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ABSTRACT
In most enterprises, databases are deployed on dedicated database
servers. Often, these servers are underutilized much of the time.
For example, in traces from almost 200 production servers from
different organizations, we see an average CPU utilization of less
than 4%. This unused capacity can be potentially harnessed to con-
solidate multiple databases on fewer machines, reducing hardware
and operational costs. Virtual machine (VM) technology is one
popular way to approach this problem. However, as we demon-
strate in this paper, VMs fail to adequately support database con-
solidation, because databases place a unique and challenging set of
demands on hardware resources, which are not well-suited to the
assumptions made by VM-based consolidation.

Instead, our system for database consolidation, named Kairos,
uses novel techniques to measure the hardware requirements of
database workloads, as well as models to predict the combined re-
source utilization of those workloads. We formalize the consol-
idation problem as a non-linear optimization program, aiming to
minimize the number of servers and balance load, while achieving
near-zero performance degradation. We compare Kairos against
virtual machines, showing up to a factor of 12× higher throughput
on a TPC-C-like benchmark. We also tested the effectiveness of
our approach on real-world data collected from production servers
at Wikia.com, Wikipedia, Second Life, and MIT CSAIL, showing
absolute consolidation ratios ranging between 5.5:1 and 17:1.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases; Distributed databases;
H.2.7 [Database Administration]: Metrics

General Terms
Experimentation, Measurement, Performance

Keywords
consolidation, multi-tenant databases

1. INTRODUCTION
With the advent of outsourced computing and storage in the form

of public clouds, as well as the rapid rise in the number of web,
mobile, and enterprise database applications, it is now common for
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a single data center within an organization to deploy hundreds or
thousands of individual relational database management systems
(DBMSs). For example, one large telecommunications company
with which we are familiar has more than 20,000 DBMS instances
deployed in its internal infrastructure. Oftentimes, each database is
deployed on a dedicated server, with the machine provisioned for
the peak load that is expected to be placed on the database. How-
ever, it is unlikely that all the DBMS instances in a data center will
be hit by peak loads at the same time. In practice, most databases
have natural ebbs and flows, occasional unexpected events, and a
certain degree of statistical correlation (or lack of correlation) with
other databases in the same data center. Over-provisioning and
uncorrelated loads provide the opportunity to consolidate servers
onto fewer physical machines. For example, by analyzing data
we gathered from production database systems run by Wikia.com,
Wikipedia, Second Life, and MIT CSAIL we found that a 5.5× to
17× reduction in the number of database servers is possible. This
kind of savings can reduce hardware expenses, lower the adminis-
trative burden, and consume less energy [10].

The process of consolidation involves analyzing the load char-
acteristics of multiple dedicated database servers and packing
their workloads into fewer physical machines, reducing the re-
sources consumed without changing the application performance.
Of course, consolidating servers is not new a new idea, and has
been the driver for widespread deployment of virtual machines
(VMs) in data centers. VMs have been particularly successful at
consolidating services that are not data-intensive, as well as test-
ing/development environments. However, as we will show in this
paper, consolidating databases is harder because DBMSs make
strong assumptions regarding the characteristics and performance
of the underlying physical system (e.g., that the buffer pool will
always be located in RAM) and are designed to use all the re-
sources they are given. This makes it hard for existing VMs or ad-
ministrators to estimate the true resource requirements of complex
DBMS software when trying to identify opportunities for consoli-
dation. Furthermore, the use of a VM per database leads to signifi-
cant redundancy (e.g., multiple independent disk operations for log
and data writes, multiple copies of the OS and DBMS, etc.). For
these reasons, we believe that VM-based consolidation is appropri-
ate only when hard isolation between databases is more important
than cost or performance.

We have identified two key challenges that need to be tack-
led when building a database consolidation system. First, tools
are needed to accurately monitor the resource utilization of each
database and to estimate the utilization of a combined set of
databases. Second, algorithms are needed to choose which
databases should be combined and placed on which hardware,
given hundreds of databases and physical resources to choose from.
This second challenge is difficult because, unlike many other soft-
ware systems, data-intensive computations are not easy to migrate
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between physical machines1, thus, common load balancing strate-
gies that perform migration in reaction to change in load cannot be
applied. As a result, stable assignments of databases to physical
machines that can run unchanged for days are more suitable.

This paper presents the design, implementation, and experimen-
tal evaluation of Kairos,2 a system that consolidates multiple OLTP
and Web database workloads on to a shared hardware infrastruc-
ture. These workloads are amongst the most common and prof-
ligate in enterprises, and are amenable to consolidation; handling
large, scan-intensive OLAP workloads requires different modeling
techniques, which are not discussed here.

Kairos begins with a set of independent database workloads run-
ning on dedicated servers. The output is a consolidation strategy
mapping workloads to physical nodes. After consolidation, each
physical node runs a single DBMS instance that processes trans-
actions on behalf of multiple databases, while meeting the appli-
cation’s performance requirements. In particular, in this paper, we
use the throughput of a database before consolidation as an im-
plicit service level agreement (SLA) on the performance the sys-
tem should provide after consolidation. Extending the system to
support latency-based SLAs would make an interesting future ex-
tension of our work.3

In this paper, we concentrate on scenarios where each logical
database places a moderate but non-trivial load on the underlying
system, which is what enables consolidation. We envision tens to
hundreds of databases being consolidated onto a single server—for
this reason we ignore the schema scalability problems that arise in
extreme multi-tenancy scenarios where thousands of almost inac-
tive database workloads with very similar schemas are consolidated
onto a single physical server. Such problems have been been inves-
tigated in depth by others [15, 3, 14].

This paper makes three principal contributions:
1. Techniques to estimate resource requirements, particularly

CPU, RAM and disk I/O, and models to estimate resource needs
for combined workloads.

2. A method to analyze the resource consumption for each
database over time in order to produce an assignment of databases
to physical machines. Using the resource models mentioned above,
we apply mixed-integer non-linear optimization to minimize the
number of required machines and balance their load, without
changing the perceived performance of the databases. The tech-
nique can be used to find the best assignment of databases to ma-
chines at time-scales ranging from hours to months.

3. Experiments on real-world load statistics from almost 200
production servers provided by Wikia.com, Wikipedia, Second Life
and our lab. We find consolidation ratios (i.e., the ratio of machines
used before and after consolidation) ranging from 5.5:1 to 17:1. We
compare our approach of one database instance per machine with
one virtual machine per workload, as well as one database process
per workload. We show up to 12× greater throughput and consoli-
dation ratios up to 3.3× higher when running TPC-C.

2. SYSTEM OVERVIEW
1This is particularly true for direct-attached storage, but remains
valid for storage-area networks (SANs). In fact, even with a SAN,
there are limits to the available I/O and to the number of physical
machines that can be connected.
2The Greek god of opportunity, which seems an apt name for a
system that relies on opportunism.
3One reason explicit SLAs were not our initial focus was that
we gathered from interviews with a few consultants and admin-
istrators that database-level SLAs were rarely used, compared to
application-level SLAs.
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Figure 1: The architecture of the Kairos system.

Kairos takes as input an existing (non-consolidated) collection of
database workloads, and a set of target physical machines on which
to consolidate those workloads. The source and target hardware
resources are allowed to overlap.

As shown in Figure 1 the key components are:
1. Resource Monitor: Kairos includes an automated statistics

collection tool that captures data from the DBMS and OS to esti-
mate the resource consumption of individual databases while run-
ning. This monitoring must be done without introducing any over-
head. Estimating the RAM required by a database is particularly
challenging and important; Kairos uses a simple, novel technique
to gauge the working set size of a database—see Section 3.

2. Combined Load Estimator: Given the hardware resource con-
sumption of individual databases running on dedicated hardware is
a starting point, the next step is to predict how they interact when
consolidated onto a single database server. Modeling the interac-
tion is especially challenging for disk I/O because disk throughput
is a complicated nonlinear function of the load, unlike with CPU or
RAM which basically combine linearly. To solve this problem for
the disk, we built a tool that creates a hardware-specific model of
a given DBMS configuration, allowing us to predict how arbitrary
workload mixes will perform on that configuration—see Section 4.

