1,350 research outputs found

    Scalable network virtualization using FPGAs

    Full text link

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Interconnect architectures for dynamically partially reconfigurable systems

    Get PDF
    Dynamically partially reconfigurable FPGAs (Field-Programmable Gate Arrays) allow hardware modules to be placed and removed at runtime while other parts of the system keep working. With their potential benefits, they have been the topic of a great deal of research over the last decade. To exploit the partial reconfiguration capability of FPGAs, there is a need for efficient, dynamically adaptive communication infrastructure that automatically adapts as modules are added to and removed from the system. Many bus and network-on-chip (NoC) architectures have been proposed to exploit this capability on FPGA technology. However, few realizations have been reported in the public literature to demonstrate or compare their performance in real world applications. While partial reconfiguration can offer many benefits, it is still rarely exploited in practical applications. Few full realizations of partially reconfigurable systems in current FPGA technologies have been published. More application experiments are required to understand the benefits and limitations of implementing partially reconfigurable systems and to guide their further development. The motivation of this thesis is to fill this research gap by providing empirical evidence of the cost and benefits of different interconnect architectures. The results will provide a baseline for future research and will be directly useful for circuit designers who must make a well-reasoned choice between the alternatives. This thesis contains the results of experiments to compare different NoC and bus interconnect architectures for FPGA-based designs in general and dynamically partially reconfigurable systems. These two interconnect schemes are implemented and evaluated in terms of performance, area and power consumption using FFT (Fast Fourier Transform) andANN(Artificial Neural Network) systems as benchmarks. Conclusions drawn from these results include recommendations concerning the interconnect approach for different kinds of applications. It is found that a NoC provides much better performance than a single channel bus and similar performance to a multi-channel bus in both parallel and parallel-pipelined FFT systems. This suggests that a NoC is a better choice for systems with multiple simultaneous communications like the FFT. Bus-based interconnect achieves better performance and consume less area and power than NoCbased scheme for the fully-connected feed-forward NN system. This suggests buses are a better choice for systems that do not require many simultaneous communications or systems with broadcast communications like a fully-connected feed-forward NN. Results from the experiments with dynamic partial reconfiguration demonstrate that buses have the advantages of better resource utilization and smaller reconfiguration time and memory than NoCs. However, NoCs are more flexible and expansible. They have the advantage of placing almost all of the communication infrastructure in the dynamic reconfiguration region. This means that different applications running on the FPGA can use different interconnection strategies without the overhead of fixed bus resources in the static region. Another objective of the research is to examine the partial reconfiguration process and reconfiguration overhead with current FPGA technologies. Partial reconfiguration allows users to efficiently change the number of running PEs to choose an optimal powerperformance operating point at the minimum cost of reconfiguration. However, this brings drawbacks including resource utilization inefficiency, power consumption overhead and decrease in system operating frequency. The experimental results report a 50% of resource utilization inefficiency with a power consumption overhead of less than 5% and a decrease in frequency of up to 32% compared to a static implementation. The results also show that most of the drawbacks of partial reconfiguration implementation come from the restrictions and limitations of partial reconfiguration design flow. If these limitations can be addressed, partial reconfiguration should still be considered with its potential benefits.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    Range-enhanced packet classification to improve computational performance on field programmable gate array

    Get PDF
    Multi-filed packet classification is a powerful classification engine that classifies input packets into different fields based on predefined rules. As the demand for the internet increases, efficient network routers can support many network features like quality of services (QoS), firewalls, security, multimedia communications, and virtual private networks. However, the traditional packet classification methods do not fulfill today’s network functionality and requirements efficiently. In this article, an efficient range enhanced packet classification (REPC) module is designed using a range bit-vector encoding method, which provides a unique design to store the precomputed values in memory. In addition, the REPC supports range to prefix features to match the packets to the corresponding header fields. The synthesis and implementation results of REPC are analyzed and tabulated in detail. The REPC module utilizes 3% slices on Artix-7 field programmable gate array (FPGA), works at 99.87 Gbps throughput with a latency of 3 clock cycles. The proposed REPC is compared with existing packet classification approaches with better hardware constraints improvements

    Heracles: A Tool for Fast RTL-Based Design Space Exploration of Multicore Processors

    Get PDF
    This paper presents Heracles, an open-source, functional, parameterized, synthesizable multicore system toolkit. Such a multi/many-core design platform is a powerful and versatile research and teaching tool for architectural exploration and hardware-software co-design. The Heracles toolkit comprises the soft hardware (HDL) modules, application compiler, and graphical user interface. It is designed with a high degree of modularity to support fast exploration of future multicore processors of di erent topologies, routing schemes, processing elements (cores), and memory system organizations. It is a component-based framework with parameterized interfaces and strong emphasis on module reusability. The compiler toolchain is used to map C or C++ based applications onto the processing units. The GUI allows the user to quickly con gure and launch a system instance for easy factorial development and evaluation. Hardware modules are implemented in synthesizable Verilog and are FPGA platform independent. The Heracles tool is freely available under the open-source MIT license at: http://projects.csail.mit.edu/heracle

    An efficient asynchronous spatial division multiplexing router for network-on-chip on the hardware platform

    Get PDF
    The quasi-delay-insensitive (QDI) based asynchronous network-on-chip (ANoC) has several advantages over clock-based synchronous network-on-chips (NoCs). The asynchronous router uses a virtual channel (VC) as a primary flow-control mechanism however, the spatial division multiplexing (SDM) based mechanism performs better over input traffics over VC. This manuscript uses an asynchronous spatial division multiplexing (ASDM) based router for NoC architecture on a field-programmable gate array (FPGA) platform. The ASDM router is configurable to different bandwidths and VCs. The ASDM router mainly contains input-output (I/O) buffers, a switching allocator, and a crossbar unit. The 4-phase 1-of-4 dual-rail protocol is used to construct the I/O buffers. The performance of the ASDM router is analyzed in terms of lower urinary tract symptoms (LUTs) (chip area), delay, latency, and throughput parameters. The work is implemented using Verilog-HDL with Xilinx ISE 14.7 on artix-7 FPGA. The ASDM router achieves % chip area and obtains 0.8 ns of latency with a throughput of 800 Mfps. The proposed router is compared with existing asynchronous approaches with improved latency and throughput metrics
    • …
    corecore