
Resource Allocation Policy
for

Virtualized Network Interfaces

Shashikant Gupta

Bojja Rahul Reddy

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Resource Allocation Policy
for

Virtualized Network Interfaces

A THESIS SUBMITTED IN

May 2013

TO THE DEPARTMENT OF

Computer Science and Engineering

OF

National Institute of Technology Rourkela

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

The Degree of Bachelor of Technology

BY

Shashikant Gupta (Roll No. 109cs0631)

Bojja Rahul Reddy (Roll No. 109cs0654)

UNDER THE SUPERVISION OF

Prof. Pabitra Mohan Khilar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

Prof. Pabitra Mohan Khilar

May 13, 2013

Certificate

This is to certify that the work in the thesis entitled Resource Allocation Policy

for Virtualized Network Interfaces by Shashikant Gupta and Bojja Rahul Reddy,

bearing roll numbers 109cs0631 and 109cs0654, is a record of an original research

work carried out by them under my supervision and guidance in partial fulfillment of

the requirements for the award of the degree of Bachelor of Technology in Computer

Science and Engineering. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Prof. Pabitra Mohan Khilar

Acknowledgment

We would like to express our sincere gratitude to our Project Supervisor,

Professor Pabitra Mohan Khilar, Department of Computer Science and Engineering,

whose invaluable guidance and support throughout the period of this work made

the successful completion of this project possible. But for his readiness for advices

at all times, his educative comments and inputs, his concern and assistance even

with practical things, we could not have completed our project within the stipulated

period of time. We would also like to thank all professors, seniors and fellow students

for their generous help and co-operation.

We extend our deepest regards and acknowledgement to all individuals whose

support, motivation and encouragement in various ways provided for the successful

completion of this work.

SHASHIKANT GUPTA BOJJA RAHUL REDDY

Roll No. 109CS0631 Roll No. 109CS0654

Dept. of CSE Dept. of CSE

NIT Rourkela NIT Rourkela

Abstract

Over the last decade, virtualization has gained widespread importance. Virtual

Machines (VMs) can now share network access in hardware, or in software or

in a hybridized way. Input/Output (IO) virtualization technologies based on

software utilize emulation technique, but this requires Virtualization Manager

which presents central processing overhead in a significant amount. Besides, each

IO operation in turn poses overhead additionally and any supported advanced

capabilities inherent of physical hardware are not utilized properly. Some

direct assignment based IO virtualization technologies suffer from limitations to

scalability. The support for Quality of Service (QoS) may be offered within the

software layers at the Virtualization Manager or Guest Operating System level

which interact with the IO device that is being shared. With a preliminary

investigation of the functionality of the RiceNIC (an open standard platform meant

for research and education into concurrent network interface design) [5], a study

of the various network interface technologies supporting IO device virtualization

was carried out to precisely understand IO virtualized network interfaces. The

project describes a resource allocation policy for the on-device memory of the IO

device being shared, taking the instance of a complex IO device, i.e., a Network

Interface Controller(NIC) supporting a reconfigurable virtualized network interface

architecture design which endures multiple reconfigurable virtualized network

interfaces working independently using a reconfigurable partitioned memory. It

enhances the scalability of the IO device.

Keywords: Input/Output Virtualization, Virtualization Manager, Resource

Allocation, Network Interface Controller, Scalability, Virtualized Network Interfaces.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