3. Consolidation Engine: Kairos uses nonlinear optimization
techniques to find assignments of databases onto physical resources
that: (i) minimize the number of machines required to support a
user’s workloads (ii) maximize load balance across the consoli-
dated servers, and (iii) guarantee that every workload is assigned
to a server without over-committing any server. Replication and
other requirements on workload placement are naturally handled
as additional constraints. The consolidation engine is described in
Section 5, with implementation details in Section 6.

One way to think of Kairos is as a “consolidation advisor,” which
produces a static placement that database administrators (DBAs)
can use to manually optimize their infrastructure. This procedure
can be repeated periodically. Ideally, this process should be au-
tomated. We are in the process of working on a system to seam-
lessly migrate databases to handle this, as part of our Relational
Cloud project [7]. For experiments in this paper, we manually im-
plemented the consolidation strategies recommended by Kairos.

We note two important caveats about Kairos:
1. Our implementation is primarily for MySQL, though we be-

lieve the ideas we present generalize to other DBMS servers. The
consolidation algorithm itself is more widely applicable, but the
resource models used are based principally on observations and
workload profiles from MySQL. In some cases, we have run ad-
ditional experiments with PostgreSQL, demonstrating a slightly
wider range of applicability of the ideas. To the extent possible,
we point out where other database systems might differ from what
we observed or where amendments to our techniques are required.
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Figure 2: Buffer Pool Gauging
2. Consolidation is likely to increase latency and recovery time,

because both are proportional to the load on the database system.
Database consolidation, regardless of the specific consolidation ap-
proach, may not be appropriate for applications that are very sensi-
tive to these effects.

3. RESOURCE MONITOR
The resource monitor queries the OS and DBMS running on each

machine for statistics about CPU, RAM, and disk I/O, buffer pool
utilization, and log flushes. This data is then used to predict the re-
source consumption of workloads if they are combined. For CPU,
this task is straightforward because the CPU utilization of a con-
solidated workload is the sum of the CPU loads of its each of its
constituent workloads, minus some small savings from reducing
the number of OS and DBMS instances.

For RAM, the statistics provided by the OS tend to overestimate
the actual resources required, as they can only report the total mem-
ory allocated to the database process, rather than the memory ac-
tually in use. This gap between the apparent and actual resource
utilization is one of the primary reasons why VM-based consoli-
dation does not work well with databases. This overestimate oc-
curs because DBMSs have traditionally been designed to be the
primary service on a machine, and thus attempt to use all available
resources, even if they do not need those resources to sustain the
same transactional throughput. For example, most databases will
fill the buffer pool with pages from disk, even if the working set for
the application is smaller than the buffer pool.

Thus, unless the application is actively accessing the entire buffer
pool at maximum throughput, most DBMSs can deliver identical
performance using less RAM. The challenge is accurately estimat-
ing the required RAM.

For disk, OS tools like iostat provide an easy way to es-
timate the disk I/Os of a single DBMS. The challenge is that
databases often use unused disk bandwidth to proactively com-
plete tasks—for example, when idle, MySQL/InnoDB aggressively
flushes dirty pages from the buffer pool to reduce recovery time.
Under most conditions, this flushing has no effect on transaction
throughput, and the degree of flushing or I/O will change when
multiple databases are combined together. We address the prob-
lem of estimating the I/O requirements of combined database work-
loads in the next section.

3.1 Buffer Pool Gauging for RAM Estimation
To operate efficiently, an OLTP DBMS needs to keep the work-

ing set of the application it is serving in main memory. Because it
is difficult to estimate the working set size, it is common for admin-
istrators to devote nearly all the available RAM on the machine to
the DBMS. Typical configurations include a very large buffer pool
and no OS file cache (suggested configuration for most DBMSs
including MySQL/InnoDB), or a combination of buffer pool and
OS file cache (suggested configuration for PostgreSQL). In both
configurations, after running for some time, all the memory acces-
sible to the DBMS, i.e., the entire buffer pool and potentially the
OS file cache, will be full of data pages. However, for many ap-

function bufferGauge(db, probeTable):
tableLength = 0
if db.tableExists(probeTable):

tableLength = db.execute("SELECT COUNT(*) from ?", probeTable)
else:

db.execute("CREATE TABLE ? (id int, dummy char(?))",
probeTable, PAGE_SIZE)

scanLength = INITIAL_SCAN_ROWS
while scanLength < MAX_SCAN_ROWS:

if tableLength < scanLength:
appendRows(db, probeTable, scanLength - tableLength)
tableLength = scanLength

for i in range(0, SCANS_PER_INSERT):
db.execute("SELECT COUNT(*) FROM ? WHERE id < ?",

probeTable, scanLength)
sleep(READ_WAIT_SECONDS)

scanLength += SCAN_INCREASE_COUNT

Figure 3: Probing Procedure

plications on modern servers with large amounts of RAM, the total
amount of memory far exceeds the actual working set at any point
in time—such over-provisioned applications are exactly those that
are amenable to aggressive consolidation. Thus the challenge is to
develop techniques that estimate the working set size of a database
to determine if two or more databases can be consolidated together.

The first step in our gauging process is to determine if the system
is over-provisioned. To do so we collect statistics about OS-level
disk reads, and DBMS-level buffer pool miss ratios. This informa-
tion tells us whether: (i) the working set fits in the buffer pool (the
miss ratio of the buffer pool is close to zero), (ii) the working set
does not fit in the buffer pool, but fits in the OS file cache (high
buffer pool miss ratio is but very few physical disk reads), or (iii)
the working set size exceeds the memory accessible to the DBMS,
causing it to serve data from disk (high buffer pool miss ratio and
many physical disk reads). Case (iii) indicates that memory is not
over-provisioned, and that the total RAM accessible to the DBMS
is actively used. n cases (i) and (ii), we need some facility to mea-
sure how much memory the database is actively using, either in the
OS file cache, as in case (ii), or in the buffer pool, as in case (i).

We have discussed this subject with a number of database ad-
ministrators who agree that it is common for OLTP/web databases
to be over-provisioned in real-world installations. This motivated
the design of a new technique, buffer pool gauging, to measure the
working set size of an application.

Our technique issues SQL queries to an unmodified DBMS and
observes internal statistics to estimate the database working set
size. Pseudocode for our gauging procedure is shown in Figure 3. It
works by creating an empty probe table in the database and grow-
ing it slowly, or reusing an existing probe table if we have per-
formed gauging on this DBMS before. While adding to the probe
table, we force the DBMS to keep its pages in the buffer pool by
querying it several times for every round of inserts. The contents
of the probe table and its query workload were chosen to force the
data to be memory-resident without introducing additional logging
or much CPU load: (i) the probe table has only a few large tu-
ples that fit exactly into the page size, (ii) the queries are simple
COUNT(*) aggregates over non-indexed fields, and (iii) there are
no updates. While growing this table, we monitor disk reads that
the DBMS performs using the statistics provided by the DBMS and
the OS. By slowly “stealing” buffer pool/file cache space and moni-
toring the number of pages the DBMS reads back from disk, we are
able to detect when we start to push useful pages out of the buffer
pool/file cache. This is because queries from the legitimate user’s
workload cause evicted pages to be read back from disk.

Determining how quickly to grow the probe table (the
SCANS_PER_INSERT parameter in Figure 3) is an interesting
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Figure 4: Disk Model for Our Experimental Configuration

question. On one hand, we want to to avoid affecting the over-
all query throughput of the system with our probing. On the other
hand, if we grow the probe table very slowly it may take a long time
to complete the gauging. In our current implementation, we used
a simple adaptive strategy that accelerates the speed at which we
inflate the probe table if there is no increase in the physical reads,
while slowing down when we see even a small increase in the aver-
age number of physical reads per seconds over a short time window
(the default in our tests is 10 seconds). In our tests the probe table
growth speed can be as high as several MB/sec or as low as tens of
KB/sec depending on the user workload. This allows us to avoid
degrading the throughput of the database while maximizing the rate
at which we can probe.

