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Abstract

The performance of high-speed network-attached st
age applications is often limited by end-system ove
head, caused primarily by memory copying and netwo
protocol processing. In this paper, we examine altern
tive strategies for reducing overhead in such system
We consider optimizations to remote procedure ca
(RPC)-based data transfer using either remote dir
memory access (RDMA) or network interface suppo
for pre-posting of application receive buffers. We dem
onstrate that both mechanisms enable file acce
throughput that saturates a 2Gb/s network link whe
performing large I/Os on relatively slow, commodity
PCs. However, for multi-client workloads dominated b
small I/Os, throughput is limited by the per-I/O over
head of processing RPCs in the server. For such wo
loads, we propose the use of a new network I/
mechanism,Optimistic RDMA (ORDMA).ORDMA is
an alternative to RPC that aims to improve serv
throughput and response time for small I/Os. We me
sured performance improvements of up to 32% in serv
throughput and 36% in response time with use
ORDMA in our prototype.

1 Introduction

The performance of I/O-intensive applications usin
network-attached storage (NAS) systems over hig
speed networks is often associated with high CPU a
memory system overhead [3,6,9,12,20,23,29,30]. Th
overhead is primarily due to unnecessary memory cop
ing and transport protocol processing, caused by ine
ciencies in transporting file I/O traffic over genera
purpose network protocol stacks. Memory copying is
per-byte source of overhead that limits the I/O bu
throughput available for network transfers. Protocol pr
cessing, however, is primarily a per-I/O source of ove
head. For example, in multi-client workloads dominate
by small (4KB-64KB) I/Os, such as on-line transactio
processing, remote memory paging [14], non-line
editing of video files, and standard office and enginee
ing applications, performance can be limited by th
server CPU, due to the per-I/O control transfer and pr
cessing overhead of RPC [34]. While overhead can
or-
r-
rk
a-
s.
ll

ect
rt
-
ss
n

y
-
rk-
O

er
a-
er

of

g
h-
nd
is
y-

ffi-
l-
a
s

o-
r-
d
n
ar
r-
e
o-
be

reduced with link-level and transport-level feature
offered by networks such as FibreChannel [18], th
solution is not applicable to the widely deployed Ethe
net and IP protocol infrastructure. In this paper, w
explore alternative ways to reduce per-byte and per-I
overhead in NAS systems over IP networks.

One approach to reduce per-byte overhead is to use n
work interface controller (NIC) support for transpor
protocol offload and forremote direct data placement
(RDDP) [17]. An RDDP protocol performs network
transfers directly to and from application buffers, elim
nating the need for memory copying in the I/O dat
path. Remote direct memory access is a user-level n
working [36] protocol achieving RDDP via remote
memory read and write operations. The emergence
commercially-available NICs with RDMA capabilities
has motivated the design of theDirect-Access File Sys-
tem(DAFS) [12,20], a network file access protocol opt
mized to use RDMA for memory copy avoidance an
transport protocol offload. DAFS targets resource-inte
sive NAS applications, such as media streaming a
databases.

In this paper, we argue that a simpler, alternative RDD
mechanism can offer similar memory copy avoidanc
and protocol offload benefits to those achieved wi
RDMA. This mechanism relies onpre-posting of appli-
cation buffersat the receiver prior to the arrival of the
RPC carrying the data payload [2]. This paper presen
the first evaluation of a NAS system using this RDD
mechanism. Our results show that its benefits can
achieved with a kernel-based NFS client, whose two k
properties are (a) support for optionally bypassing th
kernel buffer cache, and (b) integration with the NIC fo
direct transfer to and from user-level buffers. A draw
back of this approach, in contrast to the platform ind
pendent user-level client structure [20] enabled b
DAFS, is that it is not as portable due to its dependen
on specific kernel support.

While reduction of per-byte overhead is an importa
goal for NAS systems targeting I/O-intensive work
loads, per-I/O overhead can limit performance of NA
servers involved in processing a large number of sm
I/Os issued by multiple clients. With the server CPU sa
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urated due to the overhead of interrupts, scheduling, and
file processing for small I/O RPCs, the NIC data transfer
engine becomes underutilized, and as a result, through-
put is less than the peak achievable by the network. In
addition, server CPU involvement in each RPC
increases file access response time. One way to improve
throughput and response time for small I/Os is to
replace RPC by client-initiated RDMA. Client-initiated
RDMA does not involve the server CPU in setting up
the data transfer, and therefore, has lower per-I/O over-
head on the server compared to RPC.

