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Abstract 

Data mining has attracted a lot of research efforts during the past decade. 

However, little work has been reported on supporting a large number of users with 

similar data mining tasks. In this thesis, we present a data mining proxy approach 

that provides basic services so that the overall performance of the system can 

be maximized for frequent itemset mining. This work is motivated by the fact 

that the pattern-growth method is one of the most efficient methods for frequent 

pattern mining which constructs an initial tree and mines frequent patterns on 

top of the tree. Concerning the proxy needs to provide the service for different 

clients, some methods to protect privacy and security should also been applied 

on the proxy. 

Our data mining proxy is designed to fast respond a user's request by con-

structing the required tree using both trees in the proxy that are previously built 

for other users' requests and trees stored on disk that are pre-computed from 

transactional databases. We define a set of basic operations on pattern trees 

including tree projection and tree merge. We show that the proposed opera-

tions guarantee that the trees constructed are smallest and sufficient to support 

frequent pattern mining tasks. In addition, several strategies are proposed to 

manage trees when memory of the proxy becomes full. Our performance study 

indicated that the data mining proxy significantly reduces the I /O cost and CPU 

cost to construct trees. The frequent pattern mining costs with the trees con-

structed can be minimized. More importantly, the tree representation we adopted 

can be easily converted into many widely-used tree representations so that the 

proxy can indeed provide services to various applications that implements differ-



ii 

ent mining algorithms. 

On the privacy protecting aspect, we observe that in the environment with 

multiple proxies the user only want to get the patterns in the whole data and 

each proxy wants to protect its own data so that the patterns of itself will not be 

known by the others. Therefore, suppose one user requests data from a group of 

proxies, the privacy protecting method aims at that the user can get the whole 

data while it protects that the user does not know the exact proxy where the 

specific datum come. To achieve it, we propose a novel method that the proxy 

provide their own encrypted data and after all data are collected together, these 

data are decrypted. Thus the user can only get data, but do not know their 

specific provider. 



摘 要 

在過去的十年中，很多的硏究力量投入到了資料挖掘這一領域。然而尙未有 

硏究提出如何解決多個用戶提出多個相似的資料挖掘查詢的問題。在本篇論文 

中，我們設計了一個資料挖掘伺服器的方案。此方案可以使全系統提供頻繁模式 

控掘的能力被最佳化。設計此方案是基於模式增長的方法已經被證明在頻繁模式 

挖掘中是最有效的，而此類方法需要首先建立一個初始樹，然後在這棵樹上進行 

頻繁模式的挖掘。考慮到伺服器需要對不同的客戶提供服務，我們還需要在伺服 

器中加入隱私保護的措施。 

我們的資料挖掘伺服器通過利用爲先前的資料挖掘查詢建立的樹以及爲全 

資料庫在硬碟上建立的樹來快速地爲新的資料挖掘查詢建立一棵新樹。爲此，我 

們定義了一組樹運算元來對已建立的樹進行投影以及合倂的操作。我們可以證明 

這些運算元可以保證所建立的樹對於所需要進行的控掘是最小的但又是足夠 

的。另外我們還提出了當伺服器的存儲空間用盡時如何進行處理的幾種策略。我 

們的實驗證明，資料挖掘伺服器可以明顯的降低輸入輸出流量和CPU建樹的工作 

量。同時在這些樹上進行的挖掘的工作量也被最小化了。更重要的是，我們所採 

用的這一種樹的形式可以被輕易地轉化爲其他各種樹的形式，這樣此伺服器實際 

上可以爲不同的應用提供不同的資料挖掘演算法。 

在隱私保護方面，我們觀察到用戶只需要獲得整體資料中的頻繁模式，而在 

多個伺服器的環境中，每個伺服器都希望保護自己所擁有的頻繁模式而不被他人 

所知道。因此，如果用戶需要從多個伺服器獲得資料’我們只需要保證用戶可以 

獲得全部的資料，而不需要讓他知道這些資料是分別由誰提供的。爲了實現這一 



目標，我們設計了一個方法讓每一個伺服器提供資料時對資料進行加密，而當用 

戶獲得所有的加密資料之後，再對整體進行解密。這樣用戶可以獲得全部的資 

料，而又不知道資料的具體來源。 
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Chapter 1 

Introduction 

Summary 

The thesis proposes a novel method to implement a data min-

ing proxy to support a multi-user environment with quantities of 

queries. The privacy issues are also considered in this proxy. 

1.1 Review of frequent itemset mining 

Data mining is a powerful technology being widely adopted to help decision mak-

ers to focus on the most important nontrivial/predictive information/patterns 

that can be extracted from large amounts of data they continuously accumulate 

in their daily business operations. Finding frequent itemsets in a transactional 

database is a common task for many applications. 

In the past decade, many methods have been proposed to find frequent 

itemsets. The Apriori [3] method utilize the anti-monotone Aprioiri heuristic: if 

1 



1.1 Review of frequent itemset mining 2 

any /c-itemset X is not frequent, any super itemset of X of length /c + 1 is not 

frequent. Therefore, the Apriori [3] conducts a level-wise procedure: (1) generate 

candidate itemsets of length k and scan the database to prune the candidates that 

are not frequent w.r.t. r , min-support threshold; (2) generate candidate itemsets 

of length /c + 1 from the frequent /c-itemset and return to step 1 if the number of 

candidate /c + l-itemsets is not zero. The crucial shortcoming of [3] is that it needs 

to generate a vast number of candidates when number of items is very large and 

to scan database several times which leads to a large I / O cost. [2] wants to speed 

up the procedure by using a matrix to enumerate the support so as to save the 

time of counting support. [2] also propose a method of deep first traversing the 

lexicography tree so that the number of the candidates is small at a time. Many 

other methods are also proposed to improve the efficiency of Apriori. But these 

methods still can not avoid scanning database repeatedly. To solve this problem, 

one simplest way is to project the frequent items in each transaction to memory. 

But even only the frequent part, it may still be very large and is difficult to be 

held in memory. [22] solve this problem by using the bit set to represent itemset. 

But it still needs to access disk from time to time. The FP-growth methods [9 

utilize the FP-tree structure to avoid accessing the disk again and again. It only 

needs to read the data on disk twice to build up the FP-tree in memory and 

then traverse the tree to calculate the support. There are many algorithms using 

this data structure, including [25’ 13，10, 14, 21, 23, 26]. For example, PP-mine 

proposed in [25] simplified the tree structure and improved the mining speed by 

avoiding building sub-tree recursively. Anymore, [16], whose mining procedure is 

similar to FP-growth, uses H-struct to load the data into memory . There are 

also many other methods, like [1, 12, 27, 24]. The algorithms of mining close 
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frequent itemsets and maxium frequent itemsets also use the above methods to 

find frequent patterns, [23, 26, 17, 4, 8, 5, 1, 12]. The only difference is that 

they do not need to find all frequent itemsets, so they can use some techniques 

to minimize the searching space. 

1.2 Data mining proxy serving for large num-

bers of users 

All the above methods just focus on the problem of single user and single query 

problem. In this thesis, we study a data mining proxy in a multi-user environment 

where a large number of users issue similar but different data mining queries 

from time to time. This work is motivated by the fact that in a large business 

enterprise a large number of users need to mine patterns according to their needs. 

Their needs may change from time and time, and the characteristics of data 

they have accumulated may change from time to time as well. The need for 

finding interesting patterns is not in a style of once-for-ever. Therefore, users 

need to register their data mining queries as a continuous query in a data mining 

system, and expect to see the results when a transactional database is updated 

periodically. In fact, the transactional database is highly possible to be updated 

frequently. Whenever a transactional database is updated, the system needs to 

run a large number of data mining queries registered. It is undesirable to process 

these data mining queries one-by-one. 

In the thesis, we focus on how to fast respond a user's data mining query by 

constructing a smallest but sufficient tree using both trees in a data mining proxy 

that are previously built for other users' requests and trees stored on disk that are 
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pre-computed for transactional databases. In the thesis, we propose some tree 

operations on PP-tree both in memory and on disk so as to utilize the pre-built 

trees. To implement the operations, bitmap code scheme is designed to encode 

the path information on PP-trees and some fast algorithms are implemented for 

each operation. The data mining proxy has significant impacts on data mining. 

First, the I / O cost can be minimized, because trees do not need always to be 

constructed by loading data from disk. Second, the data mining cost can be 

reduced, because the mining cost largely depends on the tree size. 

1.3 Privacy issues on proxy service 

The privacy and security are also very important in the implementation of the 

proxy. Considering the situation that the data are distributed in different proxies 

and the user needs to mine patterns from these distributed data, the owners of the 

data do not want the user to get the patterns which only belong to themselves. 

Therefore, the privacy preserving policy proposed in this thesis aims that each site 

only shares a part of their own encrypted data and the result of the decryption 

will get the whole data the same as the original ones for data mining. Using 

encryption is to guarantee that the others will not know the real content of the 

part of shared data. In our method, we utilize the properties of tree structure 

so as to minimize the requirement for data to be shared, because less data to 

be shared, less probably the others can guess the useful information from the 

encrypted data, e.g. the size of the data. But we still guarantee that the mining 

results are correct. Anymore, the communication cost can largely be cut down. 

Up to now, there are also some methods proposed to preserve the privacy in 
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data mining. [20] preserve the privacy by distorting the data and the user need 

to try his best to recover the distorted data, but this methods can only find the 

approximative patterns since the original data can never be recovered. [15] wants 

to mine the global patterns by sharing the patterns belonging to each site. To 

protect the privacy, this method let the users define some patterns which need to 

be preserved and do not share these patterns and some other patterns related. 

This methods also can not promise to find the whole patterns since some local 

patterns are hidden by the individual sites. Another disadvantage is that there 

are very large quantities of patterns, so it is very difficult to let the users to define 

some patterns to be hidden. [11] propose a method to share the patterns on each 

site by firstly encrypting the them and then decrypting the patterns after the user 

get the whole patterns. Thus users will not know which site the specific pattern 

is belong to. This method need to use the Apriori-like approach where each 

site first generates local patterns of length k, shares the local A;-length patterns 

to find global frequent ones and then uses them to generate local patterns of 

length k+1. Therefore the communication cost is very large since the number of 

patterns will explode when the length k increase. Secondly, when the length of 

patterns k increases, some sites will have no patterns of length k. If there are 

less than three sites have patterns of length k, this method can not guarantee 

the privacy. Anymore, this method will leak the size of the overlapping part of 

the local patterns between two sites. It also have danger of leakage of the length 

of patterns in each site. The patterns that are only locally frequent will also be 

revealed. That is to say it is not good to sharing local patterns even when they 

are encrypted. Comparing to these methods, our method only need the user to 

share very little data (not local patterns) in privacy preserving and finally get the 
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correct results of the patterns. Comparing to the other methods, we utilize the 

tree structure, so that only a little data need to be shared so as to minimize the 

probability of leakage useful information. Anymore, the I / O cost is also largely 

cut down. However, we still guarantee the mining results are correct. 