The frequency at which we query the probe table
(READ_WAIT_SECONDS in Figure 3) also requires a careful
balance: we need to guarantee that the probe table is queried
frequently enough for the buffer manager to keep data in RAM,
but we also want to avoid frequent queries that will only add to the
CPU overhead. In our experiments, querying the probe table once
every 1–10 seconds forces the DBMS to keep the probe data in
RAM, while keeping the CPU overhead to under 5%.

We implemented this technique on MySQL and PostgreSQL and
tested it using: (i) TPC-C, (ii) synthetic micro-benchmarks, and
(iii) a benchmark we derived from Wikipedia. In the following
discussion, we use TPC-C to discuss the effectiveness of our ap-
proach; in Section 7 we report a more thorough evaluation of the
technique’s effectiveness and impact on user performance.

Figure 2 shows the number of physical page reads/sec issued
by the DBMS as we grow the probe table for TPC-C, scaled to 5
warehouses. The two lines present: (i) MySQL with 953 MB of
buffer pool configured using O_DIRECT writes to bypass the OS
file cache and (ii) PostgreSQL, configured with 953 MB of shared
buffer, and using the OS file cache—filling the remaining 1GB of
RAM. In both cases, the working set fits in the buffer pool, and
we can “steal” up to 30%-40% of the buffer pool with a negligible
increase in buffer pool misses (and thus of disk I/O). This matches
our expected TPC-C working set size, which is around 120-150MB
per warehouse. This allows us to detect that identical performance
can be achieved by using a significantly smaller amount of RAM.
To verify that this could not be done properly by the OS, we looked
at Linux’s reported “active” pages, which and found that all of the
database buffer pool was shown to be active (1.7GB.) Thus, com-
pared to OS metrics, we reduced the memory requirement estimate
by almost a factor 2.8×. In Section 7, we report factors up to 7.2×
in tests using the Wikipedia benchmark.

Our current prototype performed well in our experiments using
MySQL and PostgreSQL on several workloads, and we thus be-
lieve this technique to be widely applicable. However, adapting it
to a wide range of production environments requires significant en-
gineering effort to deal with: (i) systems operating with multiple
buffer pools (e.g., DB2), (ii) DBMSs which dynamically adapting

buffer pool resources, (iii) cold databases with empty buffer pools,
or (iv) quickly changing working set sizes.

4. COMBINED LOAD ESTIMATOR
In this section, we address the problem of estimating the re-

source requirements of a combination of several database work-
loads. For CPU and RAM, this problem is straightforward (once
we have properly gauged the RAM requirements of each database):
for each time instant we can simply sum the CPU and RAM of indi-
vidual workloads being co-located. For disk, the problem is much
more challenging.

4.1 Combined Disk I/O Performance
Predicting the disk performance of a set of database workloads

is a hard problem, for a number of reasons:
1. DBMSs typically exploit unused disk bandwidth to flush dirty

buffer pool pages back to disk whenever the disk is underutilized.
Although this flushing is not required for correctness, it reduces re-
covery times, and may avoid mandatory writes due to future buffer
pool misses or log reclamation. While using idle resources is in
general a good strategy, it makes it very hard to estimate the mini-
mum I/O resources required to achieve certain performance.

2. We have observed that disk I/O throughput grows sub-linearly
with the workload size and the speed at which the DBMS is driven
by user requests: more update operations will hit the same page at
higher rates. Thus, each page that is written back includes writes
from many transactions. Additionally, for larger data-set sizes, the
ratio of log-writes to page flushes also changes.

3. Complex interactions between the DBMS, OS, and disk con-
troller make it hard to predict how sequential or random the com-
bination of a set of workloads will be.

4. There are a number of hardware and software configuration
parameters that influence the I/O throughput a system can achieve,
including group-commit timeouts, log-file sizes, workload speed
and size, dirty page flushing policies, the number and types of
disks, and caching in the OS and disk controller.

We can simplify the modeling problem because we are only con-
cerned with modeling several consolidated databases inside a single
DBMS instance, rather than the more complex problem of model-
ing several independent DBMSs running in one or more OSes.

A DBMS, regardless of the number of databases it hosts, coordi-
nates I/O between those databases by: i) combining log writes from
different workloads into a single sequential stream of log writes,
which also leverages group-commit4, and ii) delaying write-back
operations of dirty pages for all databases and performing them in
sorted order to reduce disk seeks. The result is a more efficient and
predictable estimate of I/O throughput.

However, the complex behavior of disk subsystems still makes
modeling the I/O requirements of a combined workload difficult.
There are two ways one might attempt to address this problem: i)
by building an analytical model of each component and algorithm
affecting disk performance in the DBMS, or ii) by treating the sys-
tem as a black box and experimentally deriving its transfer function.

In our experience the first strategy has two major drawbacks;
first, it requires a detailed understanding of many DBMS internals,
which are often not available for commercial products. Second,

4Some DBMSs support a separate log per database. This is useful
when there is a separate disk per log, in which case our model can
be applied to each disk independently. However, the general argu-
ment remains valid: the DBMS, even when writing multiple logs,
controls the scheduling of log writes, and thus produces more se-
quential disk access patterns than a general purpose I/O scheduler.



any change in the algorithms or parameters, OS settings, or hard-
ware requires modifying the model. We initially set out to build
such an analytical model, but found that it only applied to very
specific configurations. For these reasons, we adopted the second
approach. We built a tool that automates the process of collecting
experimental data from a live system and builds an empirical model
that captures disk behavior.

Given a DBMS/OS/hardware configuration, our tool tests the
disk subsystem with a controlled synthetic workload that sweeps
through a range of database working set sizes and user request
rates—this testing can be done as on offline process on a similar
configuration, and does not need to interfere with the production
database. The workload we use for this test is based on TPC-C, and
represents a general OLTP workload. Our workload generator al-
lows us to control both the working set size and rate at which rows
are updated. At each step, the tool records the rows updated per
second, the working set size in bytes, and the overall disk through-
put in bytes per second. The result is a map of the system response
to various degrees of load and working set sizes.

For the experiments in this section we collected over 7,000 data
points on a test machines equipped with two quad-core Xeon 2.66
GHz CPUs, 32 GB of RAM and a single 7200 RPM SATA drive,
running MySQL. The working set for the workload always fits in
RAM, since this is the common configuration for the OLTP envi-
ronments we are targeting.

Figure 4 shows a two-dimensional polynomial fit of this data—
the actual data points are not shown for the sake of clarity. The X-
axis shows the working-set size, the Y-axis shows the throughput
in updated tuples per second, and the contours indicates the bytes
written per second5. Increasing the rate at which rows are updated
results in a non-linear increase in the aggregate I/O. Somewhat sur-
prisingly, a larger working set also results in more I/O, again with
a non-linear relationship. This is because when updates are spread
throughout a larger working set, they are more likely to touch clean
pages, resulting in more total dirty pages per unit of time and caus-
ing more pages to be written back. The thick dashed line shows a
quadratic curve fit to the maximum disk throughput for each dataset
size (the maximum throughput points are plotted as black circles).
This is the point of disk-I/O saturation for our single disk config-
uration. Larger working set sizes yield lower throughput because
they require in average more pages to be written back to achieve the
same transaction throughput, and this experiment is disk bound.

This map is used to predict how multiple workloads will behave
when combined. After a large number of exploratory experiments
we observed (and later validated) that the combined throughput of
several workloads respects the following property when the work-
ing set of the consolidated databases fits into memory:

Running multiple databases, with aggregate working set size X,
at an aggregate row modification throughput (i.e., update, insert, or
delete rate) Y produces the same disk I/O request rate as running a
single workload with working set size X at update throughput Y.