This paper makes the following contributions:

(a) It shows that end-system overhead reduction for
NAS applications is possible with simple RDDP support
on NICs offering transport protocol offload.

(b) It differentiates betweenthroughput-intensive work-
loads performing large I/Os, which primarily depend on
RDDP for copy avoidance, andworkloads performing
small I/Os, for which client-initiated RDMA is neces-
sary to reduce server per-I/O overhead.

(c) It proposesOptimistic RDMA,a new network I/O
mechanism that enables client-initiated RDMA and ben-
efits workloads performing small I/Os.

(d) It evaluatesOptimistic DAFS (ODAFS), our exten-
sion to DAFS that uses ORDMA, to improve server
throughput and response time in workloads dominated
by small I/Os.

The rest of this paper is organized as follows: In Section
2, we provide background and discuss related work. In
Section 3, we present the implementations of the NAS
systems that use RDDP. In Section 4, we describe the
design and implementation of ORDMA and ODAFS. In
Section 5, we use an experimental platform consisting
of a Myrinet cluster of commodity PCs to evaluate the
systems discussed in this paper.

2 Background and Related Work

Network storage systems can be categorized as Storage-
Area Network (SAN)-based systems, which use a block
access protocol, such as FibreChannel and iSCSI, or
NAS-based systems, which use a file access protocol,
such as NFS. SAN-based systems preserve an important
property of direct-attached block I/O device interfaces,
which is the ability for direct data transfers between the
communication device and a user or kernel memory
buffer. However, a drawback of using a SAN to share a
storage volume is the need for additional synchroniza-

tion mechanisms not present in current local file sy
tems. Additionally, storage volumes accessed by us
level applications over a SAN are not under file syste
control and cannot be accessed using file system too
complicating data management. In NAS-based system
file servers handle sharing and synchronization. In ad
tion, NAS storage volumes are under file system ma
agement and control.

High-performance NAS applications are becomin
increasingly network I/O-intensive. This is due to th
emergence of servers with large memory caches and
use of aggressive file caching and prefetching policies
conjunction with powerful disk I/O subsystems. In th
future, new storage technologies reducing the $/M
ratio of stable storage, such as microelectromechani
systems, or MEMS, are expected to further ease the d
I/O bottleneck. On the other hand, network hardwa
performance is rapidly improving, with 2-2.5Gb/s com
mercial implementations available today and 10Gb
implementations expected within a year. To deliver th
network performance to applications, NICs should b
able to transfer data at the speed of the network link.
addition, interaction with the host should take place wi
minimal CPU overhead. High-performance NICs ar
designed to integrate DMA engines able to transfer da
between host memory and the network link at hardwa
speeds, for both large and small (4KB-64KB) I/Os [26
Low CPU communication overhead is possible wit
user-level communication libraries [26,35,36] com
monly used in distributed scientific computations. NA
systems, however, are usually implemented over ge
eral-purpose network protocols, such as Ethernet a
TCP/IP, and communication abstractions, such as RP
which result in high communication overhead.

A drawback of using RPC for file I/O data transfer i
that this method requires staging of the data payload
intermediate host memory buffers and copying, to mo
the data to its final destination. One way to solve th
problem is by enabling direct data transfers between c
ents and storage nodes over a SAN for large I/Os, as
several emerging clustered storage systems, such
Slice [3], MPFS–HighRoad [13], NASD [15,27], GPFS
[30] and Storage Tank [16]. These systems use file se
ers for small I/O and metadata traffic. An alternativ
solution that does not require a SAN is to take advanta
of RDDP mechanisms applicable to RPC-based da
transfer over IP networks. For example, DAFS [12,20
and NFS-RDMA [9] are two recently proposed NAS
systems based on NFS and using RDMA for memo
copy avoidance and transport protocol offload. Th
approach promises to reduce communication overhe
to levels comparable to that of block channel protocol
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In Section 2.1, we introduce network protocols that can
be used to implement high-performance network-
attached storage systems. In Section 2.2, we focus on
the communication overhead of these protocols. Finally,
in Section 2.3, we examine the impact of communica-
tion overhead on I/O throughput and response time.