1.4 Organization of the thesis 

The rest of the thesis is organized as follows. Chapter 2 introduces frequent item-

sets mining and tree building requests. Chapter 3 gives an overview of the data 

mining proxy, followed by the definition of tree operations. Several observations 

and remarks will be given using examples. Chapter 4 discusses the implementa-

tion details of the proxy. We will report our experimental results in Chapter 5. 

The privacy preserving issues and the solutions will be discussed in Chapter 6. 

The conclusion of the thesis will be given in Chapter 7. 

• End of chapter. 



Chapter 2 

Frequent itemsets mining 

Summary 

In this chapter, some basic terms on association rules mining and 

frequent itemset mining are introduced. A brief view of PP-tree and 

the definition of three types of data mining queries are presented. 

An running example is presented to explain these terms.  

2.1 Preliminaries 

Let I - {X1,X2, • • • , Xn} be a set of items. An itemset X is a subset of items / ’ 

X C 1. A transaction Tx = (tid, X) is a pair, where X is an itemset and tid is 

its unique identifier. A transaction Tx = {tid, X) is said to contain Ty = {tid, Y) 

if and only li Y C X. A transaction database TDB is a set of transactions. 

The number of transactions in TDB that contains X is called the support of X , 

denoted as sup{X). An itemset X is a frequent pattern, if and only if sup{X) > r， 

7 



2.2 Data mining queries 8 

where r is a threshold called a minimum support. The frequent pattern mining 

problem is to find the complete set of frequent patterns in a given transaction 

database with respect to a given support threshold, r . 

A prefix-path tree is an order tree. Let F be a set of frequent items (1-

itemsets) in a total order (：̂).̂  A node in the tree is labelled for a frequent 

item in F. The root of the tree represents "null" item. The children of a node 

are listed following the order. A path of length I from the root to a node in 

the tree represents a /-itemset. We use a sequence of items to represent a path. 

The rank of a prefix-path tree is the number of frequent 1-itemsets. In this 

paper, we adopt a prefix-path tree, called PP-tree, reported in our early work 

'25]. The PP-tree is much simpler than FP-tree [9], because it is node-link free 

and does not need to link all nodes with the same item names when construction. 

The PP-mine algorithm [25], which mines patterns without constructing any 

conditional trees, outperformed the FP-growth algorithm, which mines patterns 

by recursively constructing conditional FP-trees. 

2.2 Data mining queries 

A data mining query is to mine frequent patterns from a transaction database 

TDB. Let T be a given threshold and V be an itemset. We consider three types 

of data mining queries below. 

• Frequent Itemset Mining Query: mining frequent patterns whose sup-

port is greater than or equal to r . 

iThe order can be any order like frequency order, lexicographic order. 
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• Frequent super-itemset Mining Query: mining frequent patterns that 

include all items in V, and have a support that is greater than or equal 

to r . Examples include how to find causes of a certain rule, for example, 

* X , where * indicates any sets. 

• Frequent sub-itemset Mining Query: mining frequent patterns that 

are included in V, and have a support that is greater than or equal to r. 

Examples include mining rules for a limited set of products, for example, 

daily products. 

All data mining queries can be one of these three types or a combination of them. 

Each data mining query is processed in two steps: i) constructing an initial PP-

tree, and ii) mining on top of the PP-tree being constructed. We call the former 

a frequent tree hmlding request, which can be done by constructing a tree from 

either TDB or a previously built tree. The three corresponding frequent tree 

building requests are given as follows. 

• Frequent Itemset Tree Building Request: constructing a tree in mem-

ory which is smallest and sufficient to mine frequent patterns whose support 

is greater than or equal to r . 

• Frequent super-itemset Tree Building Request: constructing a tree 

in memory which is smallest and sufficient to mine frequent patterns that 

include items in V and have a support that greater than or equal to r. The 

tree being built can be used to find all possible causes of a certain rule, for 

example, * F , where * indicates any sets. 

• Frequent sub-itemset Tree Building Request: constructing a tree in 

memory which is smallest and sufficient to mine frequent patterns that are 
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included in V and have a support that is greater than or equal to r. The 

tree being built can be used to find all possible patterns for a limited set of 

itemsets, -> V2 where K U V^ = V̂  and 门 二 0. An example is to 

mine all frequent patterns among daily products in a supermarket. 

2.3 A running example 

In this paper, we concentrate ourselves on the efficient tree building requests in 

a data mining proxy. A running example is given below. 

Example 1 Let the first two columns of the table in Figure 2.1 be our 

running transaction database TDB. The frequent items are shown in the third 

column where the minimum support threshold is T = 4. 

T I P Items Freq items 
T o o c , d , e , f , g， i c,d,e,f,g 

200 a,c,d,e,f,m a，c,d,e,f 
300 a,b，d,g，k a,b,d,g 
400 a,c,h a,c 
500 a,c,e,f,g a,c,e,f,g 
600 a,b,e,n a,b,e 
700 a,b,c,d,m a,b,c,d 
800 a,e’k a,e 
900 a，b,d,g，h a,b,d,g 
1000 c,e,f,m c,e,f 
1100 c,d，e,g，h,j c，d,e,g 

Figure 2.1: An Example 

A PP-tree example is shown in Figure 2.2 . The rank of this PP-tree is 7, 

because 7 frequent 1-itemsets, a, c, e, d, g, b and /，are presented in frequency 
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@ ® ® 

@ c ® 空 

Figure 2.2: PP-tree for Example 1 

order. Their corresponding supports are, 8，7, 7, 6, 5，4 and 4，respectively, which 

are greater than or equal to the minimum support (r = 4). The root is for “mill” 

item. Each non-root node, v, has a pair i:s shown inside the node, where i and 

s represent an item and a support. The support is the support for an itemset 

represented by the items along the path from the root to the node v. For example, 

an itemset of {a, c, e} is represented by a path ace with a support of 2. 

• End of chapter. 





Chapter 3 

Data Mining Proxy 

Summary 

In this chapter, we will have an overview of the data mining proxy. 

Three tree operations are introduced here. We will explain how the 

data mining proxy works with these tree operations.  

The data mining proxy is designed and developed to support a large number of 

users with similar data mining queries by fast responding a user's tree building 

request. The efficiency of tree building requests is achieved by utilizing both 

trees in the data mining proxy that are previously built for other users' requests 

and trees stored on disk that is pre-computed for transactional databases. In 

addition to efficiency issues, the effectiveness of data mining proxy is achieved 

by responding a smallest and sufficient tree for a users data mining query. It is 

because the cost of mining all possible patterns in a tree heavily depends on the 

tree size. The smaller the tree is, the less mining cost it occurs. 

13 



3.1 Load data for mining 14 

3.1 Load data for mining 

In a transaction database, not all data in it are required for a data mining query. 

According to the Apriori property, which says if any itemset I is frequent, any 

sub-itemset of I must be frequent, any item i in a frequent itemset I, w.r.t. min-

sup r specified by a user, must be frequent. Therefore, in each transaction, only 

the frequent items will contribute to the support of the frequent itemsets. If the 

user submit a frequent sub-itemset data mining query, only the items that are 

frequent, w.r.t. r , and in the user specified sub-itemset will contribute to this 

query. If the user submit a frequent supper-itemset data mining query, only the 

items that are frequent, w.r.t. r , and in the transactions that contains all the 

items in the user specified supper-itemset will contribute to this query. Thus, 

for each transaction, only those items contributing to the query are required to 

be projected into memory. For a user specified query q, we denote 7Tq(T) as the 

projection part of the transactions in T for the query q, where T is a TDB. If the 

user submit a frequent itemset data mining query, the projection can be denoted 

as 7r^(T), where r is user-specified min-support. If the user submit a frequent 

sub-itemset data mining query ( frequent sub-itemset data mining query resp.) it 

can be denoted as nry{Trans{T))[长丁y(Trans(T)) resp.), where V is the sub-

itemset (super-itemset resp.) specified by the user. For example, in Figure 2.1, 

let T be the TDB in Example 1, the content of column two is the transactions 

in T and the content of column three is 7r4(T)’ where r = 4. For any transaction 

t, the projected part of t for a query q is denoted as T T g � .I n Example 1, the 

projection of transaction 200 for the query with r = 4 is a, c, d, e, f . 

Because the prefix path tree is a good compress form to store itemsets in 
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memory, the projection of a TDB, which is also a set of itemsets, can be stored 

in memory in form of a prefix path tree. Anymore, if we need to use the other 

algorithms, the prefix path tree containing all the necessary information can be 

transferred into other data structure. 

For a new query qnew, an old query Qom and a transaction t in TDB T, 

二 {s\s is an itemset and s 二 TTg^eJ力)门�neJ力)^^ any trans-

action t in T }. If 兀gneJ乃 it is to say that we can project 

^Qnew (^)^^gnea. (^) ^0111 the tice for Qoid to build up a tree for qnew and avoid 

loading this part from disk. Therefore, for a query q, the projection 7Tg(T) can 

be the merge of the projections from TDB and the trees built for the previous 

queries. 

But even if we only load the projection part from TDB, it also needs us 

to check every transaction in it, which means we need to scan the whole TDB, 

so it can not improve efficiency. We consider to reorganize the TDB into a tree 

structure so that we can only need to access a part of the tree to get the projection 

and have no need to scan the rest part. The method of materialize a tree on disk 

will be introduced in the next chapter. 

In the implementation, we choose PP-tree structure proposed in Xu02 [25 . 

This is because PP-tree is the simplest prefix path tree structure since it only 

need the links from parent to its children and no any other additional links while 

others, like FP-tree, need to link up the nodes with the same item name. The 

experiments also show that PP-mine performs better than other algorithms in 

many cases. Finally and most importantly, we implement a method to materialize 

PP-tree on disk. 
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3.2 An Overview 

An overview of the data mining proxy is shown in Figure 3.1. Here, we assume 

that a PPi-tiee exists for a transaction database, TDBi, on disk, whose minimum 

support, Trrii, IS Small enough to support all user requests. All frequent patterns in 

TDBi that are greater than r^. in TDBi are materialized in PPrtiee. As shown 

later in this paper, such a PFrtree is considerably small. Several small subtrees 

of PPi-tiee can co-exist in data mining proxy. Using the operations introduced 

later, these co-existing trees in proxy and on disk can be utilized to construct a 

new tree for a new data mining query efficiently. 