This property holds for two reasons. First, in the steady state, no
data needs to be read from disk since we assume that all working
sets fit in memory. Second, the disk I/O is composed of: i) log
writes, whose throughput depends only on the update rate Y and
transaction log record size, which is roughly constant and small for
typical OLTP workloads, and ii) dirty pages being written back to

5We use a Least Absolute Residuals (LAR) second-order, polyno-
mial fit of the disk I/O to build the disk model shown by the contour
of Figure 4. We chose this model because it was accurate enough
in our experiment to accurately predict disk I/O rates and in our
consolidated workloads.

disk, which results in a similar mix of sorted random writes for
either the single or multiple database case.

Therefore, to predict the amount of disk I/O that will be used
when multiple workloads run inside a single DBMS, we monitor
each workload for a period of time, collecting the working set size
and the row update rate. By summing these parameters from all
workloads, and using a profile like that shown in Figure 4 for the
target host machine and database, we can predict how much disk
I/O the combined workload will need. To the purpose of consoli-
dation, it is only relevant to obtain a precise estimate for the high-
load portion of the curve, as this is the part required to verify that
the combined workload will not saturate the disk. Precision for
very low disk load is not nearly as important, since it will not in-
fluence consolidation decisions anyway. As we show in Section 7,
this model is significantly more accurate than the simple approach
of summing the disk I/O of a set of consolidated workloads, espe-
cially for high-load situations where it reduces the estimation error
by up to a factor of 32×.

In Section 7.5 we present experimental evidence that, for a
broad range of workloads, the profile is independent of number of
databases, database size and transaction types, and that it only de-
pends on: (i) row update rates, (ii) the working set size, and (iii) the
DBMS/OS/hardware configuration. This allows us to reuse profiles
across a broad spectrum of workloads.

In our implementation we profile a machine by scanning the
space of throughputs and working set sizes, testing each possi-
ble combination, this takes about two hours. We are investigating
ways to speed up this process, including sampling fewer points,
and building models incrementally. If a similar configuration has
already been profiled, a small number of data points should be suf-
ficient to adapt an existing profile.

5. CONSOLIDATION ENGINE
We now turn to the problem of determining which workloads

should be combined together. The goal is to find an assignment that
minimizes the number of machines, and that balances load across
those machines as evenly as possible, while avoiding resource over-
commitment. We model the problem of assigning workloads to
servers as a mixed-integer non-linear optimization problem. The
inputs to this problem are a list of machines with disk, memory, and
CPU capacities, and a collection of workload profiles specifying
the resource utilization of each resource as a time series sampled at
regular intervals. We also allow the user to specify replication re-
quirements for each workload, as well as pin individual workloads
to specific machines. Machine capacities and resource utilizations
are scaled appropriately to account for heterogeneous hardware.

Formally, we state the optimization problem as follows (these
functions have been simplified for the sake of presentation; addi-
tional details are in Section 6):

minimize
x

X
tj

(e(
P

i Cti∗xij) ∗ signum(
X

i

xij));

subject to ∀i
X

j

xij = Ri;

∀j maxt(
X

i

CPUti ∗ xij) < MaxCPUj ;

∀j maxt(
X

i

MEMti ∗ xij) < MaxMEMj ;

∀j diskModel(DISKti, xij) < MaxDISKj ;

. . .

additional placement constraints

∀i, jxij ∈ N ; 0 ≤ xij ≤ 1



where xij = 1 if workload i is assigned to server j and 0 oth-
erwise, and Ri is the number of replicas desired for workload
i. MaxCPUj , MaxMEMj , MaxDISKj , are the maximum
amount of CPU, RAM and, disk I/O available at server j (these
can be < 100% to allow for some headroom), and Cti is the time
series describing the utilization of resource C (CPU, RAM, disk)
for workload i at time t.

Objective function: The primary goal of the objective function
is to minimize the number of servers used for the consolidated
workloads; our formulation achieves this by using the signum
function, which is equal to 1 when its input is > 0 and 0 when
its input is 0 (signum of a vector v is a vector v′ where v′i =
signum(vi)).

This model guarantees that any solution using k− 1 servers will
have a lower objective function value than any k server solution—if
no workloads are assigned to a server the signum function is zero,
and the entire cost associated with that server is discarded. When at
least one workload is assigned to a server, we evaluate the server’s
contribution by weighting its resource utilization over time Cti us-
ing an exponential function6. This penalizes solutions that are un-
balanced. In fact, for any given number of servers, our objective
function has a minimum when the load is balanced. This corre-
sponds to solutions for which the risk of saturation is minimized.
The global minimum of our objective function is the most balanced
solution among those using the smallest number of servers. Fig-
ure 5 shows a rendering of our objective function as a projection
on a 2D plane, for a hypothetical scenario in which a 4-server so-
lution is the optimum. The figure also shows that the solver we use
increases the value of the objective function by a large factor when
constraints are violated, as shown by the spike on the left side for
less than 4 servers.

Constraints: The constraints guarantee the feasibility of the so-
lution. Because each xij can only be 0 or 1, and because the sum of
the xij values for a given i must equal Ri, we guarantee that each
workload i has Ri replicas assigned to different servers. The CPU,
RAM, and disk constraints guarantee that the combined load im-
posed on each server will not exceed the available resources at any
moment in time—thus avoiding saturation and overcommitment of
the servers. Notice that extending the set of constraints to include
other resources (e.g., network, disk space) is straightforward. In
this paper, we focus on CPU, RAM and disk I/O since these were
the most constrained in the real-world datasets we obtained. In par-
ticular, for CPU and RAM the constraints are a simple maximum of
the sum (matrix product) over time t, while for disk we use a non-
linear function based on the disk model discussed in Section 4.

Since we compute the combination of resources over time, we
introduce more non-linearities. However, this allows us to lever-
age time-dependent utilization patterns to achieve greater consoli-
dation. To this end, we assume that the future resource utilization of
a workload is strongly correlated with the past resource utilization.
We validate this assumption using real-world data in Section 7.5.
Replication: Our model also allows us to handle replication and
other workload placement issues by introducing additional con-
straints. The Ri parameter allows us to control many replicas of
each workload need to be placed; we operate under the conserva-
tive assumption that the replica will consume the same amount of
resources as the primary. However, if the input workloads are al-
ready replicated, we can use the actual load of the replicas.

In either case we need to guarantee that the consolidation engine
will not place replicas on the same physical node. This requirement
is achieved by adding constraints of the form: ∀j xi′j +xi′′j ≤ 1,
6We can use any linear combination of the resources, to favor bal-
ancing one resource over the other.
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Figure 5: Simplified rendering of the objective function

which enforces that at most one of the two workloads i′ or i′′ are
placed on a given target server j. Similarly we can support user
requirements that pin a certain workload i′ to a specific node j′, by
forcing xi′j′ = 1.
The cost of optimization: Since both our objective function and
some of the functions characterizing resource constraints are non-
linear, and because the overall optimization problem has several
local minima, we employ a general-purpose global optimization
algorithm called DIRECT [16] to find a solution. This makes the
search expensive, motivating us to find ways to improve the perfor-
mance of the consolidation engine by exploiting the characteristics
of our problem, as discussed in Section 6. We report the perfor-
mance of our solver in Section 7.5.

6. IMPLEMENTATION & OPTIMIZATION
We implemented the monitoring tools discussed in the earlier

sections in Java. They connect to the databases to be consolidated
via JDBC, and use SSH to collect OS-level statistics. The consoli-
dation engine is based on the implementation of the DIRECT algo-
rithm provided by the Tomlab [12] solver library for Matlab. The
data collection tools and output consolidation schemes have been
tested against various combinations of MySQL and PostgreSQL,
and various versions of Linux, running on x86 servers. We chose
these configurations because they are popular in production sys-
tems; in particular, MySQL+Linux is used in all the real-world
datasets we obtained.

