1,539 research outputs found

    Frequent Itemset Mining for Big Data

    Get PDF
    Traditional data mining tools, developed to extract actionable knowledge from data, demonstrated to be inadequate to process the huge amount of data produced nowadays. Even the most popular algorithms related to Frequent Itemset Mining, an exploratory data analysis technique used to discover frequent items co-occurrences in a transactional dataset, are inefficient with larger and more complex data. As a consequence, many parallel algorithms have been developed, based on modern frameworks able to leverage distributed computation in commodity clusters of machines (e.g., Apache Hadoop, Apache Spark). However, frequent itemset mining parallelization is far from trivial. The search-space exploration, on which all the techniques are based, is not easily partitionable. Hence, distributed frequent itemset mining is a challenging problem and an interesting research topic. In this context, our main contributions consist in an (i) exhaustive theoretical and experimental analysis of the best-in-class approaches, whose outcomes and open issues motivated (ii) the development of a distributed high-dimensional frequent itemset miner. The dissertation introduces also a data mining framework which takes strongly advantage of distributed frequent itemset mining for the extraction of a specific type of itemsets (iii). The theoretical analysis highlights the challenges related to the distribution and the preliminary partitioning of the frequent itemset mining problem (i.e. the search-space exploration) describing the most adopted distribution strategies. The extensive experimental campaign, instead, compares the expectations related to the algorithmic choices against the actual performances of the algorithms. We run more than 300 experiments in order to evaluate and discuss the performances of the algorithms with respect to different real life use cases and data distributions. The outcomes of the review is that no algorithm is universally superior and performances are heavily skewed by the data distribution. Moreover, we were able to identify a concrete lack as regards frequent pattern extraction within high-dimensional use cases. For this reason, we have developed our own distributed high-dimensional frequent itemset miner based on Apache Hadoop. The algorithm splits the search-space exploration into independent sub-tasks. However, since the exploration strongly benefits of a full-knowledge of the problem, we introduced an interleaving synchronization phase. The result is a trade-off between the benefits of a centralized state and the ones related to the additional computational power due to parallelism. The experimental benchmarks, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and reliability to memory issues. Finally, the dissertation introduces a data mining framework in which distributed itemset mining is a fundamental component of the processing pipeline. The aim of the framework is the extraction of a new type of itemsets, called misleading generalized itemsets

    Frequent itemset mining on multiprocessor systems

    Get PDF
    Frequent itemset mining is an important building block in many data mining applications like market basket analysis, recommendation, web-mining, fraud detection, and gene expression analysis. In many of them, the datasets being mined can easily grow up to hundreds of gigabytes or even terabytes of data. Hence, efficient algorithms are required to process such large amounts of data. In recent years, there have been many frequent-itemset mining algorithms proposed, which however (1) often have high memory requirements and (2) do not exploit the large degrees of parallelism provided by modern multiprocessor systems. The high memory requirements arise mainly from inefficient data structures that have only been shown to be sufficient for small datasets. For large datasets, however, the use of these data structures force the algorithms to go out-of-core, i.e., they have to access secondary memory, which leads to serious performance degradations. Exploiting available parallelism is further required to mine large datasets because the serial performance of processors almost stopped increasing. Algorithms should therefore exploit the large number of available threads and also the other kinds of parallelism (e.g., vector instruction sets) besides thread-level parallelism. In this work, we tackle the high memory requirements of frequent itemset mining twofold: we (1) compress the datasets being mined because they must be kept in main memory during several mining invocations and (2) improve existing mining algorithms with memory-efficient data structures. For compressing the datasets, we employ efficient encodings that show a good compression performance on a wide variety of realistic datasets, i.e., the size of the datasets is reduced by up to 6.4x. The encodings can further be applied directly while loading the dataset from disk or network. Since encoding and decoding is repeatedly required for loading and mining the datasets, we reduce its costs by providing parallel encodings that achieve high throughputs for both tasks. For a memory-efficient representation of the mining algorithms’ intermediate data, we propose compact data structures and even employ explicit compression. Both methods together reduce the intermediate data’s size by up to 25x. The smaller memory requirements avoid or delay expensive out-of-core computation when large datasets are mined. For coping with the high parallelism provided by current multiprocessor systems, we identify the performance hot spots and scalability issues of existing frequent-itemset mining algorithms. The hot spots, which form basic building blocks of these algorithms, cover (1) counting the frequency of fixed-length strings, (2) building prefix trees, (3) compressing integer values, and (4) intersecting lists of sorted integer values or bitmaps. For all of them, we discuss how to exploit available parallelism and provide scalable solutions. Furthermore, almost all components of the mining algorithms must be parallelized to keep the sequential fraction of the algorithms as small as possible. We integrate the parallelized building blocks and components into three well-known mining algorithms and further analyze the impact of certain existing optimizations. Our algorithms are already single-threaded often up an order of magnitude faster than existing highly optimized algorithms and further scale almost linear on a large 32-core multiprocessor system. Although our optimizations are intended for frequent-itemset mining algorithms, they can be applied with only minor changes to algorithms that are used for mining of other types of itemsets

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    Concurrent data mining with a large number of users.

