8,210 research outputs found

    Correcting menu usability problems with sound

    Get PDF
    Future human-computer interfaces will use more than just graphical output to display information. In this paper we suggest that sound and graphics together can be used to improve interaction. We describe an experiment to improve the usability of standard graphical menus by the addition of sound. One common difficulty is slipping off a menu item by mistake when trying to select it. One of the causes of this is insufficient feedback. We designed and experimentally evaluated a new set of menus with much more salient audio feedback to solve this problem. The results from the experiment showed a significant reduction in the subjective effort required to use the new sonically-enhanced menus along with significantly reduced error recovery times. A significantly larger number of errors were also corrected with sound

    The design of sonically-enhanced widgets

    Get PDF
    This paper describes the design of user-interface widgets that include non-speech sound. Previous research has shown that the addition of sound can improve the usability of human–computer interfaces. However, there is little research to show where the best places are to add sound to improve usability. The approach described here is to integrate sound into widgets, the basic components of the human–computer interface. An overall structure for the integration of sound is presented. There are many problems with current graphical widgets and many of these are difficult to correct by using more graphics. This paper presents many of the standard graphical widgets and describes how sound can be added. It describes in detail usability problems with the widgets and then the non-speech sounds to overcome them. The non-speech sounds used are earcons. These sonically-enhanced widgets allow designers who are not sound experts to create interfaces that effectively improve usability and have coherent and consistent sounds

    Efficiency of Spearcon-Enhanced Navigation of One Dimensional Electronic Menus

    Get PDF
    This study simulated and compared cell phone contact book menu navigation using combinations of both auditory (text-to-speech and spearcons) and visual cues. A total of 127 undergraduates participated in a study that required using one of five conditions of alphabetically listed menu cues to find a target name. Participants using visual cues (either alone or combined with auditory cues) outperformed those using only auditory cues. Performance was not found to be significantly different among the three auditory only conditions. When combined with visual cues, spearcons improved navigational efficiency more than both text-to-speech cues and menus using no sound, and provided evidence for the ability of sound to enhance visual menus. Research results provide evidence applicable to efficient auditory menu creation.Gregory Corso - Committee Member/Second Reader ; Bruce Walker - Faculty Mento

    Designing non-speech sounds to support navigation in mobile phone menus

    Get PDF
    This paper describes a framework for integrating non-speech audio to hierarchical menu structures where the visual feedback is limited. In the first part of this paper, emphasis is put on how to extract sound design principles from actual navigation problems. These design principles are then applied in the second part, through the design, implementation and evaluation of a set of sounds in a computer-based simulation of the Nokia 6110 mobile phone. The evaluation indicates that non-speech sound improves the performance of navigational tasks in terms of the number of errors made and the number of keypresses taken to complete the given tasks. This study provides both theoretical and practical insights about the design of audio cues intended to support navigation in complex menu structures

    CAITLIN: A Musical Program Auralisation Tool to Assist Novice Programmers with Debugging

    Get PDF
    Early experiments have suggested that program auralization can convey information about program structure [5]. Languages like Pascal contain classes of construct that are similar in nature allowing hierarchical classification of their features. This taxonomy can be reflected in the design of musical signatures which are used within the CAITLIN program auralization system. Experiments using these hierarchical leitmotifs should (see note in EXPERIMENT section) indicate that their similarities can be put to good use in communicating information about program structure and state

    Switch access to technology - A comprehensive Guide.

    Get PDF
    When most of us use a computer we use the standard interface of a keyboard and mouse. However, what do you do if you cannot use a keyboard or mouse? A number of alternative access systems exist, for example: alternative keyboards, tracker balls, touchscreens, head pointers etc. But for some people these devices are also an impossibility, and this is where switches 'kick in'. The main subject of this document is the switch user. For completeness we have include a brief mention of other input devices, which may be grouped together as 'alternative access systems'.We aim to: - Encourage developers to include switch access into their products - Standardise practice and terminology. This document explains some of the issues involved for people with severe physical difficulties who access computers and other electronic devices with switches. It details the ways in which switch users interact with computer programs and other technology designed to be directly accessible to them. The document includes some precise definitions of terms. It also attempts to survey the whole range of issues associated with switch use. As such it should be useful to professionals working or entering the field, those software developers considering switch users for the first time and also for those already developing in this area

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies

    Integration of an adaptive infotainment system in a vehicle and validation in real driving scenarios

    Get PDF
    More services, functionalities, and interfaces are increasingly being incorporated into current vehicles and may overload the driver capacity to perform primary driving tasks adequately. For this reason, a strategy for easing driver interaction with the infotainment system must be defined, and a good balance between road safety and driver experience must also be achieved. An adaptive Human Machine Interface (HMI) that manages the presentation of information and restricts drivers’ interaction in accordance with the driving complexity was designed and evaluated. For this purpose, the driving complexity value employed as a reference was computed by a predictive model, and the adaptive interface was designed following a set of proposed HMI principles. The system was validated performing acceptance and usability tests in real driving scenarios. Results showed the system performs well in real driving scenarios. Also, positive feedbacks were received from participants endorsing the benefits of integrating this kind of system as regards driving experience and road safety.Postprint (published version
    • 

    corecore