3.3 Tree Operations 

In this section, we will propose some operations on the PP^-tree and PP/^-tree 

to achieve the function of the proxy. 

Let TDB be a transaction database that includes items in / 二 {xi，：2；2’ •.. , x^}, 

where Xi is a 1-itemset. 

Definition 3.1 : Given a minimum support r and a set of items V C I. 

Let T, Ti and T: he PP-trees. Three tree operations are defined. 

• A sub-projection operation, denoted TTry{T), is to project a subtree from the 

given tree T. The resulting tree includes all itemsets in V whose minimum 

support is greater than or equal to r. 

• A super-projection operation, denoted 7Try{T), is to project a subtree from 

the given tree T. The resulting tree includes all itemsets which are a super 

set ofV and have a minimum support that is greater than or equal to r. 
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Data Mining Proxy 

Loading/Storing 
^ ^ ^ ^ ^ ^ ^ TDB trees 

•DB-1 J - ^ 

Large Databases on disk 

Figure 3.1: An Overview 

• A merge operation, denoted Ti © T2, is to merge two trees, Ti and T�’ and 

results a new tree. 

Given two PP-trees, T] and 7} ’ we say 7\ C Tj if is a subtree of Tj. More 

precisely, by % C Tj we mean that every itemset, X , represented in T] is also 

in Tj. AS examples, if T, 二 then C 7}’ and if n = T” then 

C Tk and Tj C Tk. Let Tj be the largest PP-tree that include every single 

Xi e I appearing in TDB. Obviously, any tree is a subtree of Tj. Consider a data 

mining query, g, and a mining algorithm, M, We denote the resulting frequent 
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patterns for q as Mg(-). For two PP-trees, Ti and T), we say J]三q Tj if Mq{Ti) 

is the same as Mq{Tj). In other words, the two trees, T] and Tj, will give the 

same frequent patterns for the same query q. The smallest tree for a data mining 

query is defined below. 

Definition 3.2 : For a data mining query q with a minimum support r and 

a set of items V, the smallest tree, T (C T：), is a tree that satisfies the condition 

of T 三q Tj, but does not satisfy T 三q Tj if any item is removed from T. 

3.4 Data Mining Usages and Observations 

A simple scenario using the tree operations to show the proxy functions is given 

below. Here, consider Figure 2.2, which represents a PP-tree, 7\, on disk for the 

transaction database in Figure 2.1 (7" = 4). Assume the memory space in the 

proxy is limited, and the data mining proxy is initially empty. First, suppose 

the first data mining query is a frequent sub-itemset mining query with r = 4 

and V 二 {d，g，b，f}. The corresponding frequent sub-itemset tree building 

request is issued to the data mining proxy with the same r and V. The data 

mining proxy will process it as 了2 =兀4’{3’仏&，/} (了i) by loading a subtree from 

disk and constructing T2 in the data mining proxy (Figure 3.2 (a)). Second, 

suppose another corresponding tree building request comes and can be processed 

as T3 二 7r4，{c，e}(Ti). The data mining proxy loads a subtree from disk, and 

constructs the tree in memory (Figure 3.2 (b)), because the requesting items 

do not exist in any tree in memory. Third, suppose that a user issues another 

frequent sub-itemset tree building request with r = 4 and V = {c, e, d, g}. 

At this stage, there are two trees, T2 and T3, in the proxy. T2 contains two 
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requested items, c and e, whereas T3 contains the other two requested items, d 

and g. The requested tree can be constructed by merging T: and a subtree of 

T3. The data mining proxy process the request as T4 = �( T ^ , 7r4，{d,力(了2)) (Figure 

3.2 (c)), which does not involve any I / O costs. Fourth, assume that a frequent 

super-ITemset tree building request comes with T 二 4 and V = {b}. The data 

mining proxy processes the request as T5 = (T2), which requests no I /O 

costs. The constructed tree, T5, is shown in Figure 3.2 (d). The root node in 

Figure 3.2 (d) represents where X represents the it emset that is included 

in every itemset in the tree and s is its support. Next, suppose a user issues 

a frequent sub-itemset tree building request with T = 4 and {a}. Although T5 

contains a, it is incorrect to process the request as 7r4，{a}(T5)，because the support 

for a shall be 8, where the support for a in T5 is 4. That is 7r4’{a}(T5) 

It needs to be processed as 7r4’{a}(Ti). 

Remarks It is important to know that, for a given data mining query q, 

a sequence of tree operations can be easily identified that results in a smallest 

PP-tree for q. All the resulting trees shown in Figure 3.2 are the smallest trees 

to respond the corresponding data mining query. 

Three observations can be made below. First, the trees being built for 

frequent sub-itemset tree building requests can be possibly reused to support 

other frequent tree building requests. That is, given two trees Ti and T), where 

Ti (Tj) is a tree being built for a frequent sub-itemset mining query (with V^ 

(Vj) and Ti {tj)) . When a new frequent sub-itemset mining query (with r^ and 

Vk) comes, a corresponding tree Tk can be built using T] and Tj if V^ C y, U 

Vj. An example is T4 二 �(了3’兀4’伙5}(�2)) (Figure 3.2 (c)). Second, frequent 

itemset tree building requests are a special case of the frequent sub-itemset tree 
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(a) T, = (b) T3 二 ^4,{c,e}(Ti) 

root ( ~ 

( J ^ @ (S) 
(55) (J^ 命 

(C) T4 = ©(T3,7r4,K,}(T2)) (d) T5 =升4’W(T2)) 

Figure 3.2: Four Tree Projections (Suppose 7\ is the PP-tree in Figure 2.2) 

building requests, where V can be considered as to include all possible frequent 1-

itemsets. It possesses the same property as the frequent sub-itemset tree building 

requests. Third, a tree being built for responding frequent super-itemset tree 

building request, Ti (with Vi and r^), is difficult to be reused, because itemsets 

X — Vi represented in J] is partial. There exist occurrences of items in X — Vi 

that do not exist in T]. T] does not have a closure. As an example, there are four 

a's that co-exist with b as for the frequent super-itemset tree building request 

Ŷ  = {a, 6} (Figure 3.2 (d)). But there are other four a's which do not co-exist 

with h (see Figure 2.1). 
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• End of chapter. 





Chapter 4 

Implementation of Proxy 

Summary 

In this chapter, we discuss a coding scheme which plays a very 

important role in the implementations of tree operations. We will 

discuss in-memory and on-disk representations of PP-tree , and will 

illustrate how to implement tree operations so that the advantages 

of the tree structure, in memory and on disk, and the coding scheme 

can be fully utilized. 

4.1 Problems in implementation 

To implement the data mining proxy, there are some problems need to be solved. 

The first is how to determine the ancestor-descendent relationship between two 

nodes. For example, in Figure 3.2, when we project the node "d : 6" from tree 

in sub-figure (a) to the tree in sub-figure (c), ” d : 3" is divided into three nodes: 

23 
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”d : 3" as the child of "e : 5", ”d : 1" as the child of " c : 7" and ”d : 2" as 

the child of root node. Therefore, when doing projection, we need a method to 

determine how to divide the node and then insert the divisions to be a child of a 

appropriate ancestor in the new tree. In this chapter, we will introduce a bitmap 

code scheme to solve this problem. 

The second problem is concerning the efficiency of the operation. Since the 

operations are to be done on trees, it will make the time complexity exploded if 

we recursively visit the tree to find next projection part, especially when the tree 

is stored on disk. In this chapter, we will try to find the methods to traverse the 

tree to be projected from, either on disk or in memory, one and only once to get 

all data need to be projected. It needs the bitmap codes to be well organized in 

the trees on disk and in memory. We also need to skip some parts in the trees if 

we can determine there is no data to be projected in these parts. 

4.2 A Coding Scheme 

Definition 4.1 Bitmap-Code: Given a PP-tree of rank I for a set of frequent 

1-itemsets in a total order. A bitmap-code of length I-hits is assigned to a node 

V in PP-tree, denoted code{v). The i-th hit in code{v) indicates whether the i-th 

frequent 1-itemset is included in the itemsets represented by the path from the root 

to the node v. The code for a node is unique such that code{v) + code{u) ifv^u 

in a PP-tree. 

Consider the PP-tree of rank 7 shown in Figure 2.2 for the 7 frequent 1-

itemsets, a, c, e, d, g, b and /, in a total order. Here, a is the first 1-itemset, and 

f is the 7th 1-itemset. The corresponding coded PP-tree is given in Figure 4.1. 
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Here, code{v):s is given inside the node v, where code(v) is a bitmap-code and s 

is the support of the itemsets represented by code(v). For example, the leftmost 

leaf node v is coded as 1111001 which represents the itemsets acedf along the 

leftmost path of the coded PP-tree. The support of this itemset is 1. 

Given two nodes v and u, and let Cy = code{v) and Cu — code{u). We 

define an operator ancestor [Cy, Cu) which returns true if the node v is an ancestor 

of n, otherwise false. This function is implemented as follows. Let lastOne{cy) 

be a function that returns the bit position of the last 1-bit from the left, and 

firstK{cy, k) be a function that returns the first k bits from the left of Cy. 

The function ancestor{c們 Cu) returns true if lastOne{cy) < lastOne{cu) and 

firstK{cy, lastOne{cy)) 0 firstK{cu, lastOne{cy)) 二 0，where � is an XOR bit-

operator. Consider the coded PP-tree in Figure 2.2 where the codes for ac, ae, 

and acegf are 1100000, 1010000 and 1110101, respectively. Here, ac is not an an-

cestor of ae because /irsti^(nOOOOO，2)�/ksti^lOlOOOO, 2) = 11 ©10 0, and 

ac is an ancestor of acegf because firstK(1100000, 2) ® /#sti^^(11110101，2)= 

root^  

(Jooooooisx^^^ (011^00^ 

(jjoooooĵ  Cjoioooojj) (^0100^ CojlOOO^ 

C i i ^ ( W o o ^ ^ o ^ 

Figure 4.1: A coded PP-tree for Example 1 
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11011 二 0. We all defined a function left{cy, Cy) which returns true if the integer 

representation of the bitmap-code c” is less than that of Cu-

The bitmap coding scheme we used in this paper is different the coding 

scheme we proposed in our early work [25]. In [25], each node is encoded with a 

number (of the pre-order of traversal of the complete PP-tree). We call it non-

bitmap coding scheme. Given a rank I of a PP-tree (/ frequent 1-itemsets are 

supported in the tree), both coding schema need I bits. The advantages of bitmap 

coding scheme are given below. First, the pre-order � used in the non-bitmap 

coding scheme is also maintained in the bitmap coding scheme. Let Cy and Cu 

be two bitmap codes, then Cy ：< Cu when ancestor{cy, Cu) is true or otherwise 

left{cu, Cy) is true. We use the pre-order to store a PP-tree on disk, and use 

the pre-order to efficiently load a subtree from the PP-tree on disk. Second, the 

bitmap coding scheme can be effectively compressed since most bits in a code are 

0. We conducted some testing. Our result shows that the compression ratio for 

bitmap coding scheme is very high, especially for sparse transaction databases. 

