three algo-
rithms: POMerVHPOP , VHPOP used to solve the unified problem,
and VHPOP used to solve the sequencing problem. All algorithms
were run on problems for Drivelog domain for 30 min and could use
8 GB of memory. The makespans are depicted in Fig. 4a. VHPOP-
unifying is able to find a solution for only five problems before it
reaches the memory limit. We also report on time and memory con-
sumed, see Fig. 4b and Fig. 4c, respectively. As expected, VHPOP-
unifying consumes the most memory for most of the cases and in
problem 4, and problems 6-23, it does not find a solution before the
limit of 8 GB is reached. In contrast, the sequencing approach is the
fastest and the most memory efficient however it always finds the
worst makespan. For the largest problem, the makespan found by the
sequencing approach is double the one found by POMerVHPOP . This
means that if the makespan is expressed in duration POMerVHPOP

saves about 460 min in the biggest problem comparing to the fast
sequencing approach even though it takes up to 7 min to provide
a solution. To summarise, we can state that our merging algorithm
wrapped around VHPOP significantly improved scalability of stan-
dalone VHPOP. As POMerVHPOP is not yet optimised, it is the slow-
est approach.

6.3 POMerV HPOP in comparison to IPC planners

This evaluation is focused on comparing properties of our proposed
algorithm POMerVHPOP with the state of the art planners from IPC
2014, such as DAEY AHSP , YAHSP3-MT, TFD and ITSAT, as de-
scribed in Section 2. Additionally, we also compare to the POP-based
OPTIC planner [1] and to VHPOP using the sequencing solution.
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(a) Makespan (b) Time (c) Memory

Figure 4. Comparision of POMerVHPOP , VHPOP-unifying and VHPOP-sequencing.

6.4 Drivelog domain
For each problem from the Drivelog domain, the aforementioned
planners were run for the duration POMerVHPOP required for
the same problem, see Fig. 4b. In order to express a quality of
the found makespan, we introduce estimates of the best and the
worst makespan. As the worst estimate, we use makespan found by
VHPOP in sequencing approach and as the best estimate, we run
DAEY AHSP for 30 minutes. Fig. 5 shows the recorded makespan
for each problem. Even though the makespan is not a continuous
function, we visualise the worst and the best estimates as a line in
order to highlight these limits.

Note that DAEY AHSP struggles in problems 7 and 11 to provide
a good solution. In both cases, the found solution is even slightly
worse than the worst estimate. Hence, we exclude these problems
from the following analysis. Our algorithm is better than the best es-
timate in three problems by total difference 46.9. This means that
an average difference per plan is 15.63 units in which makespan is
recorded. As all packages must be loaded and unloaded in both plans,
the POMerVHPOP has only two options how to find better plan -
place loading and unloading actions concurrently or find better path
between locations. In 20 cases, POMerVHPOP found worse solution
than the best estimate by a total difference of 327.88, or 16.39 aver-
age difference. Most of these cases were problems with more goals,
which is expected as the greedy heuristics are driven to local optima
more often in bigger problems.

6.5 TMS domain
Even though, planners DAEY AHSP , YAHSP and TFD perform very
well in Drivelog domain, they are unable to find valid solutions in
TMS domain as they do not handle concurrent actions correctly. As
result, we comparing POMerVHPOP with only OPTIC, ITSAT and
the original VHPOP. However an interesting phenomena occurs for
our problems: all planners find almost the same makespans. This phe-
nomena occurs due to a fact that a kiln used for baking ceramic has
no resource limits. Thus all the ceramic pieces can be baked in par-
allel.

7 CONCLUSION
We presented an approach for merging of partial order plans espe-
cially suited for mobile service robots that need to execute tasks at
different locations in an environment. The approach is based on first

Figure 5. Makespans for problems in Drivelog domain.

solving relaxed problems for each individual task, and then perform
search over the solutions for these relaxed problems, stitching them
together in a way that takes advantage of the synergies between the
different tasks. We provided an evaluation of our approach on two
benchmarking domains, showing that, for the class of problems we
are interested in, it is competitive with state-of-the-art temporal plan-
ners. Furthermore, it illustrated our approaches flexibility, as it can
perform well in the two domains we analysed, while the other ap-
proaches have issues in at least one of the domains.

Future work includes developing an automatic relaxation of the in-
dividual problems, and tackling issues related to the execution of the
plans we are generating in a mobile robot. This includes closing the
loop between plan generation and execution, for which we feel par-
tial order plans are better suited than totally ordered ones, and tackle
other common issues for service robotics, such as timing constraints
on task execution, the uncertainty inherent to execution in the real
world, or merging of plans for new tasks arriving during execution.

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement No 600623, STRANDS.
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