Speeding up the consolidation engine: In the previous sec-
tion, we described the non-linear programming approach we took
to assign workloads to machines. The search for the global mini-
mum is hard due to: i) the presence of local minima, ii) the non-
linearity of the problem (forcing us to use a less efficient general-
purpose global solver), and iii) the large number of variables and
constraints. The key problem is the time spent by the solver consid-
ering solutions around local minima. This situation can be partially
improved by controlling a parameter of DIRECT that determines
the ratio of time spent in local versus global search. However,
this risks compromising the quality of the load assignment solution,
since not enough time is spent “polishing” the final solution around
the global minimum. To address this problem, we developed an
optimization that leverages our domain-specific knowledge.

The optimization attempts to reduce the number of variables by
bounding the number of servers K that the optimizer has to con-
sider. Suppose we can compute the minimum number of servers
K′ for which a valid solution exists. Then the solver can simply
discard any solution using more than K′ servers. While the value
of K′ is unknown, we can estimate reasonable lower and upper
bounds for it. The lower bound is provided by a single-resource
fractional solution that optimistically assumes that the workloads
can be assigned fractionally to machines, and that each resource can



be considered independently. With these assumptions, the lower
bound K can be computed as the maximum of the sum of each re-
source over time divided by the total available resources. A loose
upper-bound K is the number of machines currently in use; bet-
ter upper-bounds can be found by running cheap, greedy workload
allocation strategies.

Since upper and lower bounds are typically not too far apart, we
can binary search to determine the lowest value K′ of K that leads
to a viable solution. We start with our upper and lower bounds, and
run the optimizer with the midpoint number of servers. We either
terminate it as soon as it finds a valid solution, or consider K to
not be feasible if it runs longer than a configured time limit. We
then repeat on the upper or lower range, as appropriate, until we
determine K′. We then re-run the solver, giving it a maximum of
K′ servers to allocate to the workloads and we do not stop until
the optimal solution is found or a maximum optimization time is
reached. Limiting the number of possible servers reduces the num-
ber of variables, and thus explores a much smaller solution space
where many local minima have been discarded. This allows us to
parametrize the DIRECT algorithm in favor of local searches to in-
crease the quality of the final solution. In all the cases we tested,
this approach leads to significantly lower running times than a di-
rect application of the solver to the entire solution space—up to a
45× reduction in running time. Near-optimal solutions are found
in less than 8 minutes for problems with up to 100 workloads and
20 output servers.

Normalization and preprocessing of data: The above descrip-
tion simplifies the objective and constraint functions used in our
non-linear optimizer for the sake of presentation. There are several
additional details that we describe here for completeness. The first
additional complication is that we limit the argument of the expo-
nential objective function shown in Figure 5 to the [0, 1] interval
through normalization. This provides a function with a concave
shape, and with reasonable numeric limits for the optimizer. Also
we introduce weighting constants on each term in the linear com-
bination of resources inside the objective function. These weights
allow us to indicate that certain resources are more important to
be balanced, while still preferring solutions with more servers over
those with less less servers.

The CPU utilization reported by the Linux kernel is expressed
as a percentage of one CPU core. Thus a value of 250 means that
the system is using 2.5 cores. We first convert the percentages from
heterogeneous machines to a “standard” core by scaling based on
clock speed (ideally we would also scale based on CPU architec-
ture). Then we convert the utilization to a fraction of a “target”
machine. In our case, we assume the target machine has 12 cores.
Thus, a CPU utilization of 250% would become 2.5

12
= 0.208.

When aggregating CPU and RAM from multiple workloads, we
applied several other techniques:

CPU: Operating systems and databases each introduce some
CPU overhead. When consolidating multiple workloads, simply
summing the CPU utilization will double-count this portion of the
load, since each machine we measure is running a separate OS and
DBMS, while our consolidated solution has only one OS and one
DBMS. To address this, the function that sums CPU usage in our
consolidation engine removes a small, experimentally determined,
fraction of CPU-load for each consolidated workload.

RAM: Our RAM model allows users to input a user-defined
“scaling” factor that linearly scales down the measured RAM val-
ues. This can be used when buffer pool gauging techniques are not
applicable. This is the case for the historical statistics we obtained
from some of the organizations for this paper (Wikipedia, Second
Life). For these workloads, we estimated an approximate 30% sav-

ings would be possible, based on manually examining a few pro-
duction databases. Precisely determining this parameter requires
significant domain/application knowledge.

7. PERFORMANCE EVALUATION
In this section, we begin by demonstrating the accuracy of our

combined resource consumption models for CPU, RAM and disk,
and testing our consolidation engine on a small-scale deployment
in our lab. We then study the effectiveness of our consolidation al-
gorithm on resource utilization profiles from almost 200 production
servers from four organizations. Finally, we compare our approach
to VM-based consolidation and validate that past load is a good
predictor for future load.

7.1 Datasets and Experimental Setup
We experimented with two kinds of datasets: (i) Database Work-

loads, a series of synthetic and real workloads used to run fully
controlled experiments, and (ii) Real-World Load Statistics, a set
of historical statistics from production databases, used to verify the
applicability of our consolidation engine. We could not test our
entire suite of load profiling tools for these production databases,
because we were not given access to the machines, but only the
statistics that these organizations already collect.

Database Workloads: We used three main database workloads:
(i) a synthetic micro-benchmark, (ii) TPC-C, and (iii) a benchmark
derived from Wikipedia .

The synthetic micro-benchmark is used to verify that our re-
source models and consolidation engine function as expected. This
benchmark contains five independent workloads that each operate
on a single table, issuing a mix of updates and CPU-intensive se-
lects (using expensive cryptographic functions). These workloads
are designed so we can precisely control the amount of RAM, CPU
and disk I/O consumed. To achieve this, we vary the working set
size, the rate of selects, and the rate of updates. By adjusting these
parameters, we generated five different workloads. Each workload
has different time-varying patterns (e.g., sinusoidal, sawtooth, flat
with different amplitude and period). The goal was to validate that
Kairos properly predicts resource utilization for a very different set
of workloads very than the one used to devise the resource models
(based on TPC-C). It also tests the ability of the consolidation en-
gine to detect opportunity for consolidation when multiple resource
constraints make it challenging.

The second workload is based on TPC-C. We control the request
rate and the working set size (by changing the number of ware-
houses clients access). TPC-C represents a typical OLTP workload,
and we use it to validate the impact of consolidation on throughput
and latency.

The third workload is based on Wikipedia. This benchmark
models the actual workload on Wikipedia’s database servers. We
used the publicly available source code and data, along with a trace
containing 10% of 4 months of actual HTTP requests served by
Wikipedia’s data centers, obtained from the Wikimedia Founda-
tion. By combining this information with published statistics about
the effectiveness of the many caching layers in the application [23],
as well as private communication with Wikipedia engineers, we
built a simulator that generates a workload similar to that observed
by the backend MySQL database servers. We can scale this bench-
mark from a few tens of megabytes to the full 4 TB of the Wikipedia
database by sampling an appropriate subset. This workload is trans-
actional with 4 types of transactions, and models reads and edits of
articles, watch list management, user logins, IP blocks, and a num-
ber of other features. On average 92% of the queries are reads and
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Figure 6: Validating resource models and consolidation engine

about 8% are writes. Tuple sizes range from 70 bytes to 3.6 MB
(due to article text).

Real-World Load Statistics: We also validated our approach
using real data obtained data from four organization:
• Internal: data from 25 servers that support general purpose

computing from our lab’s IT staff. This workload is a combination
of production systems as well as test and development servers.
• Wikia.com: a collaborative publishing platform with over 34

database servers.
• Wikipedia: the popular free on-line encyclopedia. We ob-

tained monitoring data from their Tampa, Florida database cluster,
containing 40 database servers.
• Second Life: the data from 97 database servers powering the

on-line virtual world.
The statistics were stored in the rrdtool format, used by open

source monitoring tools such as Cacti, Ganglia, and Munin, and
as recorded by the respective organizations, and thus they do not
include our buffer pool gauging technique for accurately measuring
RAM utilization. The data includes CPU, RAM, and (for some
machines) disk I/O numbers as reported by Linux, averaged over
different time intervals—ranging from every 15 seconds for the last
hour to every 24 hours for the last year.