1 Introduction 1

1.1 What is Input/Output Virtualization ? 1

1.2 Motivation for this work . 2

1.3 Objective of this thesis . 3

1.4 Chapter Organization . 3

1.5 Conclusion . 3

2 Related work 4

2.1 Software based IO Virtualization and Sharing Approach 4

2.2 Direct Assignment based IO Virtualization and Sharing Approach . . 6

2.3 Virtual Machine Device queue based Approach 7

2.4 Single Root IO Virtualization and Sharing Approach 8

2.5 Conclusion . 9

3 An Adaptive Dynamic Resource Allocation Policy 10

3.1 Resource Allocation Policy (RAP) . 10

3.2 RAP Algorithm . 11

3.2.1 Program Control Flow . 12

3.2.2 Algorithm Initialize . 12

v

3.2.3 Algorithm dynamicSchedule 13

3.2.4 Algorithm memoryBalancer 14

3.2.5 Algorithm vNICremove . 15

3.2.6 Algorithm reconfigure . 16

3.2.7 Algorithm vNICadd . 17

3.2.8 Algorithm vNICappend . 18

3.2.9 Algorithm reclaimMemory . 18

3.3 Conclusion . 19

4 Analysis And Results 20

4.1 Involved Parameters and Structures 20

4.2 Analysis . 21

4.3 Result . 23

4.4 Conclusion . 24

5 Conclusions 25

5.1 Conclusion . 25

5.2 Scope for future work . 25

Bibilography 26

vi

List of Figures

2.1 Software based IO Virtualization . 5

2.2 Direct Assignment based IO Virtualization 6

2.3 Virtual Machine Device queue based IO Virtualization 7

2.4 Single Root IO Virtualization and Sharing 9

3.1 Control Flow of RAP . 13

4.1 1198th iteration of RAP . 22

4.2 1199th iteration of RAP . 22

4.3 1199th iteration of RAP . 23

4.4 Scalability vs Available Host Memory 24

vii

Chapter 1

Introduction

1.1 What is Input/Output Virtualization ?

Virtualization technologies have emerged as the key, over the last few decades, for

improvements in network performance and utilization of resources. IO Virtualization

increases utilization of server IO resources by consolidating more than one workloads

on a single physical machine using abstraction of the underlying physical resources

that are shared between multiple Virtual Machines [3].

Among the existing technologies for virtualization, the three main ones are:

Full virtualization, Para-virtualization and Hardware virtualization. In full

virtualization, complete hardware is abstracted virtually and operating systems,

or their particular components are run without any modification, inside virtual

machines. However, it involves high emulation overhead incurred by the

Virtualization Manager. Then came para-virtualization in which operating system

are run with modification, inside the virtual machine. In both the cases,

virtualization is enabled by a software abstraction layer, the Virtual Machine

Manager, that manages the virtual machines. Then came hardware virtualization

with dedicated IO devices, only to have evolved now to sharing the device across

multiple Virtual Machines by way of virtualized interfaces. However, for the greatest

1

Chapter 1 Introduction

consolidation ratio and server utilization these three methods must be applied in

combination [8].

IO Virtualization (IOV) exports multiple virtual views of the same physical IO

device which improves scalability and performance of virtualized servers for IO device

sharing by supporting sufficient number of virtual machines (VMs) necessary to use

idle resources. IO virtualization requires a software for physical device management.

From an adapter point of view, IO virtualization creates multiple views of the same

physical device making it appear like multiple independent devices dedicated for each

purpose. From a system point of view, each VM running on top of a Virtualization

Manager sees its own PCI hierarchy [3].

Seeing that IEEE anticipates the need for 1 Tbps networks as soon as 2020, IOV

becomes necessary because platform performance though increasing is underutilized.

Hardware cost, however, is not the issue anymore, because now physical space in the

data center, power/cooling costs, and management are bigger problems [1]. Besides,

the ideology of go-green implies to reduce power consumption and costs. Wastage in

configuring and maintaining physical components can be eliminated by IOV. Server

virtualization is an efficient way of server consolidation. There are various goals of IO

virtualization. To name a few, isolation; separation of memory space; almost native

performance for I/O operations; separate I/O streams, interrupts, and isolation

of control operations, I/O operations and errors for shared devices; scalability for

sharing the IO device to optimally use idle resources [1].

The next sub-sections throw light upon the motivation for this work followed by

the objective and chapter organisation.

