
Coexisting scheduling policies boosting I/O

Virtual Machines

Dimitris Aragiorgis, Anastassios Nanos, and Nectarios Koziris

Computing Systems Laboratory,
National Technical University of Athens,

{dimara,ananos,nkoziris}@cslab.ece.ntua.gr

Abstract. Deploying multiple Virtual Machines (VMs) running various
types of workloads on current many-core cloud computing infrastructures
raises an important issue: The Virtual Machine Monitor (VMM) has to
efficiently multiplex VM accesses to the hardware. We argue that altering
the scheduling concept can optimize the system’s overall performance.
Currently, the Xen VMM achieves near native performance multiplexing
VMs with homogeneous workloads. Yet having a mixture of VMs with
different types of workloads running concurrently, it leads to poor I/O
performance. Taking into account the complexity of the design and im-
plementation of a universal scheduler, let alone the probability of being
fruitless, we focus on a system with multiple scheduling policies that co-
exist and service VMs according to their workload characteristics. Thus,
VMs can benefit from various schedulers, either existing or new, that are
optimal for each specific case.
In this paper, we design a framework that provides three basic coex-
isting scheduling policies and implement it in the Xen paravirtualized
environment. Evaluating our prototype we experience 2.3 times faster
I/O service and link saturation, while the CPU-intensive VMs achieve
more than 80% of current performance.

1 Introduction

Currently, cloud computing infrastructures feature powerful VM contain-
ers, that host numerous VMs running applications that range from CPU–
/ memory–intensive to streaming I/O, random I/O, real-time, low-latency
and so on. VM containers are obliged to multiplex these workloads and
maintain the desirable Quality of Service (QoS), while VMs compete for
a time-slice. However, running VMs with contradicting workloads within
the same VM container leads to suboptimal resource utilization and, as a
result, to degraded system performance. For instance, the Xen VMM [1],
under a moderate degree of overcommitment (4 vCPUs per core), favors
CPU–intensive VMs, while network I/O throughput is capped to 40%.

In this work, we argue that by altering the scheduling concept on a
busy VM container, we optimize the system’s overall performance. We

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24066456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

propose a framework that provides multiple coexisting scheduling poli-
cies tailored to the workloads’ needs. Specifically, we realize the following
scenario: the driver domain is decoupled from the physical CPU sets that
the VMs are executed and does not get preempted. Additionally, VMs are
deployed on CPU groups according to their workloads, providing isolation
and effective resource utilization despite their competing demands.

We implement this framework in the Xen paravirtualized environ-
ment. Based on an 8-core platform, our approach achieves 2.3 times faster
I/O service, while sustaining no less than 80% of the default overall CPU-
performance.

2 Background

To comprehend how scheduling is related to I/O performance, in this
section we refer shortly to the system components that participate in an
I/O operation.

Hypervisor The Xen VMM is a lightweight hypervisor that allows multi-
ple VM instances to co-exist in a single platform using ParaVirtualization
(PV). In the PV concept, OS kernels are aware of the underlying virtu-
alization platform. Additionally, I/O is handled by the driver domain, a
privileged domain having direct access to the hardware.

Breaking down the I/O path Assuming for instance that a VM ap-
plication transmits data to the network, the following actions will occur:
i) Descending the whole network stack (TCP/IP, Ethernet) the netfront
driver (residing in the VM) acquires a socket buffer with the appropriate
headers containing the data. ii) The netfront pushes a request on the ring
(preallocated shared memory) and notifies the netback driver (residing in
driver domain) with an event (a virtual IRQ) that there is a pending send
request that it must service. iii) The netback pushes a response to the
ring and en-queues the request to the actual driver. iv) The native device
driver, who is authorized to access the hardware, eventually transmits the
packet to the network.

In PV, multiple components, residing in different domains, take part
in an I/O operation (frontend: VM, backend–native driver: driver do-
main). The whole transaction stalls until pending tasks (events) are ser-
viced; therefore the targeted vCPU has to be running. This is where the
scheduler interferes.

