202 research outputs found

    Memory Management Support for Multi-Programmed Remote Direct Memory Access (RDMA) Systems

    Full text link
    Current operating systems offer basic support for network interface controllers (NICs) supporting remote direct memory access (RDMA). Such support typically consists of a device driver responsible for configuring communication channels between the device and user-level processes but not involved in data transfer. Unlike standard NICs, RDMA-capable devices incorporate significant memory resources for address translation purposes. In a multi-programmed operating system (OS) environment, these memory resources must be efficiently shareable by multiple processes. For such sharing to occur in a fair manner, the OS and the device must cooperate to arbitrate access to NIC memory, similar to the way CPUs and OSes cooperate to arbitrate access to translation lookaside buffers (TLBs) or physical memory. A problem with this approach is that today’s RDMA NICs are not integrated into the functions provided by OS memory management systems. As a result, RDMA NIC hardware resources are often monopolized by a single application. In this paper, I propose two practical mechanisms to address this problem: (a) Use of RDMA only in kernel-resident I/O subsystems, transparent to user-level software; (b) An extended registration API and a kernel upcall mechanism delivering NIC TLB entry replacement notifications to user-level libraries. Both options are designed to re-instate the multiprogramming principles that are violated in early commercial RDMA systems

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    POSH: Paris OpenSHMEM: A High-Performance OpenSHMEM Implementation for Shared Memory Systems

    Get PDF
    In this paper we present the design and implementation of POSH, an Open-Source implementation of the OpenSHMEM standard. We present a model for its communications, and prove some properties on the memory model defined in the OpenSHMEM specification. We present some performance measurements of the communication library featured by POSH and compare them with an existing one-sided communication library. POSH can be downloaded from \url{http://www.lipn.fr/~coti/POSH}. % 9 - 67Comment: This is an extended version (featuring the full proofs) of a paper accepted at ICCS'1
    corecore