1.2 Motivation for this work

Research in High Performance Computing (HPC) shows that almost native

throughput (as in a non-virtualized environment), can be achieved by improvements

in software packet handling and offloading virtualization onto the NIC [2]. So,

2

Chapter 1 Introduction

research normally focuses on overall maximization of system throughput, rather

than on the limited-resource architectures of NICs for optimal implementation of

specific Quality of Service. Besides, a dynamic resource allocation policy for device

partitions can thoroughly use idle memory resources and improve scalability for

sharing the IO virtualized device too.

1.3 Objective of this thesis

The objective here is to devise a control strategy for memory reconfiguration at the

device level to enhance scalability for sharing the IO device with inherent support

for application specific requirements of the respective VMs.

We take the instance of a Network Interface Controller (NIC) - with support

for a virtualized network interfaces and a reconfigurable partitioned memory

organisation.

1.4 Chapter Organization

This thesis proceeds as follows: Chapter 2 gives background on related work.

Chapter 3 introduces the devised policy in detail. Chapter 4 goes with the analysis

and results. Chapter 5 concludes this work.

1.5 Conclusion

In this chapter, first we discussed about Input/Output Virtualization and its goals.

Then we represented the Motivation for our work and Objective. Lastly we discussed

about content flow of this thesis.

3

Chapter 2

Related work

This chapter provides background information relevant to the work in this area.

An IO virtualized device is aware of the fact that it is being virtualized, so it

has to implement this by presenting an interface to the Virtualization Manager

that enables on-demand management of virtual devices; and to a guest OS an

abstract virtual device interface permitting Virtual Machine interaction with the

device, with minimum involvement of the Virtualization Manager [9]. Starting

from the very beginning the various IO virtualization and sharing approaches such

as software-based, direct-assignment based, Intel’s Virtual Machine Device queue

(VMDq) and PCI-SIG Single Root IO Virtualization (SRIOV) are discussed.

2.1 Software based IO Virtualization and Sharing

Approach

Software based sharing uses the technique of emulation to provide a logical IO

hardware device to the VM. The emulation layer throws itself in between the driver

running in the guest OS and the underlying hardware. With this indirection, the

Virtualization Manager intercepts all Input/Output traffic and interrupts generated

by the driver of the guest OS. The multiple IO requests from all the virtual

4

Chapter 2 Related work

machines are resolved by the emulation software and serialized into a single IO

stream handleable by the underlying hardware. The first common software-based

IO virtualization and sharing approach is the device emulation model in which the

existing drivers in the guest OS are utilized. The Virtualization Manager abstracts

the HW to present each SI with its own virtual system and takes sole ownership of

the underlying hardware to ensure compatibility. It intercepts and processes each

IO request before passing them on to the different physical devices. Figure 2.1

represents the Software-Based IO Virtualization and Sharing Approach.

Figure 2.1: Software based IO Virtualization

A major problem faced here is that the overhead incurred by the two IO stacks

traversal for each IO operation, one in the VM and one in the Virtualization

Manager, is high. The second approach to software-based IO virtualization and

sharing is the split-driver (para-virtualized driver) model which uses a similar

approach, only that it uses a front-end driver in the guest that works in harmony

with a back-end driver in the Virtualization Manager giving the benefit of no need

5

Chapter 2 Related work

to emulate an entire device. Drawbacks to Software-Based Sharing are that there is

a significant CPU overhead incurred by the emulation layer to implement the virtual

software-based packet switch and also overhead for each IO operation, which in turn

reduces the throughput. Additionally, this may also eliminate the use of advanced

physical device capabilities.

2.2 Direct Assignment based IO Virtualization

and Sharing Approach

Figure 2.2: Direct Assignment based IO Virtualization

Problems with Software-based sharing can be reduced by exposing the hardware

directly to the guest OS and have a native device driver up and running. The

Virtualization Manager can utilize and configure an Address Translation agent (such

as the Intel Virtualization Technology for Directed IO) to by-pass the Virtualization

6

Chapter 2 Related work

Manager’s IO emulation layer and allows a guest device driver to be able to

write/read directly to/from IO device address space and the virtual machine address

space. Though it provides very fast IO, the direct assignment based IO virtualization

technology is nonscalable as a physical device can be assigned only to one VM. It

prevents the sharing of IO devices. Figure 2.2 on the previous page represents the

Direct Assignment IO Virtualization and Sharing Approach.