The Credit Scheduler Currently, Xen’s default scheduler is the Credit
scheduler and is based on the following algorithm: (a) Every physical core

has a local run-queue of vCPUs eligible to run. (b) The scheduler picks the
head of the run-queue to execute for a time-slice of 30ms at maximum. (c)
The vCPU is able to block and yield the processor before its time-slice
expires. (d) Every 10ms accounting occurs which debits credits to the
running domain. (e) New allocation of credits occurs when all domains
have their own consumed. (f) A vCPU is inserted to the run-queue after
all vCPUs with greater or equal priority. (g) vCPUs can be in one of
4 different priorities (ascending): IDLE, OVER, UNDER, BOOST. A
vCPU is in the OVER state when it has all its credits consumed. BOOST
is the state when one vCPU gets woken up. (h) When a run-queue is
empty or full with OVER / IDLE vCPUs, Credit migrates neighboring
UNDER / BOOST vCPUs to the specific physical core (load-balancing).

Credit’s Shortcomings: As a general purpose scheduler, Credit as ex-
pected falls shorts in some cases. If a VM yields the processor before
accounting occurs, no credits are debited [7]. This gives the running VM
an advantage over others that run for a bit longer. BOOST vCPUs are
favored unless they have their credits consumed. As a result, in the case
of fast I/O, CPU-bound domains get neglected. Finally CPU-bound do-
mains exhaust their time-slice and I/O-bound domains get stalled even if
data is available to transmit or receive.

3 Motivation

3.1 Related Work

Recent advances in virtualization technology have minimized overheads
associated with CPU sharing when every vCPU is assigned to a physical
core. As a result, CPU–bound applications achieve near-native perfor-
mance when deployed in VM environments. However, I/O is a completely
different story: intermediate virtualization layers impose significant over-
heads when multiple VMs share network or storage devices [6]. Numerous
studies present significant optimizations on the network I/O stack using
software [5,8] or hardware approaches [3].

These studies attack the HPC case, where no CPU over-commitment
occurs. However, in service-oriented setups, vCPUs that belong to a vast
number of VMs and run different types of workloads, need to be multi-
plexed. In such a case, scheduling plays an important role.

Ongaro et al. [7] examine the Xen’s Credit Scheduler and expose its
vulnerabilities from an I/O performance perspective. The authors evalu-
ate two basic existing features of Credit and propose run-queue sorting

according to the credits each VM has consumed. Contrary to our ap-
proach, based on multiple, co-existing scheduling policies, the authors
in [7] optimize an existing, unified scheduler to favor I/O VMs.

Cucinotta [2] in the IRMOS1 project proposes an real-time sched-
uler to favor interactive services. Such a scheduler could be one of which
coexist in our concept.

Finally, Hu et al. [4] propose a dynamic partitioning scheme using VM
monitoring. Based on run–time I/O analysis, a VM is temporarily migrat-
ed to an isolated core set, optimized for I/O. The authors evaluate their
framework using one I/O–intensive VM running concurrently with sever-
al CPU–intensive ones. Their findings suggest that more insight should
be obtained on the implications of co-existing CPU– and I/O– intensive
workloads. Based on this approach, we build an SMP-aware, static CPU
partitioning framework taking advantage of contemporary hardware. As
opposed to [4], we choose to bypass the run-time profiling mechanism,
which introduces overhead and its accuracy cannot be guaranteed.

Specifically, we use a monitoring tool to examine the bottlenecks
that arise when multiple I/O–intensive VMs co-exist with multiple CPU–
intensive ones. We then deploy VMs to CPU-sets (pools) with their own
scheduler algorithm, based on their workload characteristics. In order to
put pressure on the I/O infrastructure, we perform our experiments in a
modern multi-core platform, using multi-GigaBit network adapters. Ad-
ditionally, we increase the degree of overcommitment to apply for a real-
world scenario. Overall, we evaluate the benefits of coexisting scheduling
policies in a busy VM container with VMs running various types of work-
loads. Our goal is to fully saturate existing hardware resources and get
the most out of the system’s performance.

3.2 Default Setup

In this section we show that, in a busy VM container, running mixed
types of workloads leads to poor I/O performance and under-utilization
of resources.

We measure the network I/O and CPU throughput, as a function of
the number of VMs. In the default setup, we run the vanilla Xen VMM,
using its default scheduler (Credit) and assign one vCPU to the driver
domain and to each of the VMs. We choose to keep the default CPU
affinity (any). All VMs share a single GigaBit NIC (bridged setup).