Third, we only need X O R bit-operator, ©，to identify the position of a node in 

the tree. The non-bitmap coding scheme needs to use a formula to calculate the 

position recursively, which is rather extensive. 

In order to further reduce the space for maintaining the bitmap codes in 

memory, we only keep one copy of a bitmap code in memory when it appears 

in many different positions in many PP-trees. A code recorded in a node of a 

PP-tree is replaced with a pointer pointing to the bitmap. A bitmap-code will 

be removed when it is not used in any PP-trees in memory with assistance of a 

counter attached to the bitmap code. 
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4.3 On-disk/In-Memory Tree Representations and 

Mining 

A PP-tiee has an on-disk representation, denoted PPn-tiee. A PPD-tiee is rep-

resented as (T, F, / , Tm)- Here, T is a heap for the tree structure in which an 

element consists of a bitmap-code and its count. F stores N (the rank of the 

PP-tree) frequent 1-itemsets with their counts in frequency order. I is an index 

indicating the ranges of bit map-codes in disk-pages, r^ is the minimum support 

used to build PP^-tree on disk. This PPo-tree can be used for mining frequent 

itemsets with a minimum r > r^. The codes in T are organized following the 

pre-order (；̂ ) among bitmap-codes. In the following, we use order{i) to indicate 

the position of an item i in F, and use item{i) to indicate the item name of the 

2-th item in F such that i = item{order{i)) for i e F. 

The on-disk PP^-tree for the PP-tree (Figure 2.2) is shown in Figure 4.2. 

In Figure 4.2, F stores the 7 frequent 1-itemsets whose supports are greater than 

or equal to r^ = 4. For example, order{d) = 4, because it is the fourth in F. 

The on-disk tree is stored on 7 consecutive disk-pages in the heap T. I maintains 

a pair of bitmap-codes as the boundary for each disk-page in T. 

Remarks Given two nodes v and u. Let Cy 二 codei^v) and Cu 二 codeiu), 

and let dy 二 addr[v�and du = addr(u) where addr{v) indicates the location of 

node V in one of the consecutive disk-pages. The pre-order ：< implies the order 

of nodes on disk. That is, Cy ̂  c^ implies dy < du- Furthermore, it means that 

an ancestor of a node v can only exist before v, and a child of v can only exist 

after v. This property is fully utilized in order to load a subtree from disk into 

memory. 
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It needs to be pointed out that because there are no pointers in the on-disk 

representation and the codes can be compressed, the disk space required is not 

large. 

F : TABLE T 
a c e d g b f  

PAGE 1 PAGE 2 PAGE 3 

8 7 7 6 5 4 4__ ^̂  1000000:8 04 1111000:1 07 1110101:1 

1 ： INDEX 02 1100000:4 05 1111001:1 08 1101000:1 
r n 03 1110000:2 06 1110100:1 09 1101010:1 
1 1000000:1110000 

p a g e 4 PAGE 5 PAGE 6 
2 1111000:1110100 

10 1010000:2 13 1001100:2 16 0110000:3 
1110101:1101010 11 1010010:1 14 1001110:2 17 0111000:2 

4 1010000:1001000 12 1001000:2 15 0100000:3 18 0111100:2 

5 1001100:0100000 PAGE 7 

！ 0110000:0111100 19| 0111101:1 

7 0111101:0110001 I 201 0110001:1 

Figure 4.2: A PP^-tree for Figure 2.2 ( t爪 = 4 ) 

A prefix-path tree has an in-memory representation. In [25], we proposed 

an in-memory tree, denoted PPM-tree. Like FP-tree, despite the pointers to the 

children nodes, a node in PP^-tree includes a pair of item-name and count and 

a node-link. The count registers the number of transactions represented by the 

path reaching from the root to this node. Unlike FP-tree, PPM-tree is node-

link free. That is, there are no other links to link all node with the same item 

names. Figure 2.2 shows a PPM-tree. Also, in [25], we proposed a reconstructive 

mining algorithm, called PP-Mine, that mines frequent patterns by reconstructing 

PPM-tree without constructing any conditional tree. We showed that PP-Mine 

outperformed FP-growth [9]. In this paper, in order to support tree projection 
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and tree merging, we modify the PPM-tree in [25] by adding a pointer to a list of 

pairs of bitmap-code and count. Because PP-Mine only needs to mine patterns 

using the pair of item-name and count but not the bitmap-codes, which are 

only needed to construct a tree, the mining performance is not affected. In the 

following, we use PPm to refer to the modified in-memory tree in this paper. 

Figure 4.3 shows three in-memory trees. Figure 4.3 (a) shows the same 

PPM-tree (Ti) as shown in Figure 2.2. Figure 4.3 (b) shows the image of a PPm-

tree T: = 7̂ ,{3，仏&，/}(了1) for mining. The shaded nodes in (Figure 4.3 (a)) are 

projected for constructing T2 (Figure 4.3 (b)). Note that the leftmost subtree 

of T2 is constructed by merging four paths as shown in the four dotted ovals in 

Figure 4.3 (a). Figure 4.3 (c) shows the internal image of T2 using bitmap-codes, 

which maintains all pieces of the path information for further tree merging and 

projection. 

4.4 Tree Operation Implementations 

In this section, we will propose some algorithms to construct PP^-tree for tree 

building request using the operations introduced above. 

If the request belongs to the type of Frequent Itemset Tree Building Request, 

it can be written in the form that Tq = 7iv，vb(P)，where Tq is the result PPm-

tree, r is the min-support threshold, Vq is (P and P represents the proxy that 

contains a set of PP-trees. Suppose in P the PP£)-tree's min-support is larger or 

equal to r and the set of items in PPO-tiee is /，Tq can be expressed as the form 

Tq = 7ry(P), where V Q I and support of all the items in V is larger than or 

equal to r. Because Tq can be constructed from many trees in P, in memory or 
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on disk, we can to write Tq = T^ViiTi) ® © ^v^iTs) © …© 兀vjTn), where 
n 

TiS are PP-trees in P, [J Vi = V and ViDVj = for any i ^ j , i, j = 1, 2, 3 ， n . 
i=l 

In this equation, all min-support are omitted because if contains the items in 

VI and VI C y , all the items in VI satisfy the min-support threshold r since V 

only contains the items whose support is larger than or equal to r. 

Remarks Because r has no use in the procedure of building trees when the 

items not satisfying this threshold r have been pruned, we do not need to write r 

in the expressions for tree-building requests. 

If the request belongs to the type of Frequent Sub-itemset Tree Building 

Request, similarly, the returned PPM-tiee Tq can be expressed as Tq = 7iv，vb(P)= 

7Tv{P) = 7Tv, (Ti) ©TTŷ  (了2) ©TT^g (T3) © …® C^n)，wheie P is the proxy contains 

of a lot of PP-trees in memory or on disk, r is min-support threshold, VJ) is the 

user specified sub-itemset, ^ is a subset of Vq and only contains the items whose 
n 

support is larger or equal to r, T] is PP-tree in P, \J VI = V and VI n VJ = for 

any i + 二 1,2,3，...，n. 

If the request belongs to the type of Frequent Super-itemset Tree Building 

Request, it can be expressed as Tq = where Tq is the result P^M-tree, r 
八 

is the min-support threshold, V is user specified super-itemset and P represents 

the proxy that consists of a set of trees. Let 4 be the item with the largest order 

in y . The expression can be changed into the form Tq 二 介乂^(P)’ where V is the 
A A 

union of In and the items whose order is larger than In and support is larger than 

or equal to r. Because the nodes in the result tree for the items whose order is less 

than In can be constructed using the codes of the codes of /几.The method will 

be introduced later. Therefore, Tq also can be write as the merge of projections 

of some trees: Tq 二 TTy^yin)�升v^2’t>(T2)�升 1/3,1>(了3)�…�分…4了几)，where T\s 
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n 

are PP-trees in P, |J V̂  = y and Vi OVj = cf), for any i + j, = 1, 2,3,.. . , n. 

The implementations of the operations tt, tt and � are given in the following 

sections. 

4.4.1 Tree Projection Operation Implementations: 7r̂ 2m() 

and 7Tm2m[) 

In this section, we address implementations of sub-projection operation (TT). TWO 

basic algorithms are given. They are tree projection from disk to memory (7rd2m) 

and tree projection from memory to memory (7rm2m). Both are implemented as 

to be able to project a tree, and merge the projected tree with a given tree in 

memory. When the given tree in memory is empty, both 7rd2mO and tt饥2mO act 

as tree projection operation. The reason we adopt this implementation is that it 

makes easier for us to implement the tree merge operation, T ' 卜 © 7̂ 2, d it 

can be implemented using two tree projection operations as follows. First, let T' 

be empty. Second, project Ti to T'. Third, project T: to T'. 

Given a frequent sub-itemset tree building request with r and Vq, where 

a set of items 1/, ^ C ！/。’ needs to be projected from a PPo-tree using project 

operation, the implementation of 7Td2m for loading a subtree consisting of items 

in V from a PP^^-tree on disk to an empty PPM-tiee in memory is illustrated in 

Algorithm 1. Five parameters will be passed in TTd2m{r,p, d, V, k). Here, the first 

two parameters, r and p specify tree traversal on PPM-tiee. The third parameter 

d specifies tree traversal on PP^^-tree. V is the set of items to be projected from 

PPo-tree. The details of these parameters are described in Algorithm 1. 