2.3 Virtual Machine Device queue based

Approach

Figure 2.3: Virtual Machine Device queue based IO Virtualization

An improvement to the upper scenario is the usage of multi-queue network cards

such as Intel’s Virtual Machine Device queue (VMDq) network cards which offer

7

Chapter 2 Related work

multiple pairs of Tx/Rx queues. They create a separate queue for each VM. This

allows the hardware offloading of packet (de-)multiplexing and queuing based on

the MAC address (and VLAN tag) of domains [2]. The Virtualization manager

assigns to each virtual machine a separate queue in the network adapter. This

results in removal of overhead on the virtual switch sorting and packet routing and

hence improves scalability. Besides, multiple queues remove any potential processing

bottleneck by spreading the incoming load over multiple processor cores. However,

the traffic still flows through the virtual switch and over normal data transports

(VMBus) i.e., the VM manager and the virtual switch still have to copy the traffic

from the VMDq to the VM. Figure 2.3 on the previous page represents the Virtual

Machine Device queue IO Virtualization and Sharing Approach

2.4 Single Root IO Virtualization and Sharing

Approach

Domains can also directly access a NIC via virtual network interfaces capable of

Single Root IO Virtualization (SR-IOV). The PCI-Special Interest Group (PCI-SIG)

developed the Single Root IO Virtualization and Sharing specification with the

vision of overcoming the hypervisor overhead imposed on all IO operations between

virtual machines and physical devices by making the device virtualization aware

and providing IO device virtualization and sharing via native access to the exported

multiple virtual device interfaces by means of IO page tables, virtual device

identifiers and virtual device specific interrupts [3]. In SR-IOV, a physical device is

mapped to a physical function (PF) which can be partitioned into multiple virtual

functions (VFs) each VF still viewed as a full-edged data link. Physical resources

on the NIC are then partitioned and assigned to independent virtual interfaces

(vNICs). However, Quality of Service has been presumed as a software feature

in the specification and is not addressed. Figure 2.4 on the next page represents the

Single Root IO Virtualization and Sharing (SR-IOV).

8

Chapter 2 Related work

Figure 2.4: Single Root IO Virtualization and Sharing

2.5 Conclusion

In this chapter we discussed the various Input/Output Virtualization technologies.

We have seen the evolution of Input/Output Virtualization from software based IO

virtualization to direct assignment based approach, Intel’s VMDq and PCI-Special

Interest Group Single Root IO Virtualization.

9

Chapter 3

An Adaptive Dynamic Resource

Allocation Policy

To support guaranteed application performance on virtualized servers, resource

allocation mechanisms based on application’s desired QoS, are needed. Also, for

more flexibility these mechanisms should be closer to the resource. Ideally, these

mechanisms make any unused resource available to other VM in requirement of

those resources. This yields performance guarantees without losing out on resource

utilization [4]. The ability to support a fair sharing of the physical NIC among

the vNICs is a key requirement in network virtualization [7]. We proceed to present

our approach for dynamic resource allocation in a reconfigurable virtualized network

interface environment followed by the control flow and algorithms for the devised

policies.

3.1 Resource Allocation Policy (RAP)

We have devised the logic for an adaptive dynamic resource allocation policy which

initiated by the Virtualization Manager, continuously performs dynamic memory

reconfiguration of the partitioned NIC memory among the multiple virtualized device

interfaces in a fair policy-based manner, in co-ordination with the Virtualization

10

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

Manager and VMs, using the dynamic reconfiguration properties on the Network

Interface Controller. The logic exists within the NIC controller. This results in better

device utilization and enables the NIC to flexibly adapt to support differentiated

service levels and be able to serve a scalable number of interfaces.