In our experiments, we use a 24 hour time window with samples
every 5 minutes—this was the best compromise between length
of observation and sampling rates (we obtained similar results on
weekly and monthly data). We normalized the CPU data by consid-
ering the number of cores per machine and the CPU-speed where
available. We have detailed CPU and RAM statistics for all ma-
chines, but we have disk I/O statistics for only a small subset. We
used the available data to estimate the disk utilization on other
nodes. All of the database servers in these datasets are running
MySQL, with the exception of 1 machine in the Internal dataset
running Postgres.

Hardware: The database servers used for our experiments have:
Server 1: two quad-core Intel Xeon 2.66 GHz E5430 CPUs, 32 GB
of RAM, and a single 7200 RPM SATA disk, and Server 2: two
Intel Xeon 3.2 GHz, 2GB of RAM, and a single 7200 RPM SATA
disk. Both machines run Linux 2.6.31 and MySQL 5.5.5-m3. Our
target machine for consolidation of the real-world dataset is a server
with 12 cores and 96 GB of RAM, which represents a higher-end
class of machines used by two of our data providers. This type of
server costs between USD $6,000–$10,000 at the time of writing,
depending on exact the configuration.

7.2 Resource Models and Consolidation
To test the accuracy of our monitoring techniques (Section 3) and

models for combined resource utilization (Section 4), as well as the
ability of our consolidation engine (Section 5) to discover consol-

idation opportunities even in difficult scenarios, we set up a con-
trolled experiment based on the five synthetic workloads described
above. We varied several parameters to generate workloads with
differing request rates, read/writes ratios, CPU/RAM/disk load, and
request patterns.

The workloads used in this test were chosen to barely fit within a
single physical machine, with individual resource utilization pat-
terns that make it hard to detect the opportunity for consolida-
tion due to the combination of constraints induced by multiple re-
sources. We first use our monitoring tools to collect load statistics
for individual workloads in isolation, then predict their combined
load and compute a consolidation strategy with our engine.

Kairos successfully predicts that the workloads can be allocated
together on a single server. We further validate the proposed con-
solidation strategy by physically co-locating the workloads and
running them, while monitoring the consolidated system’s latency
and throughput. As expected, the workloads fit within a single
physical server, yielding identical throughput and 95th percentile
latency increases of less than 1 ms.

For each resource (CPU, RAM, and disk), we recorded the esti-
mated and measured load over time. In Figure 6 we show the frac-
tion of the total resource used by the combined workload in each
time window estimated using our models (“our estimate”), mea-
sured on our server (“real”), and estimated using a straight sum of
the operating system metrics (“baseline”). The baseline represents
the simple approach to estimating the combined utilization. We
plot the Cumulative Distribution Function (CDF) for CPU and disk
and percentiles for RAM in Figure 6 (since the working set sizes
are constant and the CDF would be a simple vertical line). The
estimates for most heavily loaded windows are the most impor-
tant because, as discussed in Section 3, we need accurate estimates
when a resource is nearing 100% utilization.

This experiment shows the need for sophisticated resource mod-
els, and the accuracy of the models we proposed. In particular:

RAM: For these synthetic data sets, we control the actual work-
ing set sizes, which range between 512 MB and 2.5 GB, and are
constant over time. The figure shows that buffer pool gauging (Sec-
tion 3.1) accurately measures these working set sizes, while sum-
ming the OS statistics grossly overestimates the memory utilization
as almost 9× the actual value of 9 GB.

Disk I/O: the CDF of disk I/O shown in Figure 6 shows that our
disk model (Section 4.1) is very accurate at estimating the 75th-
100th percentile of load, as in this range, the “estimate” CDF is
very close to the “real” CDF. We have a maximum error of 800
KB/sec, while the baseline overestimates by 26MB/sec. However,
our approach is only marginally better than the baseline for the cen-
tral portion, and even worse than baseline in the bottom 30%. As
noted above, we are primarily concerned with estimating the load
on servers nearing 100% utilization—which is where the accuracy
might affect consolidation decisions. Although it is not important
to accurately estimate lower load percentiles in our application, if
doing so was valuable, one could create a hybrid model that uses
the baseline for percentiles below 30%.

CPU: our resource estimate factors out the fraction of CPU load
introduced by additional copies of the OS and DBMS that are not
needed when consolidated, and is thus able to reduce the estimation
error to about 6%, compared to over 15% for the baseline.

Consolidation effectiveness: We now validate the claim that the
consolidation strategies produced by our system are able to main-
tain the same performance as in the unconsolidated case. In Ta-
ble 1 we show experiments in which we ran different workloads
using TPC-C scaled to 2 and 10-warehouses and Wikipedia scaled
to 100K pages. We vary the intensity of the workloads by changing



Table 1: Impact of consolidation on Performance
Test id Dataset Throughput AVG Latency

(DBMS) w/o cons. w/ cons. w/o cons. w/ cons.
Consolidation recommended

1 TPC-C (10w) 50 tps 50 tps 76 ms 98 ms
(MySQL) Wikipedia (100K p) 100 tps 100 tps 12.7 ms 16 ms

2 TPC-C (10w) 250 tps 250 tps 113 ms 180 ms
(MySQL) Wikipedia (100K p) 500 tps 500 tps 43 ms 49 ms

3 5× TPC-C (10w) 5×100 tps 5×100 tps 77 ms 110 ms(MySQL)
4 8× TPC-C (10w) 8× 50 tps 8× 50 tps 76 ms 125.8 ms

(MySQL) Wikipedia (100K p) 50 tps 50 tps 12.7 ms 19 ms
Consolidation not recommended

5 5× TPC-C (10w) 5×400 tps 5× 177 tps 77 ms 426 ms(MySQL)
6 8× TPC-C (10w) 8× 100 tps 8×87 tps 77 ms 1180 ms

(MySQL) Wikipedia (100K p) 100 tps 86.2 tps 12.7 ms 1047 ms

the rate at which user requests are generated. For experiments 1–
4 our consolidation engine predicts that consolidation of the input
workloads is possible since: (i) the combined size of the measured
working sets fits in the buffer pool of our test machines, (ii) the
estimated CPU and Disk I/O are well within the 90% max utiliza-
tion. The results presented in the table show that the throughput
is unaffected, and that while there is some increase in latency, it
is only a few milliseconds. This is small compared to some nor-
mal fluctuations that occur. For example, when MySQL performs
a checkpoint in order to garbage collect log files, the average la-
tency can increase by as much as 150 ms. Experiments 5–6 show
cases in which our consolidation engine suggested that the work-
loads can not be consolidated, due to memory or disk I/O limits.
If we attempt to consolidate anyway the result is significantly de-
creased performance. Additionally, these experiments showed that
the loss in latency and throughput is approximately uniform across
the consolidated databases, suggesting that MySQL does a reason-
able job of dividing resources amongst a number of databases.

7.3 Consolidation with Real-World Data
In this set of experiments, we measure the consolidation ratios

and the load balance that our consolidation algorithm can achieve
on the Internal, Wikia.com, Wikipedia, and Second Life datasets.

Figure 7 shows the consolidation ratios that our system finds for
these four datasets, as well as for the combination of all workloads
merged together, named ALL. We compare with three alternative
strategies. The first is the current deployment without consolidation
(reference solution).

The second is a single-resource greedy bin-packing approach
(greedy). This algorithm considers only a single resource, and
places each workload in the most loaded server where it will fit us-
ing a first-fit bin packer. We then discard final solutions that violate
the constraints on the other resources. We repeat this packing once
for each resource, then take the solution that requires the fewest
servers.