2.1  Network storage communication protocols

Network storage systems can be implemented based on
the interfaces and semantics of the network protocols
shown in Figure 1. The primary communication abstrac-
tion is remote procedure call [5]. RPC can be imple-
mented over a messaging layer, which can be offloaded
to the NIC along with the transport protocol, as shown
in Figure 1(a). The messaging layer can be accessed by
the host via an interface that exports send and receive
operations [7,35]. In addition, RDDP [17] enables direct
placement of upper-level protocol data payloads into
their target host memory buffers, as shown in
Figure 1(b,c).

A communication layer implementing RDDP must per-
form the following operations: (1) Separate the protocol
header from the data payload, (2) match the latter with
its target buffer on the receiver, and (3) deposit it
directly into its target buffer. To be able to perform (2),
the target buffer must betaggedandadvertisedprior to
the I/O. Tag advertisement can be eitherimplicit or
explicit, as shown in Figure 1, depending on whether it
is performed by the RPC protocol or explicitly by the
NAS protocol. In either case, however, advertisement is

performed by an RPC. The data payload can be in-lin
in the RPC message or transferred separately, us
remote direct memory access.

RDDP using RPC (RDDP-RPC): One way to
empower RPC with RDDP is to associate the targ
buffer with an RPC-specific tag and advertise this tag
the remote host. The remote host must include t
advertised tag in the RPC that carries the data paylo
The receiving NIC must match the tag with the targ
buffer, separate the data payload from the protocol hea
ers (header splitting), and deposit the data directly into
its target buffer. An RDDP-RPC mechanism evaluate
in this paper is described in more detail in Section 2.2

RDDP using RDMA (RDDP-RDMA): Another way to
implement RDDP is using RDMA, which is a network
data transfer protocol [8,37]. The RDMA layer exports
remote memoryread and write interface. RDMA uses
host virtual memory addresses as RDDP buffer tags.
RPC advertises the remote buffer and an RDMA mov
the data to the target buffer. RDMA requires interactio
with the upper-level protocol only to initiate the RDMA
operation. It does not require interaction with the uppe
level protocol at the target of the remote read or wri
operation. Only the RDMA initiator receives notifica
tion of completed events.

User-level networking [36] requires that RDMA use vir
tually addressed buffers. NICs with RDMA capabilitie
use a Translation and Protection Table (TPT), which is
device-specific page table, to translate virtual addres

Figure 1. Protocol stack with the messaging and transport protocols offloaded to the NIC (a). RDDP is
possible either by separating the data payload when in-lined in the RPC (b) or with RDMA (c).

RPC

Protocol

Network Storage

Transport
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(Send, Receive) (Read, Write)
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carried on RDMA requests to physical addresses. To
avoid limiting the size of the TPT, NICs can be designed
to store the entire TPT in host memory, maintaining
only a TLB on-board the NIC [26,37]. Systems using
RDMA need to ensure that the NIC can find virtual to
physical address translations of exported pages refer-
enced in RDMA requests and that memory pages used
for RDMA are kept resident in physical memory while
the transfer takes place. Pageregistration through the
OS is necessary in conventional NICs on the I/O bus, to
ensure that address translations are available and that
pages remain resident for the duration of the DMA.

Implications of RDDP tag advertisement. Protocols
using RDDP for direct data placement typically adver-
tise buffer tags by an RPC on a per-I/O basis. Advertise-
ment of buffer tags on a per-I/O basis, however, means
that both sides are involved in setting up each data trans-
fer. An alternative that reduces the cost of per-I/O buffer
advertisement is to cache advertisements in clients and
carry file access operations by RDMA only [33]. Opti-
mistic DAFS, our extension to DAFS described in
Section 4.2, uses client-initiated RDMA without requir-
ing buffer advertisement, thereby avoiding RPCs, on
each I/O.

Messaging and Transport layers.The messaging layer
exports aqueue pair(QP) interface [7,35,36] for send-
ing and receiving messages and for event notification.
The messaging layer offers data transfer and event noti-
fication only, leaving event handling to upper-level pro-
tocols such as RPC. An example of a protocol providing
user-level messaging and RDMA is the Virtual Interface
(VI) architecture [35]. The transport layer exports a reli-
able, in-order stream abstraction similar to the TCP
sockets interface. In addition, transport protocol support
for framing, such as in SCTP [31], is required by RDDP
in order to preserve upper-level protocol header and data
payload boundaries.