Depending on the type of implementation, the resource requirement information

of the VM can be received from a Resource Requirement (RR) tuple, constituted of

max, min and default data of each resource - a mechanism which is fairly easy to

generate and widely adopted [4]. The minimum parameter provides a lower bound

on the amount of memory that is allocated to the VM. The maximum parameter

provides an upper bound on the amount of memory that is allocated to the VM.

The memory partition on the device acts as a dedicated buffer for each VM. At

the time of virtual-NIC(vNIC) initialization, using context priority and requirements

via RR, the RAP dynamically allots a default memory partition size to a VM

either from the free pool or, if unavailable, through memory reclamation from

lower priority VMs. The RAP consists of multiple sub-policies to handle various

scenarios. Its reconfiguration policy then drives dynamic vNIC reconfiguration in

terms of corresponding partition size ranging between a preconfigured maximium

and mimimum configuration parameters - in accordance with corresponding VM

requirements and priority and of course availability of idle memory resources.

With memory overcommitment, in which the total size configured for all running

virtual machines exceeds the total amount of actual machine memory [6], we can

aggressively drive up consolidation ratios. However, without proper planning and

monitoring, there could be negative performance impacts resulting from excessive

memory overcommitment [11]. Ballooning essentially is a cooperative operation

between the guest driver and the hypervisor [10] and therefore is not used.

3.2 RAP Algorithm

The policy consists of several number of algorithms. Each algorithm of our devised

11

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

Resource Allocation Policy(RAP) are explained as follows.

3.2.1 Program Control Flow

The figure 3.1 represents the control flow of our policy. The main function first

calls Single Root PCI Manager(SR-PCIM) function. It initially generates a random

number of virtual machines. Then it initializes the same number of virtual NICs

by using initialize function. Then main function calls dynamicallySchedule function

which produces a random number and sends it to the memoryBalancer.

Then memoryBalancer performs one action among remove, add and reconfigure

based on the value of random number generated by dynamicallySchedule function.

The reconfigure function calls reclaimMemory function to serve the requests of

higher priority vNICs. vNICadd function first calls vNICcreate function then it calls

reconfigure function. If the memory is sufficient then the vNIC will be appended. If

the memory is not sufficient then vNICadd function will call reclaimMemory function

for the additional amount of required memory. If the reclaimMemory successfully

reclaims the sufficient amount of memory from the lower priority vNICs then the

new vNIC will be appended successfully otherwise the corresponding VM may be

enqueued for the introduction at the next time. The figure 3.1 clearly shows all of

these functions.

3.2.2 Algorithm Initialize

INPUT: vNICpriority[], vNICindex[]

1. constant SCALABILITY LIMIT : maximum limit to scalability

array vNICpriority[] : adjacency list of vNICs with priority as header node

array vNICindex[] : array of pointers to structure vNIC

2. for v = 0 : SCALABILITY LIMIT

do

2.1 initialize vNICindex[v]= NULL

12

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

Figure 3.1: Control Flow of RAP

2.2 initialize vNICpriority[v]= NULL

done

Explanation

The above algorithm initializes every list of the priority based adjacency list and

every index of array to NULL.

3.2.3 Algorithm dynamicSchedule

INPUT: vNICpriority[], vNICindex[], nVM, avail

13

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

OUTPUT: onOff (random number)

1. nVM : number of vNICs that are running at that instant.

avail : amount of available host memory

onOff : random number generated

2. goto step2 until the system exits

3. generate a random number (onOff) between −(nVM −

1) and SCALABILITY LIMIT − nVM

4. send onOff to memoryBalancer

5. goto step1

Explanation

The above algorithm first generates a random number and then it passes this random

number to memoryBalancer as a parameter. This algorithm runs continuously so

that it looks like a real time system.