The third is an idealized lower bound, in which we assume both
that workloads can be assigned as fractions of their load, and that
we can decouple usage of multiple resources (frac./idealized). As
shown in Figure 7, our approach matches the idealized lower bound
in almost every scenario. It consistently outperforms the greedy ap-
proach, achieving consolidation factors ranging from 5.5:1 to 17:1.
The greedy algorithm cannot be applied in all scenarios, because
it finds solutions that violate constraints on the other resources; in
these cases, no result is shown. It also tends to find highly imbal-
anced configurations, while Kairos finds well balanced workloads.

Since the consolidation ratios depend on the configuration of ma-
chines being consolidated onto, we also confirmed that our engine
substantially reduces the total resource requirements; for example,
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Figure 7: Consolidation Ratios for real-world datasets
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Figure 8: Aggregate CPU-load for 197 consolidated workloads.

in the ALL case, the original 197 servers has a total of 1419 cores
versus 252 cores in the consolidated configuration.

We also measured the balance of resource utilization across
servers. Figure 8 shows the average, 95th and 5th percentile of CPU-
utilization for the 21 consolidated servers in the “ALL” experiments
of Figure 7. The figure shows that the high and low utilizations are
close, suggesting we have achieved good balance, and that the 95th

percentile is far from the maximum utilization, suggesting low risk
of saturation. Note that perfect balance, where all servers are close
to the average load, is not achievable because: i) load cannot be as-
signed fractionally, and ii) there are multiple-resource constraints,
thus, the most balanced solution for one resource might not be vi-
able for other resources. Greedy solutions like the one we tested
lead to much higher imbalance with 95th percentile load close to
saturation on some machines.
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Figure 9: CPU load (error-bars) and RAM load (circles) for
197 real-world workloads consolidated on 21 servers.

Figure 9 shows the RAM and CPU utilization for these same 21
servers, showing the load across all time for each of the servers
(rather than the aggregate load across all servers.) The values for
each server are computed as the sum of the estimates of RAM
and CPU of each workload consolidated on that server. The cir-
cles show the maximum RAM consumption on each server, while
the CPU utilization is shown as a box plot. The top and bot-
tom of the boxes represent the 25th and 75th percentile, while
the line in the box indicates the median. The whiskers show
the minimal and maximal values, and any outliers are plotted as
points. Outliers are defined as points that are outside the interval
[q1 − 3

2
(q3 − q1), q3 + 3

2
(q3 − q1)], where q1 and q3 are the 25th

and 75th percentiles, respectively. This figure shows that there is
no easy way to further consolidate this load, since either RAM or
CPU prevents combining any two servers. The figure also shows
that the load is approximately balanced across the machines, and
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Figure 10: Hardware virtualization (fixed 20:1 consolidation)
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Figure 11: OS virtualization with varying consolidation levels

that we maintain a “margin of error” (set to 5% in this experiment)
even for the most heavily loaded servers—this accounts for poten-
tial workload changes. Note that 5% of the machine’s capacity
represents close to 50% of the load of a single database, due to the
nearly 10:1 consolidation ratio.

7.4 Comparing against DB-in-VM
In this section, we compare our database-aware consolidation to:

i) hardware virtualization, where each database is running on top
of its own operating system and virtual machine, using VMware
ESXi, and ii) OS virtualization, where multiple MySQL instances
run on a single Linux kernel, avoiding virtualization overhead (in
this case, we do not use any additional virtualization software, and
simply run each instance as a separate process.) We use multiple
TPC-C instances to simulate users’ workloads.

In order to investigate the performance of hardware virtualization
using VMware ESXi, we show the throughput for a fixed consolida-
tion level of 20 TPC-C instances in Figure 10. For this experiment,
we found that VMware’s RAM overcommitment feature made no
difference, so we show results without overcommitment. The left-
hand figure shows the throughput when all 20 workloads have the
same request rate. The right-hand figure shows a skewed work-
load where 19 databases are throttled to one request per second,
and 1 database runs at maximum speed. This shows that database
consolidation can handle both uniform and skewed workloads, and
yields better performance than hardware virtualization. Here, our
approach provides between 6× and 12× higher throughput.

There are many reasons for this large performance difference:
• Running the workloads in separate database servers incurs a

significant amount of redundant work for operations like log writes
and log reclamations. Our approach more effectively exploits
group-commit and coordinates disk requests across all databases,
rather than each database making independent decisions. This al-
lows our approach to achieve higher efficiency when using the disk.
• Our approach avoids allocating RAM for multiple copies of

DBMS (MySQL ≈190 MB) and the OS (≈64 MB). VMware’s
“transparent page sharing” feature is intended to reduce this prob-
lem, however, it only reclaimed small amount of duplicated RAM.
• The virtual machine approach leads to more frequent and more

expensive context switches, due to a higher number of processes.
• More effective utilization of CPU caches because more code

and data is shared between workloads.
To remove virtualization overhead, we switched to OS virtu-

alization, which is similar to container-based virtualization like
Linux Containers or Solaris Zones. We then re-ran the experiment

Table 2: Impact of Probing on User’s Perceived Performance
Target Throughput Throughput Latency Latency

request rate w/o gauging w/ gauging w/o gauging w/ gauging
200 tps 200 tps 200 tps 8.57 ms 11.4 ms
600 tps 600 tps 600 tps 15.0 ms 19.1 ms

1000 tps 1000 tps 1000 tps 19.5 ms 23.9 ms
MAX 1923 tps 1689 tps 28.3 ms 32.1 ms

with a wide range of consolidation ratios. Figure 11 compares the
throughput of OS virtualization and the Kairos consolidation sys-
tem. In this experiment, we vary the number of consolidated work-
loads running on one machine, then measure the maximum average
throughput achievable for each database, when the load is uniform
across all databases. Given a specific target throughput, our ap-
proach yields consolidation levels 1.9× to 3.3× higher than OS
virtualization. This translates to a significant reduction in hardware
costs. The limitations of the VM approach remain when consider-
ing OS-level virtualization.

Finally we note that our approach and a VM- or OS-based ap-
proaches are not totally orthogonal. It is possible to combine the
two approaches, running our consolidation inside a VM, to provide
both benefits of virtualization and the performance of our approach.

7.5 Additional Experiments
In this section, we show the results of additional experiments

that measure the overhead of our techniques, the independence of
our disk model from database size and workload type, and test our
assumptions regarding workload predictability.

Impact of buffer pool gauging on performance: In Section 3.1
we showed that Kairos can accurately estimate the size of the work-
ing set of a system on both MySQL and PostgreSQL. The case
we reported used a benchmark running at maximum speed on a
database with a 953 MB buffer pool, growing our probe rate by
136KB/sec on average. This allowed us to limit the impact on per-
formance to less than a 5% decrease in throughput and about 1ms
additional latency, even though the machine was running at satu-
ration. However, in typical scenarios we are going to face multi-
gigabyte buffer pools and less busy machines.

To test that our approach can quickly measure large buffer pools
without affecting performance, we tested a MySQL node with a 16
GB buffer pool. We ran the Wikipedia benchmark scaled to 100K
pages (67 GB of data and a 2.2 GB working set). We forced the
system to aggressively grow the probe table at an average rate of
about 6.4 MB/sec. This allowed us to determine the working set
size in about 37 minutes. Table 2 reports throughput and latency
achieved by the system with and without the gauging for different
user target request rates—we control user target requests rates by
throttling the generation of requests on the machines simulating the
Wikipedia clients.

The values reported correspond to the phase of gauging before
we start stealing valuable user pages, at which point we quickly
stop the probing and report the measured working set size. The
MAX experiment is a control case, in which we test the impact
of an aggressive gauging on a server that is already operating at
saturation—and is thus not likely to be of any interest for consoli-
dation.

Solver Performance: We also used the real world load statis-
tics to test the efficiency of the optimization discussed in Section 6.
The results vary with the dataset, but it consistently decreases the
runtime of the solver, with the maximum reduction occurring with
the Wikia.com dataset, where the runtime reduces by a factor of
45×—an equally consolidated and balanced solution is found in
44 sec instead of over 33 min in the unoptimized case. Running
times for all individual consolidations were below 8 minutes, with
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Figure 12: a) Database size does not matter, b) transaction type
does not matter

the exception of the ALL workload, for which lack of RAM in our
test machine prevented a proper measure (run-time heavily affected
by swapping). A possible way to scale our solutions to handle
tens of thousands of databases, consists in pre-grouping the input
workloads, and solve the multiple consolidation problems indepen-
dently. This might miss some small opportunity of consolidation
(workloads across groups will not be considered for co-location),
but it can be proven to scale indefinitely.