2.2  Communication overhead

Host communication overhead in NAS end-system hosts
is defined as the length of time that the host CPU is
engaged in the transmission and reception of messages
[10,11,22]. It consists of aper-bytecomponentoper-byte,
which is the length of time that the CPU is engaged in
data touching operations such as copying or integrity
checking, and aper-I/Ocomponentoper-I/O, which is the
length of time that the CPU is engaged in processing the
I/O request incurred in network and file system protocol
stacks. Theper-packetcomponent, due to message frag-
mentation and reassembly, disappears if the transport
protocol is offloaded to the NIC. We will assume an off-

loaded transport for the remainder of this paper. The fo
lowing formula expresses the client or server CP
overhead of file access in an I/O transferringm bytes:

There are a number of well-known techniques [10], suc
as checksum offloading, interrupt coalescing an
increasing the network maximal transfer unit, for reduc
ing overhead. These techniques are offered by seve
high-speed NICs and supported by mainstream oper
ing systems. Further reductions in per-byte and per-I
overhead are possible with the network I/O mechanism
and the NAS systems described in this paper and su
marized in Table 1.

Reducing per-byte overhead.The primary source of
per-byte overhead is memory copying. Avoiding unne
essary memory copying is a challenging problem sin
it requires either significant NIC support or significan
file system and network protocol stack changes, such
integration of buffering systems [29,32] or virtual mem
ory (VM) re-mapping techniques [6]. To avoid unneces
sary copying, the I/O payload should be transferre
directly from the source to the destination buffer. Avoid
ing memory copies on the outgoing path is relative
easy using scatter/gather support at the NIC or VM pa
re-mapping. Avoiding copies in the receiving path i
more challenging since it requires NIC support t
deposit incoming data either in a page-aligned locatio
or directly at the final destination. In this paper we con
sider two ways to achieve direct data placement in ho
memory, either within the context of RPC or in combi
nation with RDMA:

(a) RDDP-RPC. As described in Section 2.1, th
RDDP-RPC protocol, which is NAS-specific, enable
the NIC to identify and separate NAS and RPC heade
from the data payload and deposit the latter directly in
the target buffer on the host using DMA. In our imple
mentation, we use the RPC transaction numbers
buffer tags. A tag is associated with an applicatio
buffer at the time when the latter ispre-postedby the
receiving host, prior to sending the RPC request. Buff
tags areimplicitly advertisedin the context of the RPC
protocol message exchange. RDDP-RPC imposes
buffer size or alignment restrictions on application buf
ers. Pre-posting of receive buffers (orpre-posting, for
short) has previously been used in a kernel-reside
RPC-based global shared memory service [2].
Section 3.2, we describe a NAS system based
RDDP-RPC.

o m( ) m o× per-byte oper-I/O+=
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Untagged RDDP-RPC transfers are also possible and do
not require pre-posting. The data payload is placed in
intermediate, page-aligned host buffers and the physical
memory pages of these buffers are re-mapped into the
target buffer, provided that the latter is also page-
aligned. A low overhead NFS implementation using
header splitting and VM page re-mapping has been eval-
uated in a recent study [20].

(b) RDDP-RDMA. In this method, tag advertisement is
performed using RPC but data transfer is performed
using RDMA, as described in Section 2.1. RDMA
imposes no buffer size or alignment restrictions. In
Section 3.1, we describe NAS systems using RDDP-
RDMA.

Both techniques rely on transport protocol offload to the
NIC. They differ, however, in the complexity of imple-
mentation and in their generality. RDMA is a general-
purpose data transfer mechanism: it is independent of
any NAS protocol and exports a user-level API. NICs
supporting RDDP-RPC are simpler to design and imple-
ment. They are customized, however, for particular NAS
protocols and export a kernel API.

Reducing per-I/O overhead. The primary source of
per-I/O CPU overhead is RPC processing. The main
components of RPC are event notification, either by
interrupt or polling, process scheduling, interaction with
the NIC to start network operations or to register mem-
ory, and execution of the file protocol processing han-
dlers. Part of the overhead of RPC is expected to
improve with advances in core CPU technology. Other
parts of the per-I/O overhead, however, such as inter-
rupts and device control, are due to the interaction
between the NIC and the host over the I/O bus and
therefore not expected to improve as quickly as core
CPU performance.

RDMA has fundamentally lower per-I/O overhead than
RPC for remote memory transfers since it does not
involve the target CPU. Reducing per-I/O overhead in
file clients using RDMA is possible with techniques

such asbatch I/Oin DAFS [12]. Using batch I/O, a sin-
gle RPC is used to request a set of server-issued RDM
operations, amortizing the per-I/O cost of the RPC o
the client. Reduction of per-I/O overhead on the fil
server is also important, perhaps even more so sin
servers receive I/O load from multiple clients. Our solu
tion to reducing server per-I/O overhead uses client-in
tiated Optimistic RDMA, as discussed in Section 4.