3.2.4 Algorithm memoryBalancer

INPUT: vNICpriority[], vNICindex[], nVM, avail , onOff

1. if onOff < 0

then

i. generate total onOff number of different indices which are already present

in vNICIndex[]

ii. for each index generated

i. remove it from vNICIndex[],vNICPriority[]

14

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

2. else if onOff > 0

i. add onOff number of vNICs

3. else

i. reconfigure all vNICs according to VM requirements, priority, available

host memory.

Explanation

This algorithm represents the memory Balancer logic. It takes a random number

generated by dynamicallySchedule function as a input and based on that number it

decides which function to call. If it is less than 0 then it removes that many number

of vNICs. If it is greater than 0 then it tries to add that many number of vNICs. If

it is 0 then it reconfigures all vNICs according to their priority.

3.2.5 Algorithm vNICremove

INPUT: vNICpriority[], vNICindex[], removeVMindex, nVM,

removeVMpriority, avail

OUTPUT: nVM(active number of vNICs)

1. Update avail

2. Determine position in adjacency list

3. Traverse the corresponding priority list to find vNIC

4. Remove vNIC from vNICpriority[]

5. Remove vNIC from vNICindex[]

6. Update number of active vNICs

15

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

Explanation

This algorithm helps to remove a vNIC that correponds to a dismissed VM. First

it adds the partition memory to total available memory. Then it finds the vNIC

to be removed in adjcency list by using its priority. Then it removes that vNIC

from priority adjacency list. Then it finds vNIC position in index array and then it

removes vNIC from that array.

3.2.6 Algorithm reconfigure

INPUT: vNICpriority[], vNICindex[], priorityLimit, nVM, avail

1. traverse vNICpriority[] till priorityLimit

2. for each vNIC in corresponding list

i. get buffersizeReq

ii. if (buffersizeReq <= avail)

i. serve its request

ii. update its new partition size and avail

else

i. reclaim memory from lowest priority vNIC

ii. if reclaim failure

i. print memory overflow and return

else

i. serve its request

ii. update its new partition size and avail

Explanation

This algorithm implements reconfigurablity by reclaiming memory from lower

priority vNICs to serve requests for higher priority vNICs. This implements the

16

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

efficient use of memory.

3.2.7 Algorithm vNICadd

INPUT: vNICpriority[], vNICindex[], priorityLimit, nVM, avail

OUTPUT: status of new vNIC (added/enqueued)

1. create and initialize new vNIC

2. reconfigure all higher priority vNICs

3. if new vNIC partitionSize <= avail

i. append new vNIC

else

i. reclaim memory from lower priority vNICs

ii. if sufficient memory is reclaimed

i. append new vNIC

else

i. print memory overflow and enque new vNIC.

Explanation

This algorithm adds a new vNIC. It first creates a new vNIC and assigns all of

its values randomly within suitable range. Then it calls reconfigure algorithm to

reconfigure all vNICs which are having higher priority than current vNIC. If the

reconfigure fails then the new vNIC is enqued. If successfully reconfigured then it

checks the available host memory. If it is sufficient to add new vNIC then it appends

the new vNIC else it calls reclaimMemory algorithm for the reclamation of required

memory. If it gives failure then this new vNIC is enqued, otherwise it is simply

appended.

17

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

3.2.8 Algorithm vNICappend

INPUT: vNICpriority[], vNICindex[], vNICnew, nVM, avail

OUTPUT: vNICnew

1. Update avail

2. traverse vNICindex[] till first index with NULL entry

i. add vNIC to that index

ii. update vNIC index

3. Traverse vNICpriority[] till vNIC priority

i. add vNIC to that index

4. Update number of active vNICs

Explanation

This algorithm is called by vNICadd function. It is called only when there is sufficient

amount of memory to append. First it traverses to find first NULL index then it

adds new vNIC to that index and updates vNIC index value. After that it reaches

the header priority node based on its priority and it appends new vNIC to the end

of the list.