1 More information is available at: http://www.irmosproject.eu

To this end, we examine two separated cases:

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 O

ve
ra

ll
P

er
fo

rm
an

ce

Number of VMs

 CPU

 I/O

(a) CPU or I/O VMs (exclusive)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 O

ve
ra

ll
P

er
fo

rm
an

ce

Number of VMs

 CPU

 I/O

(b) CPU and I/O VMs (concurrently)

Fig. 1. Overall Performance of the Xen Default Case

Exclusive CPU– or I/O–intensive VMs. Figure 1(a) shows that the
overall CPU operations per second are increasing until the number of
vCPUs becomes equal to the number of physical CPUs. This is expected
as the Credit scheduler provides fair time-sharing for CPU intensive VMs.
Additionally, we observe that the link gets saturated but presents minor
performance degradation in the maximum degree of overcommitment as a
result of bridging all network interfaces together while the driver domain
is being scheduled in and out repeatedly.

Concurrent CPU– and I/O–intensive VMs. Figure 1(b) points out
that when CPU and I/O VMs run concurrently we experience a significant
negative effect on the link utilization (less than 40%).

4 Co-existing scheduling polices

In this section we describe the implementation of our framework. We
take the first step towards distinctive pools, running multiple schedulers,
tailored to the needs of VMs’ workloads and evaluate our approach of
coexisting scheduling policies in the Xen virtualization platform.

In the following experiments we emulate streaming network traffic
(e.g. stream/ftp server) and CPU/Memory-bound applications for I/O–
and CPU–intensive VMs respectively using generic tools (dd, netcat and
bzip2). We measure the execution time of every action and calculate the
aggregate I/O and CPU throughput. To explore the platform’s capabili-
ties we run the same experiments on native Linux and evaluate the utiliza-
tion of resources. Our results are normalized to the maximum throughput
achieved in the native case.

Testbed Our testbed consists of an 8-core Intel Xeon X5365 @ 3.00
GHz platform as the VM container, running Xen 4.1-unstable with linux-
2.6.32.24 pvops kernel , connected back–to–back with a 4-core AMD Phe-
nom @ 2.3 GHz via 4 Intel 82571EB GigaBit Ethernet controllers.

4.1 Monitoring tool

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

a b a b a b a b

m
se

c
lo

st
 p

er
 M

B
 tr

an
sm

itt
ed

2 VMs 6 VMs 16 VMs 30 VMs

dom0−>domU
domU−>dom0

Fig. 2. Monitoring tool: msecs lost per MB
transmitted: (a) default setup; (b) 2 pools
setup

To investigate the apparent sub-
optimal performance discussed in
Section 3.2, we build a monitoring
tool on top of Xen’s event channel
mechanism that measures the time
lost between event handling (Sec-
tion 2). Figure 2 plots the delay
between domU event notification
and dom0 event handling (dark
area) and vice-versa (light area).
The former includes the outgoing

traffic, and the latter the acknowledges of driver domain and the incom-
ing traffic (e.g. TCP ACK packets). We observe a big difference between
both directions; this is debited to the fact that the driver domain gets
more often awaken due to I/O operations of other domains, so it is able
to batch work. Most important the overall time spent is increasing pro-
portionally to the degree of over-commitment. This is an artifact of vCPU
scheduling: the CPU-bound vCPUs exhaust their time-slice and I/O VMs
get stalled even if data is available to receive or transmit. Moreover I/O
VMs, including driver domain who is responsible for the I/O multiplexing
get scheduled in and out, eventually leading to poor I/O performance.

4.2 The driver domain Pool

To eliminate the effect discussed in Section 4.1, we decouple the driver
domain from all VMs. We build a primitive scheduler that bounds every
newly created vCPU to an available physical core; this vCPU does not
sleep and as a result does not suffer from unwanted context switch. Taking
advantage of the pool concept of Xen, we launch this no-op scheduler on
a separate pool running the driver domain. VMs are deployed on different
pool and suffer the Credit scheduler policy.

Taking a look back at Figure 2, we observe that the latency between
domU and dom0 (dark area) is eliminated. That is because dom0 never
gets preempted and achieves maximum responsiveness. Moreover the time
lost in the other direction (light area) is apparently reduced; more data
rate is available and I/O domains can batch more work.