Disk Model Generality: In order to further validate our disk
model, we need to show that: (i) the database size does not sig-
nificantly affect disk I/O throughput (i.e., that a model learned on
a dataset of size X still applies if that dataset grows to something
much larger than X), and that (ii) the model is independent of the
specific transaction being run, and thus that we can build a single
disk model for a given DBMS/OS/hardware configuration without
regard to the specific database workload.

In Figure 12a, we experimentally validate our hypothesis that
the total database size does not influence the disk I/O throughput,
but that only the working set size matters. For this experiment, we
designed a synthetic test with a database of increasing size, and
a workload that only accesses a random 512 MB portion of the
database. The figure shows that the I/O throughput patterns for
different database sizes are nearly identical, thus confirming the
hypothesis that database size does not influence disk I/O.

In order to validated the hypothesis that the disk write through-
put does not depend on the specific set of transactions being exe-
cuted, but only on the overall number of rows updated per unit of
time, and the overall working set size, we pick two very different
workloads: TPC-C with 30 warehouses and Wikipedia with 100K
pages; these databases have comparable working set sizes of about
2.2GB. Figure 12b shows the disk write throughput in MB/sec for
a wide range of rows updated per second. It is clear that the two
workloads, despite their major differences, impose almost identical
pressure on the disk subsystem. Interestingly, while the average
disk I/O rate for each rows-updated/throughput point is quite simi-
lar, Wikipedia has a significantly higher variance, due to the wider
range of tuple sizes (from 70 bytes up to 3.68 MB). Note that the
TPC-C database size is about 4.8GB while the Wikipedia one is
over 67GB; this large difference further confirms the hypothesis
tested above: database size has no noticeable impact disk I/O.

Past Performance as a Predictor of Future: Our final experi-
ment tests whether past workload behavior is a good predictor of its
future behavior. This is crucial to ensure that our computed strategy
will satisfy the transaction throughput requirements over time.

We used our Wikipedia and Second Life largest real world load
datasets to validate our hypothesis that workloads are predictable.
We examine the total CPU utilization across all servers, as this
is typically the most volatile measure. We divided the data into
weekly periods, and used the average load of each time interval in
the first two weeks to predict the third week. Figure 13 shows that
this average is a good predictor, as errors in both experiments are
low with root mean squared error (RMSE) of about 25. This means
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Figure 13: Predicting CPU utilization

our predictions are 7-8% off from the actual load. This is a tolera-
ble error that can be accounted for by adding a small safety margin
and slightly over-provisioning the servers, as we did in our experi-
ments. Note that the Second Life data shows a combination of natu-
ral user utilization cycles and scheduled jobs—the late-night peaks
are due to a pool of 27 database machines performing snapshot op-
erations. This shows that prediction works any time of workload
that repeats over time. This indicates that, even for front facing
applications, it is not uncommon for the database machines to ex-
perience relatively stable workloads. For such applications, Kairos
consolidation strategies are likely to remain valid for long.

8. RELATED WORK
Significant research has been devoted to improve multi-tenancy

and support for mixed-workloads inside a single DBMS [5, 11].
These advances allows us to rely on the design of modern DBMSs
to deal with multiple workloads/tenants. In our experiments
MySQL and PostgreSQL divided resources fairly among multiple
databases, as long as the DBMS had sufficient hardware resources.

Database consolidation using virtual machines has been dis-
cussed as a way to reduce operational costs [17]. Soror et al. look at
configuring multiple VMs running on the same hardware to support
multiple database workloads [20]. Their work is suited to consol-
idating small number of workloads rather than the large numbers
we consider, or when other requirements (e.g., security) call for
a VM-based approach. Similarly, Soundararajan et al. presented
a system for determining how to partition VM resources between
multiple virtual machines on a single physical machine [21]. Their
work is complementary to ours, as it could be used to optimize the
assignment that is found by our system.

There have been several efforts to provide extreme levels of
multi-tenancy [15, 3, 14], aiming to consolidate tens of thousands
of nearly inactive databases onto a single server, especially when
those databases have identical or similar schemas. The key chal-
lenge of this prior work has been on overcoming DBMSs’ limi-
tations at dealing with extremely large numbers of tables and/or
columns. This is complementary to our work, as our approach can
run into similar internal DBMS limitations. However, our work-
loads do not typically share any data or schemas.

Another relevant area of research is dynamic resource allocation
in data centers [6, 4, 24]. Such work shares some of our goals, but is
aimed at consolidating unpredictable stateless web workloads, with
a focus on quick response to load changes and latency guarantees.
This work combines sophisticated predictive models and dynamic
reactive components, but ignores the issues that arise when migrat-
ing and consolidating data-intensive services like databases.

Gulati et al. analyze disk I/O for several types of workloads, pre-
senting results on combining random and sequential I/O patterns
that are consistent with our observations [9]. They also present a
disk model that is not database specific, although more complex
than ours [8]. Their evaluation only tests synthetic workloads. Oz-
men et al. present a model that predicts the disk I/O created by a
given database workload, without needing to measure the produc-



tion system [19]. Such a system is complementary to our work, as
it reduces the need for detailed runtime statistics. There has been
significant work on modeling of disk performance, usually from a
non-database specific perspective. For example, Lee and Katz [18]
present an analytical model for estimating the throughput of a com-
bined load (consisting of a mixture of sequential and random I/Os)
on a disk array; Varki et al [25] address a similar problem but build
a model that includes caching and other effects.

Our use of a growing database table to put pressure on the buffer
pool is somewhat similar VMware’s “balloon driver” [26], which
add memory pressure to force a guest OS to free unused or infre-
quently used pages. VMWare, however, doesn’t use this technique
to estimate RAM usage, but rather to force the OS to evict pages
to make room for a new virtual machine. Furthermore, this the
balloon driver runs inside of a guest OS, rather than inside of the
DBMS. Such an OS-level technique is unlikely to work well, since
the OS has no good way to choose which buffer pool pages to swap
to disk, and may often choose pages containing data actively used.

Finally in the area of distributed database systems, substantial
research has looked at the problem of allocating data to servers to
optimize response-time or throughput [2, 22]. This work has dif-
ferent goals, since it aims at obtaining performance and scalability
from a fixed set of machines, rather than consolidating them into
the minimal number of physical nodes while meeting user perfor-
mance expectations. Similarly, Aboulnaga et al. tackled the prob-
lem of “packing” map-reduce tasks on a cluster of machines, but the
batch-oriented nature of the problem makes it significantly differ-
ent from our scenario, leading to scheduling-oriented solutions [1].

Existing commercial systems [13] provide mechanisms for con-
solidation, but leave to the administrator the costly and error-prone
task of devising a consolidation strategy. Our work automates the
decision process, enabling larger scale and better consolidation.

9. CONCLUSION
In this paper, we presented a consolidation scheme for over-

provisioned database servers; our approach allows enterprises to
dramatically reduce the number of physical servers required to
run their database infrastructure. We developed new monitoring
techniques and resource models, as well as a non-linear mixed-
integer programming approach to workload allocation, that ana-
lyze a database deployment and consolidate it. Our results, which
show consolidation factors between 5.5:1 and 17:1, are based on
experiments with synthetic and real-world data-sets from produc-
tion servers running at MIT CSAIL, Wikia.com, Wikipedia, and
Second Life. In addition to achieving high consolidation factors,
our algorithms balance load across servers without affecting the
throughput of the consolidated workloads. Additionally, we show
that existing virtual machine technologies are not nearly as effec-
tive as our techniques at consolidating database workloads.
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