3.2.9 Algorithm reclaimMemory

INPUT: vNICpriority[], vNICindex[], bufferSizeReq, currentVMpriority, nVM,

avail

OUTPUT: reclamation successful/failure

1. initialize availTemp = avail

18

Chapter 3 An Adaptive Dynamic Resource Allocation Policy

2. traverse lower priority lists in bottom up fashion and update availTemp until

bufferSizeReq <= availTemp

i. if (bufferSizeReq <= availTemp)

i. remove same number of lower priority vNICs and reclaim memory

ii. update nVM and avail

else

i. return -1

Explanation

This algorithm first traverses the lower priority lists in bottom up fashion and

updates availTemp. It continues to do this traversal until sufficient amount of

memory is collected. If successul then it removes same number of vNICs and updates

nVM and avail. If failure then returns -1 and the corresponing vNIC is either starved

or enqued; starves in case of reconfigure and enques in case of new vNIC.

3.3 Conclusion

In this chapter, first we introduced our devised dynamic resource allocation policy.

Then the control flow of this devised policy is shown. After that the devised policy

is explained with the help of algorithms.

19

Chapter 4

Analysis And Results

In this chapter we present the analysis of the devised Resource Allocation Policy

modelled in C language followed by results and conclusion.

4.1 Involved Parameters and Structures

In chapter 3 we have already seen the control flow and algorithms of the devised

policy. The various parameters and data structures involved are as follows:

AVAIL LIMIT : (constant) maximum limit to the amount of

available host memory

SCALABILITY LIMIT : (constant) maximum limit to the number of

active VMs

RRtuple : (structure) VM memory resource requirement

information

VDIcontextInfo : (structure) virtual context priority information

v NIC : (structure) vNIC index, VDIcontextInfo,

RRtuple and partition information

20

Chapter 4 Analysis And Results

noOfVM : (integer) number of active VMs at any instant

freePool : (integer) available host memory pool

vNICindex[] : (array) array representation of pointers to

vNICs in increasing order of index

vNICpriority[] : (adjacency list) graphical representation of pointers

to vNICs with header nodes

arranged in increasing order of

priority

4.2 Analysis

The main module runs a number of iterations as required by using a random

distribution to dynamically schedule the introduction, removal, dismissal, starvation

or reconfiguration of VMs just as in any real time situation at the reconfigurable

partitioned memory organization of the virtualized network interface.

For each VM the characteristics and parameters in turn, are generated too by

using a random distribution while imitating practical bounds to derive maximum

analogy to any scenario. The EVENT, EFFECT, COMMENTS and system

STATUS are listed with each iteration.

The figure 4.1 shows the 1198th iteration of RAP. In the 1198th iteration the

generated random number is 2. So memory balancer checks for availability of require

memory and then succesfully adds two vNICs. Observe that before adding, the

reconfiguration of the already active higher priority vNICs has taken place. The

total active number of vNICs after 1198th iteration is 4.

The figures 4.2 and 4.3 on the next page show the 1198th iteration of RAP. In

1199th iteration the generated random number is 6. So memory Balancer tries to

add 6 number of new vNICs. Observe that to add a higher priority vNIC the policy

continuously reclaims memory by removing the least priority vNICs at that instant,

till required amount of memory is collected. If sufficient memory cannot be reclaimed

a memory overflow message is flashed and the corresponding VM is either starved or

21

Chapter 4 Analysis And Results

Figure 4.1: 1198th iteration of RAP

Figure 4.2: 1199th iteration of RAP

dismissed, depending on whether it is a reconfiguration or an append scenario. For

every iteration EVENT, EFFECT, COMMENTS and system STATUS are updated.

After the 1198th iteration, total number of active vNICs is 4 and after the 1199th

22

Chapter 4 Analysis And Results

Figure 4.3: 1199th iteration of RAP

iteration, though 6 new vNICs needed to be added, the total number of active vNICs

is only 5. This is because the policy has added 5 new vNICs, 1 vNIC is dismissed

due to memory overflow and 4 are removed in the course of reconfiguration. It can

be observed that vNIC0 starved due to memory overflow.