Initially, we call 7rd2m(̂ , 0, 0, V, 0), where r points to the root node of the 
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PPM-tiee to be built, and the third parameter, 0, points to the first record in the 

head T of the PPo-tree. As an example, Let T\ denote the PPo-tree shown in 

Figure 4.2, indicated. The result of the projection 7ry(Ti), K = {d，g, b, / } , is 

shown in Figure 4.3 (c), as the result of 7ra2m(j, 0,0, {d, g, b, / } , 0). 

Algorithm 1 'Kd2m{r,p,d,V,k)  
Input : the current position in a PPM-tree (r), the bitmap-code of r (p), the 
order of the item represented by r in the frequent 1-itemsets maintained in F of 
the PPo-tree (/c), the requested sub-itemset (F, which is sorted by the ascending 
order of order{i) for i 6 V), which is sorted by the ascending order of the items), 
and the current reading position on disk {d, which is passed as call-by-reference). 
Output: a PP/vf-tree. 

1: let I be the largest order (J) for any j G V; 
2： f or i from A; + 1 to / d o 
3: Ci — p, and set the 2-th bit in the bitmap-code q to be 1; 
4： if item{i) e V then 
5： if Ci is not in the current disk page then 
6： d — readPage(Q); {using the index I in the PPo-tree} 
7： end if 
8： Search d in the page by increasing d in the current disk page; 
9： if Ci exists then 

10： if there exists a node vi of item{lastOne{ci)) as a child of r then 
11： add Ci to Vi,s code list and increase Vi's support; 
12： else 
13： create a new node of Vi as r's child with code Ci and its support; 
14： end if 
15： rCd2m{vi,Ci,d,V,i)] 
16： end if 
17： else 
18： 7rd2m(r,Ci,d,V,i); 
19： end if 
20： end for  

Given frequent sub-itemset tree building request with r and Vq, where a 

set of items V, V C Vo, need to be loaded from a PPM-tree, the implementation 
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of 7irn2m foi projecting a PPM-tiee to a PPM-tree is illustrated in Algorithm 2. 

Four parameters will be passed in o, V, X ) . Here, the first parameter, r, 

specifies the root of the tree to be projected to, whereas the second parameter, o, 

specifies the tree traversal on the tree to be projected from. The third parameter 

y is a subset of V containing the items whose support is larger than or equal to 

T and need to be loaded from the tree rooted at r. X is an itemset containing the 

items in the tree rooted at r and satisfying that for any item in X , order(ix) < 

order(item(o)) . The details of these parameters are described in Algorithm 2. 

We will explain it when we discuss tree merging in next section. 

4.4.2 Tree Merge Operation Implementations: 

The tree merge operation can be implemented at the same time when doing pro-

jection operations. In this section, we use examples to illustrate how to implement 

tree merge operations. 

The tree merge operation is in the form of Ti 二 乃,where T2 and T3 can 

be either a PP-tree in memory or on disk. But in practice we often need to merge 

the projection of one tree with that of another, which is := TTr,Vi (^2) ®7Tt,V2 (了3). 

In order to make the procedure of building a tree more efficient,we first let 

store the result of projection 71>义1(了2)’ then do projection and merge operation 

7IV，v2(乃)® Ti using Tr̂ smO and/or tt爪2m0. If is a P^M-tree, 7r^2m() can 

directly be used to implement the projection from T2 to which has stored the 

result of 71vvi(T"2). If T2 is the tree on the disk, we use two different methods for 

Frequent Itemset Tree Building Request and Frequent Sub-itemset Tree Building 

Request respectively. For the previous one, we modified Tid2m{) a bit so as to do 

projection and merge at one time. For the later one, we first do projection and 
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Algorithm 2 TTm2m{r,o,V, X)  
Input: the root of a PPM-tree, Tt, to be projected to (r), the current position 
in a PPM-tree, T/, to be projected from (o), the requested sub-itemset {V), and 
items have have already been loaded in Tt (X) . Note V (X ) is sorted by the 
ascending order of order{i) for i mV (X) . 
Output: a PPM-tree. 

1： if item{o) G V then 
2: for every set of bitmap-codes of o, bi, that share the same prefix path do 
3： identify a position node for bi in the tree rooted at r, denoted v, by 

following the prefix path from r; 
4: if V has a child, u, having the same item name as represented by o then 
5: add bi to the bitmap-code list of u and increase u，s support; 
6： else 
7： create a new node u for bi as a child of v\ 
8： end if 
9： end for 

10： end if 
11： let I be the largest order{i) for i G V\ 
12： for each child node rii of o do 
13： if order{item{ni)) < I then 
14： if item{o) e V then 
15： TTm2m{r\ Tii.V.XU item{o))] 
16： else 
17： 7Tm2m{r, UuV.X)； 

18： end if 
19： end if 
20： end for  

save the result as a temporary tree in memory using 7Td2mO, and then merge this 

tree with using 7r^2m()- We explain the detail of implementation using some 

examples below. 

First, we consider how to merge an in-memory tree with a projected on-

disk subtree for a Frequent Itemset Tree Building Request. The strategy of tree 

merging is to traverse the in-memory tree and extending the in-memory tree by 

loading the unloaded items from the on-disk tree. As shown below, it can be 
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efficiently processed because every disk-page of the on-disk tree will be accessed 

at most once, and can be done using sequential I/Os. An example is shown in 

Figure 4.4 for a frequent sub-itemset tree building request r = 6 and V = 

Let Td be the on-disk tree as shown in Figure 4.2 where t•爪=4. In practice, we 

need to load a subtree from Td with items { a, c, e, d} because their supports are 

greater or equal to r = 6. Here, assume there is an in-memory tree, T^, as shown 

in Figure 4.4 with solid circles that include two items, / 爪 = { a , c}. Therefore, 

we only need to load a subtree from Td with Id == {e, d}. Traversing from the 

root of we first visit its leftmost leaf node ac with a bitmap-code 1100000 

following the pre-order. Assume the current reading position, d, in Td is at the 

address 01 (Figure 4.2). We will try to find whether the first child of ac, ace 

(with a bitmap-code 1110000), resides in Td by searching from d. We can find 

the same bitmap-code 1110000 with support 2 at the address 03, and will add 

a node ace in T爪.Then we will continuously search for ace's child, aced (with 

a bitmap-code 1111000), and will find it at the address 04. A new node will 

be added into T饥 accordingly. Later on, we will back-track to the node ac, and 

try to see whether the 2nd child of ac, acd (with a bitmap-code 1101000) exists 

in Td by searching from the current reading position d, which is pointing to 05. 

Suppose that we have created a node ae in T饥 and is now trying to check whether 

aed with a possible bitmap-code 1011000 in T^. When we search through and 

move the current reading position d to the address 12, we can determine that aed 

does not exist in Td because the bitmap code of aed {1011000) is greater than the 

bitmap-code at the address 12 {1001000), which implies that aed cannot exist 

after the address 12 following the pre-order. Therefor, we can efficiently skip 

some checking. We will repeat the process while traversing T爪.Every disk-page 
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will be accessed at most once. 

Second, we consider how to merge an non-empty in-memory tree with a 

projected on-disk subtree when the specified sub-itemset V is non-empty. Here, 

we also assume the given r > r^. However, we can not use the same traversing-

and-extending approach, because any item i E V, that we need to obtain from 

the on-disk tree, may exist at different places in the on-disk tree. Obtaining all 

occurrences of i from the on-disk tree will result random I / O and there is no 

guarantee that the disk-pages will be read at most once. In order to read a disk-

page at most once, we first load those items that do not exist in the in-memory 

tree from the on-disk tree. Then, we merge two in-memory trees. The in-memory 

tree merging will be discussed next. 

Third, we use an example to explain how to merge two in-memory trees 

using Algorithm 2. In Figure 4.5, there are two trees in memory, rooted at 

rootl containing items of {c, e}, and T) rooted at root2 containing items of {g， 

b, / } . We show how to project the itemset V = {g，f} from T2 to Initially, 

we call 7Tm2m{rootl, root2, V, X ) , where X 二 {c,e}. Thus, starting from root2, 

it will recursively call 7^m2m{rootl, g, V, X) to check the first child of root2, the 

node g. There are three bitmap-codes with this node. The first and the third 

bitmap-codes 1110100 and 0111100 should be handled as a descendant of ce 

0110000 in Ti, because both g and f have lower frequency than any item inX = 

{c，e} and both bitmap-codes indicate that they contain both c and e. Therefore, 

we traverse from rootl and follow the path ce until we reach the node ce. We 

then find that it has no children that contains g at this stage. Thus a new node 

ceg is created with support 2 and both bitmap-codes 1110100 and 0111100 are 

attached to the newly created node. Comparing the second bitmap-code of node 
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g in T2 {1001100) and X , we can determine that this occurrence of g does not 

have any ancestors in Ti, so a new node g is created as the last child of rootl 

with the same bitmap-code 1001100. At the end, we add g into X , so X becomes 

{c, e, g]. We continuous tree merging by checking the node g's children in T2. 

Because its first child node b is not included F , we will call 7[m2m{rootl, gf, V, 

X) to project gf from T\ to T2. The similar procedure will repeat until is 

completely merged with T2. 

4.4.3 Frequent Itemset/Sub-itemset Tree Building Request 

The implementation of the frequent Itemset/sub-itemset tree building request is 

sketched in Algorithm 3. Recall a frequent itemset tree building request with r 

can be supported as a frequent sub-itemset tree building request with the same 

r , where V is set to be F as supported in the PPo-tree. Therefore, the same 

method can be used for these two types of requests. The strategy we used in the 

procedure selectTreesInMemory is to select a tree, T], in-memory that contains 

the longest consecutive itemsets in V. Let V be the intersection of the itemsets 

contained in the in-memory T] and V. We repeat the same procedure until V 

becomes empty or we can not handle any more 1-itemsets. If V is empty, we say it 

is sufficient to construct a tree for the frequent sub-itemset tree building request 

using in-memory trees only. The procedure loadSubtreeFromDisk is very similar 

to the one we used in our previous work [25]. The procedure pkmMem merges 

subtrees as follows. First, it sorts V following the order(i) for any i G V. Second, 

we create an empty tree 7；. Third, we attempt to find an in-memory tree T 

that contains all the top consecutive high frequency k items in V, denoted by 

Let V ^ V - V . We project V' from T and merge the projected subtree 
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into Tr. We repeat the second step until V becomes empty. The procedure 

pkmMemDisk takes the similar approach. It needs projects all the items that 

can not be found any in-memory trees from the on-disk tree. Then, it can call 

the procedure pSzmMem to complete the task. 