2.3  I/O throughput and response time

Throughput and response time are standard I/O metr
used to assess performance in NAS systems. In this s
tion we describe how CPU overhead affects these m
rics.

Throughput is important for applications that can su
tain several simultaneously outstanding transfers, eith
by having some knowledge of future accesses, or
involving a number of simultaneous synchronous activ
ties, such as concurrent transactions in OLTP. From t
overhead equation of Section 2.2 and with the per-by
component of overhead associated with memory cop
ing eliminated using RDDP, overhead is dominated b
its per-I/O component.

In addition to host CPU overhead, the performance
network storage applications may also depend on oth
parameters [11] such as the network link latency (L) and
bandwidth (BWnetwork), and the NIC transfer rate
(BWNIC). Modern NIC architectures using DMA
engines for transfers between the network link and ho
memory [26] ensure that the NIC is not the bandwid
bottleneck for messages larger than a certain thresho
i.e.,BWNIC > BWnetwork.

The I/O throughput achievable with a stream of I/O
requests, each of sizem,can be limited either by the net-
work or by the (client or server) CPU:

Network I/O mechanism NAS system Uses RDMA Per-I/O tag advertisement

RDDP-RPC (§2.2) NFS pre-posting (§3.2) No Yes

RDDP-RDMA (§2.2) NFS hybrid (§3.1), DAFS [20] Yes Yes

Optimistic RDMA (§4) Optimistic DAFS (§4.2) Yes No

Table 1. Network I/O mechanisms and NAS systems evaluated in this paper.RDDP mechanisms
target per-byte overhead. Optimistic RDMA combines RDDP and per-I/O overhead reduction.

Throughput m( ) min BWnetwork
m

oper-I/O
----------------,
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For large I/O blocks, even a low I/O request rate can sat-
urate the network, and the throughput is determined by
BWnetwork. For small I/O blocks, however, the CPU is
more likely to become the resource limiting throughput.
This is because the CPU is saturated processing RPCs at
lower I/O rates than necessary to keep the NIC data
transfer engine fully utilized. It is therefore important to
reduce the per-I/O overhead for small file accesses. A
previous study found that file server throughput in NFS
workloads modeled by SPECsfs is most sensitive to host
CPU overhead [23].

Besides throughput, response time is also important in
transactional-style network storage applications that
perform short transfers and cannot hide network latency
using read-ahead prefetching or write-behind policies.
Such applications usually have unpredictable access pat-
terns involving small file blocks or file attributes.
Response time is the delay to satisfy a remote file I/O
request and consists of the transmission round-trip time
on the network link, the NIC latencies, control and data
transfer costs on the host I/O buses, and interrupt and
scheduling costs in the case of remote procedure call-
based I/O [34]. For a heavily loaded server, response
time increases by the amount of queueing delays [23].

3 Direct transfer file I/O in NAS systems

File I/O in traditional operating systems is staged in the
file system buffer cache, and memory copies are usually
necessary to move data between network buffers, the file
system cache and application buffers. In Section 2.2, we
discussed network I/O mechanisms to achieve direct
data placement and avoid the cost of data movement. In
this section, we examine the use of those mechanisms to
implement direct transfer file I/O. This differs from
what is commonly referred to asdirect file I/Oand asso-
ciated with theO_DIRECT flag of the POSIX open
system call. While direct file I/O implies a disabled file
cache, which does not necessarily reduce memory
copying, direct transfer file I/O additionally implies
copy-free data transfer between the storage device and
user-space buffers. This is easily achievable in local or
network-attached storage systems, over parallel or serial
SCSI, by programming the disk controller to DMA the
requested data blocks directly to application buffers.

Direct transfer file I/O in network file systems is more
challenging, as general-purpose NICs are not aware of
upper-level transport protocol packet formats and
semantics and cannot usually be programmed to DMA
the data payload directly into application buffers. This is

possible, however, with NIC support for RDDP-RDMA
or RDDP-RPC.

To take advantage of a direct transfer I/O facility, fil
system clients must be modified so that their I/O oper
tions bypass the buffer cache and propagate mem
buffer information to the NIC. A drawback of using
direct transfer file I/O is the need to register and p
user-level buffers, as shown in Figure 2. In the case
kernel file clients, registration has to happen on-the-fl
and for each I/O to be transparent to user-level applic
tions. One problem with this requirement is the possib
ity that the kernel may be unable, due to per-proce
resource limits, to pin the user-level buffers required fo
the transfer. Besides introducing additional failur
modes, the need for on-the-fly memory registration a
de-registration introduces a performance penalty in t
data transfer path.