A similar simulation was done for non-reconfigurable partitioned memory

organisation to be able to compare the average number of active VMs achieved

in the two cases, namely reconfigurable partitioned memory organisation and

non-reconfigurable partitioned memory organisation. The results are shown in the

next section.

4.3 Result

The devised policy simulation in C language for reconfigurable partitioned memory

organisation was compared to a similar simulation for non-reconfigurable partitioned

memory organisation to obtain the graph between scalability vs available host

memory as shown in Fig. 4.4 on the next page. It clearly shows that the

scalability achieved by a reconfigurable PMO is higher than that achieved by a

non-reconfigurable PMO for sharing the IO device with a given amount of host

23

Chapter 4 Analysis And Results

Figure 4.4: Scalability vs Available Host Memory

memory to avail.

4.4 Conclusion

In this chapter we discussed the the various sub-policies involved in RAP and

presented a detailed analysis of the policy using logical modelling in C language

followed by the encouraging results.

24

Chapter 5

Conclusions

5.1 Conclusion

As of this project with a preliminary analysis of the evolution of network

interface IO virtualization we discussed a policy for dynamic resource allocation

for virtualized network interfaces with a reconfigurable partitioned memory

organisation. Thereafter we presented the simulation results in terms of scalability

which are encouraging. Hence, we can say that the devised policy exhibits the

property of scalability for I/O device sharing.

5.2 Scope for future work

This policy can be further scrutinized by resorting to analysis in more complex

simulation environments.

25

Bibliography

[1] Patrick Kutch. Intel LAN Access Division, PCI-SIG SR-IOV Primer, Revision

2.5, January 2011.

[2] H. Rauchfuss, T. Wild, A. Herkersdorf, ”A Network Interface Card Architecture

for I/O Virtualization in Embedded Systems”, Second Workshop on I/O

Virtualization (WIOV ’10), Pittsburgh, USA, March 13, 2010.

[3] PCI-SIG, ”Single-Root I/O Virtualization and Sharing 1.1 Specification”,

January 2010.

[4] J. Lakshmi and S. K. Nandy, I/O Device Virtualization in the Multi-core era,

a QoS perspective, in the Proceedings of the 4th International Conference on

Grids and Pervasive Computing, as part of the 1st International Workshop on

Grids, Clouds and Virtualization, Geneva, Switzerland, May 4-8, 2009.

[5] J. Shafer, S. Rixner, RiceNIC: A Reconfigurable Network Interface for

Experimental Research and Education, Workshop on Experimental Computer

Science, San Diego, CA, June 2007.

[6] Carl A. Waldspurger, ”Memory Resource Management in VMware ESX Server”,

Proceedings of the Fifth Symposium on Operating Systems Design and

Implementation, Boston, Massachusetts, December 9-11, 2002.

[7] Sunay Tripathi, Nicolas Droux, Thirumalai Srinivasan, and Kais Belgaied,

”Crossbow: from hardware virtualized nics to virtualized networks,” in

26

BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the 1st ACM workshop on Virtualized infrastructure systems

and architectures, New York, NY, USA, 2009, VISA ’09, pp. 53-62, ACM.

[8] VMware, Inc. white paper. Virtualization: Architectural Considerations and

Other Evaluation Criteria, Nov 9, 2005.

[9] Himanshu Raj, Karsten Schwan (2005) Implementing a Scalable Self-Virtualizing

Network Interface on an Embedded Multicore Platform, in Proceedings of

WIOSCA 2005, in conjunction with IISWC 2005, Austin, TX.

[10] Chin-Hung Li, ”Evaluating the Effectiveness of Memory Overcommit

Techniques on KVM-based Hosting Platform,” World Academy of Science,

Engineering and Technology International Conference Program, October 24-25,

2012.

[11] Kingston Technology white paper. The Yin and Yang of Memory

Overcommitment in Virtualization : The VMware vSphere 4.0 Edition, 2010.

27