Figure 3 plots the overall performance (normalized to the maximum
observed), as a function of concurrent CPU and I/O VMs. The first bar
(dark area) plots the default setup (Section 3.2), whereas the second

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
an

ce
)

VMs (I/O+CPU)

default
2 pool
3 pool

(a) CPU Overall Performance

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
ac

e
)

VMs (I/O+CPU)

default
2 pool
3 pool

(b) I/O Overall Performance

Fig. 3. Overall Performance using Pools: default; 2 pools; 3 pools

one (light area) plots the approach discussed in this Section. Figure 3(b)
shows that even though the degree of over-commitment is maximum (4
vCPUs per physical core) our framework achieves link saturation. On
the other hand, CPU performance drops proportionally to the degree of
over-commitment (Figure 3(a)).

The effect on CPU VMs is attributed to the driver domain’s ability
to process I/O transactions in a more a effective way; more data rate is
available and I/O VMs get notified more frequently; according to Credit’s
algorithm I/O VMs get boosted and eventually steal time-slices from the
CPU VMs.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

%
 o

f n
at

iv
e

m
ax

im
um

Number of CPU

 CPU

 I/O

Fig. 4. Overall Performance vs. Physical
Resources Distribution to VM pool

Trying to eliminate the nega-
tive effect to the CPU–intensive
VMs, we experiment with physical
resources distribution. Specifically
we evaluate the system’s overall
performance when allocating a dif-
ferent number of physical CPUs to
the aforementioned second pool (Fig. 4). We observe that with one CPU,
the GigaBit link is under-utilized, whereas with two CPUs link satura-
tion is achieved. On the other hand, cutting down resources to the CPU-
intensive VMs does not have a negligible effect; in fact it can shrink up
to 20%.

4.3 Decoupling vCPUs based on workload characteristics

Taking all this into consideration we obtain a platform with 3 pools: pool0
with only one CPU dedicated to the driver domain with the no-op sched-

uler; pool1 with 2 CPUs servicing I/O intensive VMs (running potentially
an I/O–optimized scheduler); and pool2 for the CPU-intensive VMs that
suffer the existing Credit scheduling policy. Running concurrently a large
number of VMs with two types of workloads we experience GigaBit satu-
ration and 62% CPU utilization, as opposed to 38% and 78% respectively
in the default case (Fig. 3, third bar).

Misplaced VM All other

CPU -17% -1.3%

I/O +4% -0.4%

Table 1. VM Misplacement effect to indi-
vidual Performance

In addition to that, we point
out that there is no overall benefit
if a VM finds itself in the ”wrong”
pool, albeit a slight improvement
of this VM’s I/O performance is
experienced (Table 4.3). This is an
artifact of Credit’s fairness discussed in previous sections (Section 4.2 and
3.2).

5 Discussion

5.1 Credit vulnerabilities to I/O Service

The design so far has decoupled I/O– and CPU–intensive VMs achieving
isolation and independence, yet a near optimal utilization of resources.
But is the Credit scheduler ideal for multiplexing only I/O VMs? We
argue that slight changes can benefit I/O service.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

4,000 800 400 200 40

Li
nk

 U
til

iz
at

io
n

%

Packet Size in Bytes

30ms
3ms

Fig. 5. Time-slice: 30ms vs 3ms

Time-slice allocation: Having
achieved isolation between differ-
ent workloads we now focus on
I/O pool (pool1). We deploy this
pool on the second CPU-package
and reduce the time-slice from
30ms to 3ms (accounting occurs
every 1ms). We observe that I/O
throughput outperforms the previ-
ous case, despite the decreasing packet-size (Fig. 5). Such a case, differs
from the streaming I/O workload scenario (e.g. stream/ftp server) dis-
cussed so far (Section 4), and can apply to a random I/O workload (such
as busy web server).

Anticipatory Concept: Moreover we propose the introduction of an an-
ticipatory concept to the existing scheduling algorithm; for the implemen-
tation multi-hierarchical priority sets are to be used, while the scheduler,
depending the previous priority of the vCPU, adjust it when gets woken
up, sleeps, or gets credits debited. Thus, the vCPU will sustain the boost

state a bit longer and take advantage the probability of transmitting or
receiving data in the near future.

