7,212 research outputs found

    Serial-data computation in VLSI

    Get PDF

    Threshold elements and the design of sequential switching networks

    Get PDF
    Includes bibliographies."AD 657370."[by] A.K. Susskind, D.R. Haring [and] C.L. Liu

    Introduction to Logic Circuits & Logic Design with Verilog

    Get PDF
    The overall goal of this book is to fill a void that has appeared in the instruction of digital circuits over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital circuits were designed using classical techniques. Classical techniques relied heavily on manual design practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design style, academic textbooks were developed that taught classical digital design techniques. Around 1990, large-scale digital systems began being designed using hardware description languages (HDL) and automated synthesis tools. Broad-scale adoption of this modern design approach spread through the industry during this decade. Around 2000, hardware description languages and the modern digital design approach began to be taught in universities, mainly at the senior and graduate level. There were a variety of reasons that the modern digital design approach did not penetrate the lower levels of academia during this time. First, the design and simulation tools were difficult to use and overwhelmed freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which are cost- and time-prohibitive to implement in a university setting. Between 2000 and 2005, rapid advances in programmable logic and design tools allowed the modern digital design approach to be implemented in a university setting, even in lower-level courses. This allowed students to learn the modern design approach based on HDLs and prototype their designs in real hardware, mainly fieldprogrammable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored, teaching hardware description languages and higher levels of design abstraction. This trend has continued until today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only the modern digital design techniques has left a void for freshman- and sophomore-level courses in digital circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach the modern digital design approach move immediately into high-level behavioral modeling with minimal or no coverage of the underlying hardware used to implement the systems. As a result, students are not being provided the resources to understand the fundamental hardware theory that lies beneath the modern abstraction such as interfacing, gate-level implementation, and technology optimization. Students moving too rapidly into high levels of abstraction have little understanding of what is going on when they click the “compile and synthesize” button of their design tool. This leads to graduates who can model a breadth of different systems in an HDL but have no depth into how the system is implemented in hardware. This becomes problematic when an issue arises in a real design and there is no foundational knowledge for the students to fall back on in order to debug the problem

    Introduction to Logic Circuits & Logic Design with VHDL

    Get PDF
    The overall goal of this book is to fill a void that has appeared in the instruction of digital circuits over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital circuits were designed using classical techniques. Classical techniques relied heavily on manual design practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design style, academic textbooks were developed that taught classical digital design techniques. Around 1990, large-scale digital systems began being designed using hardware description languages (HDL) and automated synthesis tools. Broad-scale adoption of this modern design approach spread through the industry during this decade. Around 2000, hardware description languages and the modern digital design approach began to be taught in universities, mainly at the senior and graduate level. There were a variety of reasons that the modern digital design approach did not penetrate the lower levels of academia during this time. First, the design and simulation tools were difficult to use and overwhelmed freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which are cost- and time-prohibitive to implement in a university setting. Between 2000 and 2005, rapid advances in programmable logic and design tools allowed the modern digital design approach to be implemented in a university setting, even in lower-level courses. This allowed students to learn the modern design approach based on HDLs and prototype their designs in real hardware, mainly field programmable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored teaching hardware description languages and higher levels of design abstraction. This trend has continued until today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only the modern digital design techniques has left a void for freshman- and sophomore-level courses in digital circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach the modern digital design approach move immediately into high-level behavioral modeling with minimal or no coverage of the underlying hardware used to implement the systems. As a result, students are not being provided the resources to understand the fundamental hardware theory that lies beneath the modern abstraction such as interfacing, gate-level implementation, and technology optimization. Students moving too rapidly into high levels of abstraction have little understanding of what is going on when they click the “compile and synthesize” button of their design tool. This leads to graduates who can model a breadth of different systems in an HDL but have no depth into how the system is implemented in hardware. This becomes problematic when an issue arises in a real design and there is no foundational knowledge for the students to fall back on in order to debug the problem

    Quick Start Guide to Verilog

    Get PDF
    The classical digital design approach (i.e., manual synthesis and minimization of logic) quickly becomes impractical as systems become more complex. This is the motivation for the modern digital design flow, which uses hardware description languages (HDL) and computer-aided synthesis/minimization to create the final circuitry. The purpose of this book is to provide a quick start guide to the Verilog language, which is one of the two most common languages used to describe logic in the modern digital design flow. This book is intended for anyone that has already learned the classical digital design approach and is ready to begin learning HDL-based design. This book is also suitable for practicing engineers that already know Verilog and need quick reference for syntax and examples of common circuits. This book assumes that the reader already understands digital logic (i.e., binary numbers, combinational and sequential logic design, finite state machines, memory, and binary arithmetic basics). Since this book is designed to accommodate a designer that is new to Verilog, the language is presented in a manner that builds foundational knowledge first before moving into more complex topics. As such, Chaps. 1–6 provide a comprehensive explanation of the basic functionality in Verilog to model combinational and sequential logic. Chapters 7–11 focus on examples of common digital systems such as finite state machines, memory, arithmetic, and computers. For a reader that is using the book as a reference guide, it may be more practical to pull examples from Chaps. 7–11 as they use the full functionality of the language as it is assumed the reader has gained an understanding of it in Chaps. 1–6. For a Verilog novice, understanding the history and fundamentals of the language will help form a comprehensive understanding of the language; thus it is recommended that the early chapters are covered in the sequence they are written

    Quick Start Guide to VHDL

    Get PDF
    The purpose of a hardware description languages is to describe digital circuitry using a text-based language. HDLs provide a means to describe large digital systems without the need for schematics, which can become impractical in very large designs. HDLs have evolved to support logic simulation at different levels of abstraction

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    The origins of student misunderstanding of undergraduate electrical machine theory

    Get PDF
    This thesis is concerned with student understanding of key concepts in electrical engineering teaching within higher education. Anecdotal evidence suggests that many students struggle to understand threshold concepts and therefore encounter difficulties in learning theoretical models which are underpinned by such theoretical concepts. This research utilised a mixed methods approach to investigate the factors that influence student understanding of key theoretical concepts within electrical engineering. The initial study used a questionnaire to evaluate student understanding of concepts which were identified by teaching staff as being core to a particular module. The study identified that students commenced the module with poor understanding and that instruction on the module ELC040 Electrical Machines and Systems did not lead to improved understanding of core concepts. This suggests that the roots of student misunderstanding lay elsewhere. Desk research was subsequently employed to explore the sources of student misunderstandings. Performance data was analysed and demonstrated that the roots of the student misunderstanding of Electrical Machine Theory lay in the pre-requisite module Electrical Power B. Students routinely failed to achieve high levels of understanding in this module and as a result were unable to successfully build upon it in the third year module. Semi-structured interviews were then undertaken with Part C students who were undertaking the Electrical Machines and Systems module. In addition, structured interviews were administered with the Part B students. The interviews aimed to establish the study practices adopted by students across both years. The study showed that students found the ELA001 module difficult, and the majority believe that most other students felt the same way as they did. Students provided evidence of poor study techniques, by reporting last minute sessions to complete coursework and last minute revision for exams. This research informed the development of an interactive learning tool which was piloted on a small cohort of students. The research has also established that there are many influences on the development of student understanding of threshold concepts within electrical engineering and argues for a more active style of teaching in order to address student misunderstanding
    corecore