Remarks Suppose Vi, V2 and V2, are three itemsets all of which are subset 

of V, where p| V2 = 0 and A 二 4>. Vi and V^ can be projected from J\ 

and V2 can be projected from T2. If for any item ii in Vi； any item in V2 and 

any item in V3, order (i!) < orderii^) < order (is), we will do 7Tv^(Ti), 77^2(^2) 

and 71V3(Ti) one after one. This is because if we project Vi\JVs at first, when 

projecting the nodes for V2, which will be the ancestors of the nodes for V3； the 

nodes for V3 will need to be split into different branches. It is not efficient to do 

this additional work of splitting branches. 

Algor i thm 3 SubTree-Request (r, V)  
Input: T is a minimum support and V is a itemset. 
Output: a PPM-tree. 

1： Tr — 0; 
2： Ts — selectTreesInMemory{T, V)] {Ts is a set of trees T2, • • • T^}.} 
3： if T, 0 then 
4： if Ts sufficient to construct the requested tree then 
5： if Ts 二 {T i } then 
6： Tr — twATiY, 
7： else 
8： pkmMem{Tr,T,V,Ts)., 
9： end if 

10： else 
11： pkmMemDiskiTr, r, V, T,); 
12： end if 
13： else 
14： Tr — loadSubtreeFromDiskir, V)] 
15： end if 
16： return T”；  
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4.4.4 The Tree Projection Operation 介 and Frequent Super-

itemset Tree Building Request 

As is addressed above, given a frequent super-itemset tree building request with 

T and itemset y , the tree constructed from the proxy is T �= 7r^y{P) = 7tyy{P), 
A A 

where F consists of In, the item with the largest order in V, and the items 
A 

whose order is larger than In and support is larger or equal to r . After we have 

constructed the tree consisting of the items in V and satisfying the super-itemset 
A constraint y , the upper-part of the tree consisting of the items whose order is 

A A 

less than In can be constructed using the codes for In having been loaded in the 

previous step. 

Therefore, the procedure of constructing a tree for a frequent super-itemset 

tree building request can be divided into two steps. In the first step, it projects 

a subtree from either memory or disk including all items in V. The resulting 

projected tree contains enough information to construct its upper half tree to 

support the super-itemset tree building request without any more 1/O costs. This 

step can be implemented using some tt operations on some different trees and 

merge the projection results. It can be expressed as Tq 二 ̂ 乂̂丄，。(Ti) ® 介化^(了2) © 

TTy^yiTs) ® … ® where T ŝ are PP-trees in P, V̂ i IJ U …^n 二 V and 

Vi nVj = (f), i j, i j = 1,2,3,...，n. The only difference is that when a code is 

to be loaded, we use V to check if all the bits in the codes corresponding to the 

items in V are set to be 1. If any bit is not set to be 1, the code can not be loaded 

and the branch rooted at it is not need to be traversed, because their ancestors 
A do not include all the items in V. 

In the second step, we will construct its upper part tree using the projected 
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tree itself. Figure 4.6 shows an example for a super-itemset tree building request 
A 

with r = 4 and V = {c, d} against an on-disk tree Ti (Figure 4.2). In the first 

step, it loads the V = {d, g, h, f} from the on-disk tree, where d is 二. Here, 

d has the largest ordered) for the items in V. A subtree is projected from J\ 

into memory such that it includes all of the four items in V if every path in the 

projected tree includes c and d. The resulting projected tree of the first step is 

shown on the left side in Figure 4.6. On the right side of Figure 4.6, we show the 

resulting ^4’{c’d}(Ti) where the shaded nodes are constructed using the bitmaps 

in the nodes in the left tree. As you can see from the figure, each code of d on 

the left side corresponds to a shaded path on the right side, and each bit set to 

be 1 of a code of d has one node on the right side to represent it excluding the 

bits corresponding to the item in V. Note: because it is a tree for frequent super-

itemset mining query, all itemsets (all paths) should include {c, d}, and therefore 

the root node indicates the fact. In Figure 3.2 (d), T5 can be constructed from 

the in-memory tree T2 because T2 contains all the items {b, / } that are needed to 

project from the on-disk 

• End of chapter. 
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Chapter 5 

Performance Studies 

Summary 

The extensive experiments have been done to test the data mining 

proxy. We report the experiment results in this chapter which show 

the good performance of the data mining proxy. 

We conducted our experimental studies on a PC with a Pentium 4 2.0GHz, IG 

Byte RAM running Windows XP Professional Edition. The method is imple-

mented in C++ using MS Visual C++ 6.0, Several datasets were used. We re-

port our results using three datasets: T25.I20.D100K with lOOK items {Sparse), 

with lOK items {Medium) and with IK items (Dense). Table 5.1 shows the actual 

sizes of datasets being generated. The sizes of the three data files are 1,295 8KB 

disk-pages (Sparse), 1,290 8KB disk-pages {Medium) and 1,265 8KB disk-pages 

{Dense), after converting them into binary format (one integer 4 bytes). 

Figure 5.1 shows the sizes of FPc-trees (number of 8KB pages) using differ-

ent Tra with which the disk-based trees are built. Figure 5.1 (a) shows the sizes 

45 



46 

^ a t a set Tran Number Item Number Tran Len Pattern len Size 
Sparse lOOK (89,180) lOOK (58,874) ^ ^ 10，360K 
Medium lOOK (89,031) lOK (9,355) 25 20 10,320k 
Dense lOOK (99,847) IK (990) | 25 | 20 10,114K 

Table 5.1: Dataset Sizes 

of PPn-tiee for Sparse in the rage of minimum supports, 0.2 and 0.25. Figure 

5.1 (b) shows the sizes of PPn-tiee for Medium in the rage of minimum supports, 

1.0 and 1.5. Figure 5.1 (c) shows the sizes of PP^-tree for Dense in the rage of 

minimum supports, 6.5 and 9.0. As seen in Figure 5.1, the disk-based trees are 

considerably small. 

Dataset(%) Avg-Bits Max-Bits Std Diviation Freq Item ^ 
Sparse (r饥=0.01) ^ ^ 48,977 
Sparse (丁饥=0.21) 64 256 36 659 
Medium {Tm = 1.1) 80 240 50.7 224 
Dense (r爪=6.8) 48 160 39.2 64 

Table 5.2: Code Compression 

In order to compress the bitmap codes, we adopted the compression method 

given in [22], which uses a list of integers to indicate in which position the bit is 

set to be 1. Since the number of "1" in the code is constrainted by the length 

of trasaction, the number of integer to express bitmap-codes is also limited. We 

show the compression ratio of bitmap-codes in Table 5.2. The numbers of items 

are 48977, 659, 224 and 64, respectively, when t爪= 0 . 0 1 and 0.21 for Sparse, 

T饥 二 1.1 for Medium, and r爪=6.8 for Dense, which means that the length of 
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bitmap-code would be 48977, 659, 224 and 64 without compression. 
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Figure 5.1: Disk tree sizes with different r^ 

5.1 Mining with Different Sizes of Trees in Main 

Memory 

First, we show the cost of data mining with different in-memory tree sizes (ex-

cluding the constructing the initial tree). The mining cost can be significantly 

reduced if a small but sufficient tree is used. We consider a frequent sub-itemset 

mining query with a minimum support 丁 and an itemset V of size of 10 items. 

First, we constructed a large in-memory tree with r to mine patterns with V. 
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Figure 5.2: Tree sizes vs mining cost (excluding the time for constructing the 
initial tree) 

Second, we constructed a small in-memory tree to mine with the requested 10 

items in y only. Figure 5.2 shows the differences of mining cost while r is varying. 

The figures show that mining benefits from a smallest but sufficient subtree. 

5.2 Constructing Trees in Main Memory 

In this experimental study, for a frequent itemset tree building request with (r), 

we show the time to construct a small tree in main memory using three different 

approaches: i) constructing the tree using TDB [TDB), ii) constructing the tree 

by loading the smallest tree from PPo-tree on disk [Disk-tree), and iii) construct-
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ing the tree by utilizing the tree(s) resident in main memory Memory-tree). 

Figure 5.3 shows the case for constructing the initial in-memory tree us-

ing different approaches, namely, using TDB directly, using an on-disk tree, 

or using an in-memory tree. Three different datasets were used in this testing 

(Spars e /Medium /Dense). 

First, in Figure 5.3 (a), (c) and (e), we built an individual disk-based PPD-

tree for a different minimum support (t爪)on disk. There are 6 different PPc-trees 

in each of the above three figures. For each PPo-tree with 丁爪,we construct a 

PPM-tree in memory with the same 丁m. In particular for the case ii), it is to con-

struct the tree by loading the whole PPo-tiee. We observe that, for Sparse, the 

Memory-tree approach outperforms Disk-tree, and Disk-tree outperforms TDB, 

For Medium and Dense, Memory-tree always performs best. But, TDB outper-

forms both Disk-tree and Memory-tree when the given minimum support is very 

small (1 for Medium and 6.5 for Dense), because the number of involved items 

are small. 

Second, in Figure 5.3 (b), (d) and (f), the on-disk trees for (Sparse/Medium/Dense) 

were built using the smallest minimum support with which the on-disk trees per-

formed better than using TDB, t爪 = 0 . 2 for Sparse, r爪 = 1 . 1 for Medium, and 

T 讯 = 7 for Dense. By comparing Figure 5.2 and 5.3, it also shows that the time 

for constructing tree is the main cost when using pattern growth methods. For 

example, in Figure 5.2 (b), when r = 1.1%, the time for mining tree is only 0.1 

second, while in Figure 5.3 (f), the time for constructing tree is 2.9 seconds. 

Some observations can be made for using a disk-based tree. First, we can 

build a Disk-tree which at least performs the same as TDB when constructing 

the initial tree on disk. Recall such minimum supports are considerably small so 
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that most of data mining tasks require a larger minimum support. Second, the 

performance of Memory-tree does not depend on how Disk-tree is built, because 

Memory-tree utilizes the trees residing in memory already. 

In the following testing, as default, we use the following settings: for Sparse, 

an on-disk tree is built with t爪 二 0.21 and the proxy size size is 5MB; for Medium, 

an on-disk tree is built with t饥 二 1.1 and the proxy size is 6.5MB; and for Dense, 

an on-disk tree is built with r^ 二 6.8 and the proxy size is 18MB. The number 

of tree building requests is fixed to be 1,000. 