3.1 Direct transfer file I/O using RDDP-RDMA

One way to support direct transfer I/O is with RDDP
RDMA, used in the recently proposed DAFS [12] an
NFS-RDMA [9] systems. DAFS is a file access protoco
[20] that performs data transfers using server-initiate
RDMA read and write operations, after explicitly adver
tising buffer addresses using RPC. In Sun’s NFS
RDMA, buffer addresses are implicitly advertised by th
RPC protocol. NFS-RDMA uses client- or server-initi
ated RDMA read operations issued from within the RP
protocol to pull data from remote buffers.

RDDP-RDMA requires registration and pinning mem
ory buffers on both the client and the file server. This is
disadvantage not found in RDDP-RPC, which require
registration and deregistration only on the receiving si
(e.g., the client in the case of reads). An advantage
RDDP-RDMA, however, is that the frequency of hos
interaction with the NIC can be reduced by caching re
istrations at the client and the server. With RDDP-RPC
NIC interaction is required on each I/O to pre-pos
application receive buffers.

In Section 5.1, we evaluate the performance of a kern
based NFS-derivative system that performs data tra
fers using server-initiated RDMA. Our implementatio
modifies the NFS wire protocol to enable remote mem
ory pointer exchange between client and server, li
DAFS, but leaves the NFS client API unchanged, lik
NFS-RDMA. In Section 5.1, we refer to this system a
NFS hybrid.
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3.2  Direct transfer file I/O using RDDP-RPC

Another way to support direct transfer I/O is with a NIC
that supports RDDP-RPC. The implementation of an
RDDP-RPC-based kernel client requires a device inter-
face that communicates the following information to the
NIC:

(a) A description of the user memory buffer, including
the physical address pointing to the buffer, where data
coming from the network is to be directly placed.

(b) A description of the request including the RPC trans-
action number and the type of request, enabling the NIC
to recognize the data payload in the RPC response.

This scheme requires simple modifications in thevnode
layer of existing network file clients to avoid the
user/kernel copy, pin the user-level buffer in physical
memory and give the NIC the description of the user-
level buffer rather than a pointer to an intermediate
buffer cache location. Both synchronous and asynchro-
nous file I/O over an NFS client offering such support
enjoys zero-copy, uncached data transfer.

One drawback of this scheme is that the NIC needs to be
able to parse transport and application-level headers to
understand RPC responses, which raises security and

safety issues. These issues can be addressed by re
ing supervisor privileges to program the NIC. Anothe
drawback is that by bypassing the buffer cache, whi
abstracts the device layer, the file client is no longer pa
of the device-independent part of the kernel. Since n
all NICs are expected to support an RDDP-RPC AP
the file client depends on the availability of a device
specific API. However, making NIC-assisted direc
transfer file I/O a mount option is expected to work we
in practice.

This paper presents the first evaluation of a NAS syste
using RDDP-RPC. In Section 5.1, we refer to this sy
tem asNFS pre-posting.

4 Optimistic RDMA

The need for buffer tag advertisement on a per-I/O ba
in RDDP systems requires the use of RPCs. These RP
contribute to per-I/O CPU overhead, reducing serv
throughput and increasing response time in workloa
dominated by small I/Os, as discussed in Section 2
One way to address these problems is to useclient-initi-
ated RDMA,without wrapping the RDMA in an RPC to
prepare the server on a per-I/O basis. In this section,
introduceOptimistic RDMA, a novel network I/O mech-
anism that enables RDMA with these properties. Th
following design challenges must be addressed in
ORDMA mechanism:

Ensuring safety. One way to avoid accidental corrup
tion or malicious buffer access by mutually untruste
clients is to use cryptographically strong hashing. Ea
exported memory segment is associated with acapabil-
ity [24], which is a keyed message authentication co
(MAC) computed and stored at the server TPT entry f
the memory segment and given to the client. A capab
ity protecting a memory segment is sent back to th
server NIC with every ORDMA request for that seg
ment. The server NIC verifies the validity of a capabilit
before allowing a memory access. The server m
revoke access privileges to an exported memory se
ment, for example, when protecting or invalidating VM
page translations, by locally invalidating its capability i
the TPT.

