5,853 research outputs found

    Ultra-high throughput string matching for deep packet inspection

    Get PDF
    Deep Packet Inspection (DPI) involves searching a packet's header and payload against thousands of rules to detect possible attacks. The increase in Internet usage and growing number of attacks which must be searched for has meant hardware acceleration has become essential in the prevention of DPI becoming a bottleneck to a network if used on an edge or core router. In this paper we present a new multi-pattern matching algorithm which can search for the fixed strings contained within these rules at a guaranteed rate of one character per cycle independent of the number of strings or their length. Our algorithm is based on the Aho-Corasick string matching algorithm with our modifications resulting in a memory reduction of over 98% on the strings tested from the Snort ruleset. This allows the search structures needed for matching thousands of strings to be small enough to fit in the on-chip memory of an FPGA. Combined with a simple architecture for hardware, this leads to high throughput and low power consumption. Our hardware implementation uses multiple string matching engines working in parallel to search through packets. It can achieve a throughput of over 40 Gbps (OC-768) when implemented on a Stratix 3 FPGA and over 10 Gbps (OC-192) when implemented on the lower power Cyclone 3 FPGA

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

    Get PDF
    In the current scenario network security is emerging the world. Matching large sets of patterns against an incoming stream of data is a fundamental task in several fields such as network security or computational biology. High-speed network intrusion detection systems (IDS) rely on efficient pattern matching techniques to analyze the packet payload and make decisions on the significance of the packet body. However, matching the streaming payload bytes against thousands of patterns at multi-gigabit rates is computationally intensive. Various techniques have been proposed in past but the performance of the system is reducing because of multi-gigabit rates.Pattern matching is a significant issue in intrusion detection systems, but by no means the only one. Handling multi-content rules, reordering, and reassembling incoming packets are also significant for system performance. We present two pattern matching techniques to compare incoming packets against intrusion detection search patterns. The first approach, decoded partial CAM (DpCAM), pre-decodes incoming characters, aligns the decoded data, and performs logical AND on them to produce the match signal for each pattern. The second approach, perfect hashing memory (PHmem), uses perfect hashing to determine a unique memory location that contains the search pattern and a comparison between incoming data and memory output to determine the match. The suggested methods have implemented in vhdl coding and we use Xilinx for synthesis

    A pattern matching coprocessor for network security

    Full text link

    Firewall strategies using network processors

    Get PDF
    The emergence of network processors provides a broad range of new applications, particularly in the field of network security. Firewalls have become one of the basic building blocks of implementing a network\u27s security policy; however, the security of a firewall can potentially lead to a bottleneck in the network. Therefore, improving the performance of the firewall means also improving the performance of the protected network. With the ability to direcdy monitor and modify packet information at wire speeds, the network processor provides a new avenue for the pursuit of faster, more efficient firewall products. This paper describes the implementation of two simulated network processor based firewalls. The first architecture, a basic packet filtering firewall, utilizes tree-based structures for manipulating IP and transport level firewall rules while also utilizing parallelism available in the network processor during firewall rule look-ups. In the second architecture, a parallel firewall is created using a network processor based, load-balancing switch along with two network processor based firewall machines, both utilizing the basic packet filter operations of the first architecture. When added to existing routing software, these implementations demonstrate the feasibility of creating dynamic packet-filtering routers using network processor technology

    A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

    Get PDF
    This paper presents a framework that enables the execution of packet-handling applications (such as sniffers, firewalls, intrusion detectors, etc.) on different hardware platforms. This framework is centered on the NetVM - a novel, portable, and efficient virtual processor targeted for packet-based processing - and the NetPDL - a language dissociating applications from protocol specifications. In addition, a high-level programming language that enables rapid development of packet-based applications is presented

    Hardware-Aware Algorithm Designs for Efficient Parallel and Distributed Processing

    Get PDF
    The introduction and widespread adoption of the Internet of Things, together with emerging new industrial applications, bring new requirements in data processing. Specifically, the need for timely processing of data that arrives at high rates creates a challenge for the traditional cloud computing paradigm, where data collected at various sources is sent to the cloud for processing. As an approach to this challenge, processing algorithms and infrastructure are distributed from the cloud to multiple tiers of computing, closer to the sources of data. This creates a wide range of devices for algorithms to be deployed on and software designs to adapt to.In this thesis, we investigate how hardware-aware algorithm designs on a variety of platforms lead to algorithm implementations that efficiently utilize the underlying resources. We design, implement and evaluate new techniques for representative applications that involve the whole spectrum of devices, from resource-constrained sensors in the field, to highly parallel servers. At each tier of processing capability, we identify key architectural features that are relevant for applications and propose designs that make use of these features to achieve high-rate, timely and energy-efficient processing.In the first part of the thesis, we focus on high-end servers and utilize two main approaches to achieve high throughput processing: vectorization and thread parallelism. We employ vectorization for the case of pattern matching algorithms used in security applications. We show that re-thinking the design of algorithms to better utilize the resources available in the platforms they are deployed on, such as vector processing units, can bring significant speedups in processing throughout. We then show how thread-aware data distribution and proper inter-thread synchronization allow scalability, especially for the problem of high-rate network traffic monitoring. We design a parallelization scheme for sketch-based algorithms that summarize traffic information, which allows them to handle incoming data at high rates and be able to answer queries on that data efficiently, without overheads.In the second part of the thesis, we target the intermediate tier of computing devices and focus on the typical examples of hardware that is found there. We show how single-board computers with embedded accelerators can be used to handle the computationally heavy part of applications and showcase it specifically for pattern matching for security-related processing. We further identify key hardware features that affect the performance of pattern matching algorithms on such devices, present a co-evaluation framework to compare algorithms, and design a new algorithm that efficiently utilizes the hardware features.In the last part of the thesis, we shift the focus to the low-power, resource-constrained tier of processing devices. We target wireless sensor networks and study distributed data processing algorithms where the processing happens on the same devices that generate the data. Specifically, we focus on a continuous monitoring algorithm (geometric monitoring) that aims to minimize communication between nodes. By deploying that algorithm in action, under realistic environments, we demonstrate that the interplay between the network protocol and the application plays an important role in this layer of devices. Based on that observation, we co-design a continuous monitoring application with a modern network stack and augment it further with an in-network aggregation technique. In this way, we show that awareness of the underlying network stack is important to realize the full potential of the continuous monitoring algorithm.The techniques and solutions presented in this thesis contribute to better utilization of hardware characteristics, across a wide spectrum of platforms. We employ these techniques on problems that are representative examples of current and upcoming applications and contribute with an outlook of emerging possibilities that can build on the results of the thesis
    corecore