    Get PDF
    Li Zhiheng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 77-79).Abstracts in English and Chinese.Abstract (English) --- p.iAcknowledgement --- p.iiiContents --- p.ivList of Figures --- p.viiList of Tables --- p.ixList of Algorithms --- p.xChapter 1 --- Introduction --- p.1Chapter 1.1 --- Review of frequent itemset mining --- p.1Chapter 1.2 --- Data mining proxy serving for large numbers of users --- p.3Chapter 1.3 --- Privacy issues on proxy service --- p.4Chapter 1.4 --- Organization of the thesis --- p.6Chapter 2 --- Frequent itemsets mining --- p.7Chapter 2.1 --- Preliminaries --- p.7Chapter 2.2 --- Data mining queries --- p.8Chapter 2.3 --- A running example --- p.10Chapter 3 --- Data Mining Proxy --- p.13Chapter 3.1 --- Load data for mining --- p.14Chapter 3.2 --- An Overview --- p.16Chapter 3.3 --- Tree Operations --- p.16Chapter 3.4 --- Data Mining Usages and Observations --- p.18Chapter 4 --- Implementation of Proxy --- p.23Chapter 4.1 --- Problems in implementation --- p.23Chapter 4.2 --- A Coding Scheme --- p.24Chapter 4.3 --- On-disk/In-Memory Tree Representations and Mining --- p.27Chapter 4.4 --- Tree Operation Implementations --- p.29Chapter 4.4.1 --- Tree Projection Operation Implementations: πd2m( )and πm2m( ) --- p.31Chapter 4.4.2 --- Tree Merge Operation Implementations: --- p.33Chapter 4.4.3 --- Frequent Itemset/Sub-itemset Tree Building Request --- p.37Chapter 4.4.4 --- The Tree Projection Operation π and Frequent Super- itemset Tree Building Request --- p.39Chapter 5 --- Performance Studies --- p.45Chapter 5.1 --- Mining with Different Sizes of Trees in Main Memory --- p.47Chapter 5.2 --- Constructing Trees in Main Memory --- p.48Chapter 5.3 --- Query Patterns and Number of Queries --- p.50Chapter 5.4 --- Testing Sub-itemset Queries with Different Memory Sizes --- p.51Chapter 5.5 --- Replacement Strategies --- p.51Chapter 6 --- Privacy Preserving in Proxy Service --- p.61Chapter 6.1 --- Data Union Regardless Privacy Preserving --- p.61Chapter 6.2 --- Secure Data Union --- p.65Chapter 6.2.1 --- Secure Multi-party Computation --- p.65Chapter 6.2.2 --- Basic Methods of Privacy Preserving in Semi-honest Envi- ronment --- p.67Chapter 6.2.3 --- Privacy Preserving On Data Union --- p.70Chapter 6.3 --- Discussions --- p.73Chapter 7 --- Conclusion --- p.75Bibliography --- p.7

    Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

    Get PDF
    Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional databases. Apriori is a classical frequent itemset mining algorithm, which employs iterative passes over database combining with generation of candidate itemsets based on frequent itemsets found at the previous iteration, and pruning of clearly infrequent itemsets. The Dynamic Itemset Counting (DIC) algorithm is a variation of Apriori, which tries to reduce the number of passes made over a transactional database while keeping the number of itemsets counted in a pass relatively low. In this paper, we address the problem of accelerating DIC on the Intel Xeon Phi many-core system for the case when the transactional database fits in main memory. Intel Xeon Phi provides a large number of small compute cores with vector processing units. The paper presents a parallel implementation of DIC based on OpenMP technology and thread-level parallelism. We exploit the bit-based internal layout for transactions and itemsets. This technique reduces the memory space for storing the transactional database, simplifies the support count via logical bitwise operation, and allows for vectorization of such a step. Experimental evaluation on the platforms of the Intel Xeon CPU and the Intel Xeon Phi coprocessor with large synthetic and real databases showed good performance and scalability of the proposed algorithm.Comment: Accepted for publication in Journal of Computing and Information Technology (http://cit.fer.hr
    corecore