994 research outputs found

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Coexisting scheduling policies boosting I/O Virtual Machines

    Get PDF
    Abstract. Deploying multiple Virtual Machines (VMs) running various types of workloads on current many-core cloud computing infrastructures raises an important issue: The Virtual Machine Monitor (VMM) has to efficiently multiplex VM accesses to the hardware. We argue that altering the scheduling concept can optimize the system’s overall performance. Currently, the Xen VMM achieves near native performance multiplexing VMs with homogeneous workloads. Yet having a mixture of VMs with different types of workloads running concurrently, it leads to poor I/O performance. Taking into account the complexity of the design and implementation of a universal scheduler, let alone the probability of being fruitless, we focus on a system with multiple scheduling policies that coexist and service VMs according to their workload characteristics. Thus, VMs can benefit from various schedulers, either existing or new, that are optimal for each specific case. In this paper, we design a framework that provides three basic coexisting scheduling policies and implement it in the Xen paravirtualized environment. Evaluating our prototype we experience 2.3 times faster I/O service and link saturation, while the CPU-intensive VMs achieve more than 80 % of current performance.

    Resource Allocation Policy for Virtualized Network Interfaces

    Get PDF
    Over the last decade, virtualization has gained widespread importance. Virtual Machines (VMs) can now share network access in hardware, or in software or in a hybridized way. Input/Output (IO) virtualization technologies based on software utilize emulation technique, but this requires Virtualization Manager which presents central processing overhead in a significant amount. Besides, each IO operation in turn poses overhead additionally and any supported advanced capabilities inherent of physical hardware are not utilized properly. Some direct assignment based IO virtualization technologies suffer from limitations to scalability. The support for Quality of Service (QoS) may be offered within the software layers at the Virtualization Manager or Guest Operating System level which interact with the IO device that is being shared. With a preliminary investigation of the functionality of the RiceNIC (an open standard platform meant for research and education into concurrent network interface design), a study of the various network interface technologies supporting IO device virtualization was carried out to precisely understand IO virtualized network interfaces. The project describes a resource allocation policy for the on-device memory of the IO device being shared, taking the instance of a complex IO device, i.e., a Network Interface Controller(NIC) supporting a reconfigurable virtualized network interface architecture design which endures multiple reconfigurable virtualized network interfaces working independently using a reconfigurable partitioned memory. It enhances the scalability of the IO device

    Workload-Aware Database Monitoring and Consolidation

    Get PDF
    In most enterprises, databases are deployed on dedicated database servers. Often, these servers are underutilized much of the time. For example, in traces from almost 200 production servers from different organizations, we see an average CPU utilization of less than 4%. This unused capacity can be potentially harnessed to consolidate multiple databases on fewer machines, reducing hardware and operational costs. Virtual machine (VM) technology is one popular way to approach this problem. However, as we demonstrate in this paper, VMs fail to adequately support database consolidation, because databases place a unique and challenging set of demands on hardware resources, which are not well-suited to the assumptions made by VM-based consolidation. Instead, our system for database consolidation, named Kairos, uses novel techniques to measure the hardware requirements of database workloads, as well as models to predict the combined resource utilization of those workloads. We formalize the consolidation problem as a non-linear optimization program, aiming to minimize the number of servers and balance load, while achieving near-zero performance degradation. We compare Kairos against virtual machines, showing up to a factor of 12× higher throughput on a TPC-C-like benchmark. We also tested the effectiveness of our approach on real-world data collected from production servers at Wikia.com, Wikipedia, Second Life, and MIT CSAIL, showing absolute consolidation ratios ranging between 5.5:1 and 17:1
    corecore