5.3 Query Patterns and Number of Queries 

In this set of experimental studies, we investigated two things, the number of 

queries and the mixture of three query patterns: frequent itemsets tree building 

request, frequent sub-items tree building request and frequent super-itemset tree 

building request. In Figure 5.4 5.5 and 5.6, P and NP mean with and without the 

data mining proxy. We fixed M:N:L 二 60:20:20 {M:N:L means the percentages of 

queries for frequent itemsets tree building requests (M), frequent sub-itemset tree 

building requests (TV) and frequent super-itemset tree building requests {L)). For 

each test, we also selected a range of minimum supports, R 二 [î mim RMAX], and 

controlled the percentage of the minimum supports in that range. Three cases 

are considered, 100%, 80% and 50%, denoted P/NP-100, P/NP-80 and P/NP-50 

where P and NP indicate either with-proxy or without-proxy. In addition, two 

kinds of ranges were tested, i) non-overlapping sliding window (Figure 5.4)，ii) 

fixed Rmin but enlarging Rmax (Figure 5.5), and iii) fixed Rmax but varying Rmin 

(Figure 5.6). 
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In all cases, the performance using the proxy outperforms the one without 

using the proxy with the same setting. When the dataset is Sparse, the cases 

with the proxy are 5 times faster than the cases without the proxy. 

5.4 Testing Sub-itemset Queries with Different 

Memory Sizes 

We focused on sub-itemset building requests in this experimental study. We 

considered three kinds of windows of the range of orders of the items as above i) 

non-overlapping sliding window, ii) fixed Rmin but enlarging î max, and iii) fixed 

R 麵 but varying Rmin- We varied the memory sizes for the data mining proxy. 

The results are shown in Figure 5.7, 5.8 and 5.9 where the label of bar indicates 

the memory size. In the figures, Number of Disk Pages Accessed shows the total 

number of disk pages accessed in each test consisting of 1000 queries. As shown 

in these figures, if the memory size was too small, e.g. 600 KB, the proxy did not 

work well, while if the cache size was appreciate, e.g. 2,400 KB, the performance 

using the proxy outperformed the one without proxy. In fact, the tree of the sub-

itemset are very small, even the largest one. Therefore the memory size needed 

is not very large. Note: The database size is larger than 10 MB. 

5 • 5 Replacement Strategies 

When the proxy becomes full, we need to remove some in-memory trees in order 

to support a new tree building request if we cannot use any in-memory trees. 

First, we choose the in-memory tree whose are a subtree of another in-memory 
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tree as a victim to be removed. Second, if more memory space is required, we 

consider three replacement strategies. 

• RPl: Keep the trees in memory if the items in them are more frequently 

queried. 

• RP2\ Keep the trees in memory if the items in them appear in many nodes 

in the on-disk tree. It suggests that keeping them will reduce I / O costs, 

because the cost to reload these items is larger than the others. 

• RP3: Keep the trees in memory if the items in them have higher support, 

because, generally, higher support items are more frequently queried. 

Figure 5.10 shows the effectiveness of the three replacement strategies, for 

frequent sub-itemset tree building requests. The number along with the bar 

symbol {RPx) is the proxy size. We varied the items range in the experiment in 

two manners: sliding the range of items (Figure (a), (c) and (e)), and enlarging 

the range of items (Figure (b), (d) and (f)). The results showed that all three 

replacement strategies worked effectively in a similar manner. 

• End of chapter. 
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Figure 5.4: Various Queries Patterns I (1,000 queries, 60% are mini-support 
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Figure 5.5: Various Queries Patterns II (1,000 queries, 60% are mini-support 
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Figure 5.6: Various Queries Patterns III (1,000 queries, 60% are mini-support 
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Chapter 6 

Privacy Preserving in Proxy 

Service 

Summary 

In this chapter, we propose a method to preserve privacy when the 

data for mining come from some different sites. The details of the 

method are illustrated. The advantages of our method are also 

discussed.  

6.1 Data Union Regardless Privacy Preserving 

In this section, we consider the problem that a user want to find the global 

frequent itemsets w.r.t. minimum support threshold r from the transactional 

databases distributed in n (> 3) different sites. If we do not concern the privacy 

problem, this task can be completed in the following four steps. 

61 
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Step 1: According to Apriori [3] property, if an itemset I is frequent, any 

item i in I must be frequent. Thus, we need to find global frequent 1-itemsets 

at first. As stated in FDM [6], if an itemset I is globally frequent, it must be 

a local frequent itemset as least in one site. Therefore, first of all we need to 

request the local frequent 1-itemsets from all sites. These 1-itemsets make up of 

the candidates of global frequent 1-itemsets. Then we request each site to report 

its support to these candidates. For each candidates, we sum up the support from 

different sites and determine whether it is frequent in globe. Then the frequent 

1-itemset are sorted following a certain total order 

Step 2: Let's call the global frequent items in a transaction the frequent 

projection of the transaction. Only the frequent projections of transactions will 

be used in data mining. 

Definition 6.1 Max Path Itemset (MPI): Suppose we have build a PP-tree 

for a transaction database, Max Path Itemset refer to the itemset represented by 

the path from the root of the tree to a leaf. 

In this step, the global frequent 1-itemsets sorted in a total order preceq 

are sent to all sites. Every site builds up a local PP-tree following the total order 

preceq. And then, each site send all MPIs in their own site to the user. The 

union of these MPIs are used to built up a global PP-tree while the counts of all 

nodes are set to be 0. 

Step 3: The global PP-tree is sent to all sites. On each site, the counts 

of nodes on the tree are filled with local support. Then the local supports are 

sent back to the user. For each node on the global PP-tree, the counts of the 

corresponding node from different sites are added up to be the count of this node 

on global tree. 
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Step 4: Mining on top of the completely constructed PP-tree. 

Let's use an example to explain these steps. A user submit a data mining 

query with tau = 7. In Figure 6.1, suppose site 1 holds the data which is shown 

in Figure 2.1 (Site 2 and Site 3 hold some other transaction databases). The 

global frequent items are a, c, d, e, g following frequency descending order. The 

tree shown in sub-figure (a) is the PP-tree storing the frequent projections of the 

transactions in Figure 2.1. Similarly, the tree in sub-figure (b)(resp., sub-figure 

(c)) consists of the frequent part of the transactions in Site 2 (resp., Site 3). 

Thus the MPIs in these three sites' make up of a set of itemsets. Following the 

procedure to build up a PP-tree, we use these itemsets to build up a global tree 

shown in sub-figure (d) regardless the count in each node. Finally, in sub-figure 

(e), we calculate the count for each node using the count of the same node on the 

local tree in each sites. 

Theorem 6.1 Given a minimum support threshold r and n different sites, 

each of which holds a transaction database, following the step 1, 2 and 3 proposed 

above, we can build up a PP-tree equal to the PP-tree directly built up using the 

union of the transactions of the databases distributed in these n sites. 

Proof: To prove this theorem, we only need to prove that any node on the 

directly built up tree (Td), must has a same node with same count on the tree 

(Ts) built up following the above three steps proposed above. 

Any node Nd with count k in Td means that there are totally k transactions 

in all sites contains the itemsets I represented by the path from the root to Nd. 

Because there must be at least one MPI to be the superset of /，on the global 

PP-tree, there exists at least one path from the root to some node Ns represent 

the itemset 1. Suppose the support of each site Si for I is ĉ , the count of Nd is 
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^ a . In step 3, all sites fill in TVs nodes with the local support for these itemsets 

and then the counts of the corresponding nodes are added up . Therefore, the 

count of Ns is also equal to ^ q . • 

The details of the steps will be introduced in the next section together with 

the privacy preserving methods. 

6.2 Secure Data Union 

The security problems existing in the procedure proposed in Section 1 are: in step 

1, when generating the global frequent 1-itemsets, the local frequent 1-itemsets 

and their support should not be revealed to the others; in step 2, when sharing 

the MPIs, the owner won't let the others know who owns it; in step 3, when 

sharing the count of each node, it obviously can not be revealed to the others. 

6.2.1 Secure Multi-party Computation 

In this thesis, we will try to protect the privacy under the semi-honest environ-

ment. In this section we will introduce the definition of semi-honest model and 

how to achieve privacy preserving w.r.t. semi-honest behavior. 

The substantial work on secure multi-party computation prove that a wide 

class of computations can be computed securely under reasonable assumptions. 

We will have a brief view on this model, which is introduced in Goldreich [7] in 

detail. The definitions given below come from [7] and [11. 

Security in semi-honest model: [11] A semi-honest party follows the 

rules of the protocol using its correct input, but is free to later use what it sees 

during execution of the protocol to compromise security. This requirement is 
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practical to be achieved in reality based on three observation: first, people need 

to follow the protocols so as to get the real data they want; second, it also allow 

the parties to freely use the any data they get since it is hard to control what the 

parties do on its own site; third, the embedded protocol in the software can not 

be easily altered. 

Following is the definition of private two-party computation in the semi-

honest model: 

Privacy w.r.t. semi-honest behavior [7]: 

Let / : 0, r X 0, r I > 0’ r x O, r be probabilistic, polynomial-time func-

tionality, where j\{x, y) (resp., f2{x,y))denotes the first (resp., second) element 

of f{x,y) and let 11 be two-party protocol for computing /. 

Let the view of the first (resp., second) party during an execution of IT 

on (x,y)，denoted viewY(x,y) (resp., viewf(x,y)) be (x,ri,mu ...,mt) (resp., 

(y,r2,mi,...,mt)) where n represent the outcome of the first (resp. rs second) 

party's internal coin tosses, and m,： represent the i仇 message it has received. 

The output of the first (resp., second) party during an execution of n on 

(x,y) IS denoted output^(工,y) (resp., output^{x, y)) and is implicit in the party's 

view of the execution. 

n privately computes f if there exist probabilistic polynomial time algo-

rithms, denoted Si, S2 such that 

{(S'i(x, /lO, ？/)), f2{x, y))}x,ye{OA}* 三c 

{{view^{x, y), output^{x, (6.1) 
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{( / l(>，")) , S2{X, f2{x, y))}x,ye{0,l}* 三C 

{(output^(x, y)),view2(x, y)}x,ye{o,ir (6.2) 

where 三�denotes computational indistinguishability. 

Prom the definition given above we can get that a computation is secure 

if the view of each party during the execution of the protocol can be effectively 

simulated by the input and output of the party. The detailed explanation and 

proof can be found in [7 

6.2.2 Basic Methods of Privacy Preserving in Semi-honest 

Environment 

In this section, we will introduce two simple method to achieve privacy reserving 

in semi-honest environment. These two methods will help us to solve the privacy 

problem in Section 1 of this chapter. 