Handling remote memory access faults. Client-initi-
ated RDMA may be faced with a number of exceptio
conditions at the target NIC. For example, some of th
targeted VM pages may no longer be resident in phy
cal memory. In addition, targeted pages may be lock
or protected. In the case of non-resident pages, o
option is to enable the NIC to trigger a page-in disk I/O
However, this solution significantly increases the com

Send RPC request

Wait for RPC response

Server: RDMA into
receiver buffer

NFS pre−posting

NIC: DMA payload into
receiver buffer

RPC response signals

Unpin and de−register

Append user−level bufferPost receive buffer

I/O completion

user−level buffer

pointer to request RPCwith NIC

user−level buffer
Pin and register

NFS hybrid

Figure 2. NFS client actions for a read request
with either RDDP-RDMA or RDDP-RPC.
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plexity of the NIC design and most importantly, it may
not be supported by the OS. The ORDMA model
enables clients to initiate RDMA that is guaranteed to
succeed only if the target buffer is valid and exported by
the server and is neither locked nor protected. In the
opposite case, a recoverable access fault is signaled to
the client by a network exception. After catching an
ORDMA exception, a client handler may recover by
retrying the access using an alternate access method,
such as RPC.

Two important design choices in any ORDMA-based
system are: (a) how a client finds references to server
memory buffers, and (b) how a client handles exceptions
due to failed ORDMAs. Section 4.2 describes the
choices we have made in the Optimistic Direct Access
File System.

4.1  ORDMA implementation

The two main ORDMA implementation issues are (a)
how to synchronize between the NIC and the host CPU
when accessing VM pages, and (b) how to report NIC–
to–NIC network exceptions in case of remote memory
access faults.

NIC–host CPU synchronization in accessing VM
pages. Synchronization is necessary because the NIC is
allowed to set up DMA transfers between the network
and main memory, independently of the CPU. The kind
of NIC–host CPU synchronization depends critically on
OS support for multiple processors. An ORDMA-capa-
ble NIC in a multiprocessor OS can fully participate in
the VM system, by pinning/unpinning and lock-
ing/unlocking VM pages in response to network events.
This is because a multiprocessor OS offers the necessary
synchronization structures for the NIC to appear indis-
tinguishable from an additional CPU to the OS, except
for its performance. On the other hand, a NIC in a uni-
processor OS may not be able to pin pages from inter-
rupt handlers if, for example, the OS is non-preemptive.
In this case, synchronization via the host memory resi-
dent TPT is necessary.

The NIC should ensure that the following two condi-
tions hold for the duration of DMA: First, pages
involved in DMA have to remain resident in physical
memory. Second, conflicting accesses by another CPU
or NIC should not be allowed. We chose to satisfy both
requirements by treating VM pages with translations
loaded in the NIC TLB as both pinned and locked. The
alternative of locking pages only for the duration of an
I/O requires frequent NIC–host CPU interaction and
was deemed too expensive in the case of a NIC on the

I/O bus. All pages in the TPT, except those with transl
tions loaded on the NIC TLB, may be locked and inval
dated by the host. The NIC updates the state of TP
entries by interrupting on each TLB miss. These inte
rupts increase CPU overhead but have the side-effec
speeding up the loading of TPT entries into the NIC
which is now done via a host-initiated programmed I/
operation, instead of (possibly several) NIC-initiate
DMA on the PCI bus.

A drawback of having to synchronize via a device-sp
cific page table is that the OS has to be aware of a
adapt to the idiosyncrasies of the NIC. For example,
should always check with the NIC TPT before reclaim
ing a page and account for the fact that attempts
reclaim a physical page may fail until the page is evicte
from the NIC TLB. To avoid starvation, the OS mus
increase its minimum free page threshold by the ma
mum amount of physical memory with page translation
loaded on the NIC TLB. The OS must also be able
limit the effective size of the NIC TLB to avoid exces
sive pinning by the NIC.

NIC–to–NIC exceptions. ORDMAs may fail due to a
variety of conditions, such as invalid address translatio
protection violation, failure to lock page(s). We decide
to support such exceptions by extending the VI protoc
with recoverable RDMA failure semantics. Since VI is
layer on top of Myrinet’s GM in our prototype, we first
modified the Myrinet GM Control Program to repor
such conditions as exceptions in low-levelget (i.e.,
RDMA read) andput (i.e., RDMA write) operations.
These exceptions are reported as “soft” or recovera
transport errors in the VI descriptor status flags, and c
be appropriately handled by higher-level software, su
as the DAFS client and the ODAFS user-level cach
described in Section 4.2.1.