5.2 Exotic Scenarios

In this section we argue that in the case of multiple GigaBit NICs, a uni–
core driver domain is insufficient. As in Section 5.1, we focus on pool1
(I/O). This time we compare the link utilization of 1-4 x Gbps, when the
driver domain is deployed on 1,2,3 or 4 physical cores (Fig. 6).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1Gbps 2Gbps 3Gbps 4Gbps

Li
nk

 U
til

iz
at

io
n

%

1 VCPU
#VCPU=#NICs

Fig. 6. Multiple GigaBit NICs

To exploit the SMP charac-
teristics of our multi-core plat-
form, we assign each NIC’s inter-
rupt handler to a physical core, by
setting the smp affinity of the
corresponding irq. Thus the NIC’s
driver does not suffer from inter-
rupt processing contention. How-

ever, we observe that after 2Gbps the links do not get saturated. Pre-
liminary findings suggest that this unexpected behavior is due to Xen’s
network path. Nevertheless, this approach is applicable to cases where
the driver domain or other stub-domains have demanding responsibilities
such as multiplexing accesses to shared devices.

5.3 Dynamic instead of static

After having proved that the coexisting scheduling policies can benefit
I/O performance and resources utilization we have to examine how such
a scenario can be automated or adaptive. How to implement the VM
classification and the resources partitioning? Upon this we consider the
following design dilemma; the profiling tool should reside in the driver do-
main or in the Hypervisor? The former is aware of the I/O characteristics
of each VM while the latter can keep track of their time-slice utilization.
Either way such a mechanism should be lightweight and its actions should
respond to the average load of the VM and not to random spikes.

6 Conclusions

In this paper we examine the impact of VMM scheduling in a service
oriented VM container and argue that co-existing scheduling policies can
benefit the overall resource utilization when numerous VMs run contra-
dicting types of workloads. VMs are grouped into sets based on their

workload characteristics, suffering scheduling policies tailored to the need
of each group. We implement our approach in the Xen virtualization plat-
form. In a moderate overcommitment scenario (4 vCPUs/ physical core),
our framework is able to achieve link saturation compared to less than
40% link utilization, while CPU-intensive workloads sustain 80% of the
default case.

Our future agenda consists of exploring exotic scenarios using differ-
ent types of devices shared across VMs (multi-queue and VM-enabled
multi-Gbps NICs, hardware accelerators etc.), as well as experiment with
scheduler algorithms designed for specific cases (e.g. low latency appli-
cations, random I/O, disk I/O etc.). Finally our immediate plans are
to implement the anticipatory concept and the profiling mechanism dis-
cussed in the previous section.

References

1. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian A. Pratt, and Andrew Warfie ld. Xen and the Art of Virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM.

2. Tommaso Cucinotta, Dhaval Giani, Dario Faggioli, and Fabio Checconi. Provid-
ing performance guarantees to virtual machines using real-time scheduling. In 5th
Workshop on Virtualization in High-Performance Cloud Computing (VHPC ’10),
Naples-Ischia, Italy, 2010.

3. Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV networking in Xen: architecture,
design and implementation. In WIOV’08: Proceedings of the First conference on
I/O virtualization, pages 10–10, Berkeley, CA, USA, 2008. USENIX Association.

4. Yanyan Hu, Xiang Long, Jiong Zhang, Jun He, and Li Xia. I/o scheduling model of
virtual machine based on multi-core dynamic partitioning. In IEEE International
Symposium on High Performance Distributed Computing, pages 142–154, 2010.

5. Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing network virtu-
alization in Xen. In ATEC ’06: Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, pages 2–2, Berkeley, CA, USA, 2006. USENIX
Association.

6. Anastassios Nanos, Georgios Goumas, and Nectarios Koziris. Exploring I/O Vir-
tualization Data paths for MPI Applications in a Cluster of VMs: A Networking
Perspective. In 5th Workshop on Virtualization in High-Performance Cloud Com-
puting (VHPC ’10), Naples-Ischia, Italy, 2010.

7. Diego Ongaro, Alan L. Cox, and Scott Rixner. Scheduling i/o in virtual machine
monitors. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments, VEE ’08, pages 1–10, New York, NY,
USA, 2008. ACM.

8. Kaushik Kumar Ram, Jose Renato Santos, and Yoshio Turner. Redesigning xen’s
memory sharing mechanism for safe and efficient I/O virtualization. In WIOV’10:
Proceedings of the 2nd conference on I/O virtualization, pages 1–1, Berkeley, CA,
USA, 2010. USENIX Association.

	Coexisting scheduling policies boosting I/O Virtual Machines