Consider a very simple situation: a group of people want to get the average 

salary among them while them won't let any of the others know the salary of 

their own. One method is shown in Figure 6.2. Suppose there are three persons 

in a group, A, B and C, and the salaries of them are $3000, $2000 and $1000 

respectively. Since A, B and C won't let the others know their own salary, they 

will tell the others their salary by distorting it. After they get the sum of the 

distorted values, they will correct it one by one. The procedure is: A tells B 

that his salary is $4000 ( = $3000 + $1000); B tells C the total salary of A and 

himself is $5500 (二$4000 十 $2000 - $500); C tells A the total salary of them is 

$8000 (=$5500 + $1000 + $1500); A corrects the sum by subtracting $1000 from 
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Q 
$8000( $ 6 0 ’ / \ \^$7000 \ 

V / \ ； 

人 人 

$5500 

Figure 6.2: Example of securely calculate average salary 

it and tells B the value $7000; B corrects it by adding $500 and tells C $7500; 

C corrects the value by subtracting $1500 and finally get the correct sum, $6000, 

to calculate the average salary. 

In some cases, we need a more complicated method. As shown in Figure 

6.3, all sites use the same encryption method E. Suppose site A holds a datum 

Ka, starting from site A, each site uses its private encryption key to encrypt Ka-

The result is £ ； 。 ( 五 s ( 五 I n the same way, Kb, the datum held by B, and 

K c , held by C, are encrypted to be Ea{Ec{Eb{Kb))) and Ea{Eb{Ec{Ka))) 

respectively. The three encrypted data are gathered together and sent to each 

site one after one to decrypt. Finally, we get the set A, B, C the same as their 

original value. This requires that the encryption methods E holds the property 

as the follows: 

For any datum Di in domain D, any given feasible encryption keys Ki, G 
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^^^^^^^^Z^^^：^：：：：：^Ec(EB(EA(KA))) 
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“ \ Ea(KA) \ + 

Ec(Eb(Ea(Ka))) \ \EB(Ea(EC(KC))) 
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^ ^ J Decryption 
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Figure 6.3: Example of securely sharing data 

K and any permutations of i,j, 

Ek 丄 . E K 洲 … ) = 多 ) … ) (6.3) 

\/DiandD2 G D such that Di + D2 and for given /c, e < ^ 

P狐人..EK洲…)二 E k J , � K多 < e (6.4) 

An encryption algorithm holding the above two equations 6.3 and 6.4 is called 

commutative encryption. There are some examples of commutative encryption, 

like RSA [19] and Pohlig-Hellman encryption [18:. 
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6.2.3 Privacy Preserving On Data Union 

In this section, we will discuss how to add the privacy preserving methods into 

the steps of the procedure given in Section 1 of this chapter. We will first discuss 

step 2 and 3, and then step 1. 

For the step 2, we can use the encryption method introduced in Figure 6.3. 

The details of the procedure are presented in Algorithm 4. In the algorithm, we 

use some commutative encryption to protect the MPIs of each site (from line 1 

to line 8). On line 2 and line 3, we fake Ei by: (1) extending the length of some 

MPIs by appending some nonsensical items; (2) adding some itemsets to the set 

of MPIs. These two methods is to avoid the others getting the information of 

the real size of the local MPIs in one site. Applying these two methods will 

result in some nodes with count of 0 in the final global PP-tree. Obviously this 

will not affect the correctness of the mining results. On line 6 and some other 

lines, we permute the set of encrypted MPIs so as to prevent knowing exactly 

matching between the itemset before encryption and after encryption. Prom line 

9 to line 15, all the encrypted MPIs from odd numbered sites are sent to one even 

numbered site and those from even numbered sites are sent to one odd numbered 

site. This is to prevent a site from getting the fully encrypted value of its own 

MPIs. From line 15 to the end are the procedure of decryption. 

As is proved in [11], using this procedure to communicate itemsets between 

multi-sites is secure under the definition of multi-party computation except that: 

it reveals (1) the size of intersection of local MPIs between any subset of odd 

numbered sites; (2) the size of intersection of local MPIs between any subset 

of even numbered sites; (3) number of MPIs in at least one odd and one even 

numbered site. But it is different from the situations in [11]: (1) in [11] it reveals 
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Algorithm 4 Share MPIs among n sites (n > 3) 
1： for each site Si do 
2： Extend some paths of the local PP-tree by appending some items to be the 

descendants of some leaves; 
3: Let Mi be the set of MPIs of the faked tree; Ei — 风 and add some 

nonsensical itemsets to Ei; 
4： for j 二 0 to n — 1 do 
5： Ei — Ei encrypted by 力動dn use its own key; 
6： Permute and send Ei to 
7： end for 
8： end for 
9： for j = 0 to n — 1 do 

10： if j is an odd number then 
11： Permute and send Ej to ô； 

12： else 
13： Permute and send Ej to Si； 

14： end if 
15： end for 
16： permute and send all the encrypted MPIs having been sent to it to So； 

17： Eaii — all the MPIs having been sent to ô； 

18: for j 二 0 to n _ 1 do 
19： Ball — Ball decrypted by Sj use its own key; 
20： Permute and send Ei to %+j+i)modn; 
21： end for 
22： Using Ball to build up a PP-tree;  

the intersection information of local frequent patterns which is really important, 

while here what it reveals is the intersection information of MPIs which do not 

have significant sense; (2) the MPIs can be faked by appending some nonsensical 

items but the patterns can not be faked in the procedure in [11 . 

For the step 3, we can use the encryption method introduced in Figure 6.2. 

The details of the procedure are presented in Algorithm 5. During the procedure 

of Algorithm 5, the arrays of the randomly generated numbers are transmitted 

and added up first (from line 3 to line 9), and then the array of sums is transmitted 
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and use the arrays of difference to correct it (from line 10 to line 12). 

An example tree on the left side of Figure 6.4 is a local PP-tree after filled 

with the counts of the node by site 1 (Figure 6.1 (a)). On the right side of Figure 

6.4’ the first line is the array of the counts following deep-first order; the second 

line is the array of randomly generated numbers; and the third line is the array 

of the difference between the previous two arrays. Thus, the distributed sites 

can communicate using these arrays and correct the results with the array of the 

difference. 

Reall supports: 8，4 , 2,1, 1’ 2, 0, 0,2 ’ 2, 3，3,2,2 

C ^ ^ Ramdomly generated: 15, 12, 5,1, 2, 11’ 1’ 0，0’ 6’ 9，2, 0,1 

( T ^ U ^ Difference : -7，-8，-3’ 0，-1, -9，-1, 0’ 2, -4，—6’ 1’ 2, 1 

C ^ ciD dlD 
Figure 6.4: Example of sharing counts 

For the step 1，firstly, we can use Algorithm 4 to unite the local frequent 

1-itemsets so as to get the candidates of the global frequent 1-itemsets; Secondly, 

we can use Algorithm 5 to calculate the support of the candidate 1-itemsets so 

as to find the global frequent 1-itemsets. 
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Algorithm 5 Get the count of the nodes on global PP-tree's from n sites (n > 3) 

1： Sent the global PP-trees to all sites; 
2： Suppose the number of the nodes on the global PP-trees is k, generate an 

integer array, C, consisting of k zeros. 
3： for each site Si, where i = 0 to n — 1 do 
4： Fill in the count of the nodes on the PP-tree it just received with the 

support of this site to the itemset represented by the node. 
5： Sort the count of the nodes in deep-first order into an array Ni\ 
6： For each count, randomly generate an array, R, consisting of k integers and 

calculate the difference between Ni and Ri] 
7： C — C + Rc, 
8: Send the array of the randomly generated numbers to next site; 
9： end for; 

10： for each site Si, where f 二 0 to n — 1 do 
11： C ^C+{Ni-Ri); 
12： end for  

6.3 Discussions 

The privacy preserving methods introduced in this chapter fully utilize the ad-

vantages of the tree structure. In Algorithm 4, it only constructs the framework 

of the tree, so that it only needs very little information, the max path itemsets of 

each site. Anymore, MPI can easily be faked without affecting the correctness of 

the mining results so that the danger of leakage is very small. 

The communication cost is also very small. During the whole procedure, 

each site only need to transmit data four times. In each time, they need to 

transmit encrypted data once and decrypted data once. The first and second 

time is to transmit the local frequent 1-itemsets and the local support for the 

global frequent 1-itemsets. occurs when . Obviously, in these two times, the 

communication cost is very small since the size of data is limited by the number 

of the distinct items in the databases. The third time of transferring data is to 
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transmit the local site's MPIs. And the forth time is to transmit the counts of 

the nodes on global tree. The size of these data is much smaller than that of the 

original database. But if we use the methods requiring to transmit local patterns, 

in the cases that the minimum support threshold is very low, the size of patterns 

will be hundreds or thousands times as large as that of the original database 

because the number of patterns explodes when the threshold is decreased. 

• End of chapter. 



Chapter 7 

Conclusion 

In this thesis, we proposed a data mining proxy to support a large number of 

users' mining queries, and focused on how to build the smallest but sufficient 

trees in memory efficiently for mining. 

The data mining proxy maintains the trees for different requests in memory 

and PP^-trees resident in the hard disk. To utilize the trees in memory and on 

disk, three tree operations were proposed: sub-projection, super-projection and 

merge. A new bitmap coding scheme was also proposed to facilitate loading a 

subtree from disk and constructing a new tree in memory. Comparing to the pre-

vious non-bitmap coding scheme, it can be easily compressed so that the space 

cost on disk and in memory is largely reduced. Some algorithms are designed 

to efficiently implement all these tree operations. The advantages of tree struc-

ture and bit-map codes are fully utilized so as to minimize the time cost of the 

operations. 

The advantage of the proxy is that we can maximize the usage of trees in 

memory, and minimize the I /O costs. The experiments shows that the proxy 
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largely reduced the cost of disk access. For instance, we only need to project 

the lower half tree to support frequent super-itemset mining queries because we 

can reconstruct the higher half in memory systematically. Several replacement 

strategies were also considered. 

We conducted extensive testing. Our experiments showed that the data 

mining proxy is effective because in-memory tree operations can be processed 

much faster than loading subtrees from disk. 

The privacy and security issues are also considered. Our method to pre-

serve privacy fully utilize the advantages of trees structure so as to minimize the 

requirement of the information to be revealed. Anymore, the cost of the commu-

nication is also largely reduced. The method also guarantee that the final mining 

results are the same as those without the privacy preserving measures. 

• End of chapter. 
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