4.2  Optimistic DAFS

The Optimistic Direct Access File System is our exten
sion of the DAFS [12] protocol. Just like DAFS,
ODAFS can use RPCs for all file requests. In addition
RPC requests, ODAFS clients may issue ORDMAs
directly access exported data and metadata buffers in
server file cache.

ODAFS is based on the following key principles:

(a) Clients maintain adirectoryor cache of remote refer-
ences to server memory. These directories can be b
either eagerlywhen clients ask the server for memor
references, orlazily when the server piggybacks mem
ory references with each RPC response.
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(b) Directory entries need not be eagerly invalidated
when the server invalidates VM mappings for exported
references. Instead, invalid ORDMAs are caught at the
server NIC, which throws exceptions reported to clients.
An important advantage of this consistency mechanism
is that the server does not need to keep track of clients
caching memory references.

(c) The client is always prepared to catch an exception
for each ORDMA operation. In such a case, the client
issues an RPC to access the data.

Other important considerations for ODAFS clients are
determining the size of the ORDMA directory, particu-
larly in relation to the memory requirements for file data
and attribute caching, and the replacement policies
appropriate for maintaining the ORDMA directory. In
this paper, we assume that the size of the ORDMA
directory is small compared to the size of the data cache,
and use the LRU replacement algorithm for ORDMA
references. However, since ORDMA accesses are
expected to be issued in response to client cache misses,
a more appropriate strategy would be similar to the
multi-queue algorithm for storage server caches [38].

4.2.1  ODAFS implementation

We implemented prototypes of an ODAFS client and
server by extending the following existing DAFS com-
ponents: a user-level DAFS file cache [1], a user-level
DAFS API implementation [20] and a DAFS kernel
server [21]. We rely on the ORDMA support for Myri-
net described in Section 4.1.

The ODAFS server piggybacks remote memory refer-
ences to data blocks in its kernel file cache onto RPC
responses to the client. The ODAFS client stores these
references in cache block headers. As data blocks are
reclaimed by the client cache, memory references are
allowed to live in “empty” headers. The client cache is
configured with many more empty headers than data
blocks. Ideally, it should have enough buffer headers to
be able to map the entire server physical memory avail-
able for file caching.

We also modified the DAFS API to allow passing of
ORDMA references, and the DAFS client implementa-
tion to include ORDMA operations in its event loop. On
ORDMA exceptions, the DAFS client retries the opera-
tion using RPC in order to guarantee success. At RPC
completion, the fresh piggybacked reference to the
server buffers is passed to the ODAFS client.

The ODAFS server maps file blocks on a private 64-bit
virtual address map. This is to ensure that there is

always enough virtual address space to map lar
amounts of physical memory for long periods of time
Thus, we ensure that NIC TLB invalidations are due
the OS reclaiming a VM page due to memory pressu
and never due to having to share a small virtual addre
space. This 64-bit address space is addressable only
the NIC and never by the CPU. It is therefore indepe
dent of whether the CPU has a 32- or 64-bit architectu

Ideally, the replacement algorithm used in the serv
NIC TLB should be the same as the algorithm used
the client ORDMA directory.

4.2.2  Benefits and limitations

ODAFS is targeted for workloads performing sma
I/Os. ODAFS is most beneficial with significant mem
ory-to-memory I/O traffic, such as that caused by sma
files and attribute accesses, and high server cache
rates. The benefit comes mainly from the low serv
CPU overhead of the ORDMA mechanism. Howeve
there are a number of workload characteristics that lim
the applicability of ORDMA, and consequently the
effectiveness of ODAFS. These are:

Few remote memory accesses, e.g., when client caching
is effective in locally satisfying most file requests [25]
Note that this factor reduces the usefulness of a
remote file access protocol.

Low ORDMA success rate, i.e., low server cache h
rates. If many ORDMAs result in failure, ODAFS per-
formance is similar to that of DAFS as the cost o
ORDMA exceptions and subsequent RPCs is masked
the high latency of server disk I/O.

Many file accesses that cannot be satisfied via ORDM.
This could be because the remote memory location
the target data may not be exportable. Examples a
directory name lookups, which require significant pro
cessing on the server besides the actual data transfer

Small read–write ratio. Writes require the update of
associated file state, such as time of last modificati
and file block status on the server, besides the act
data transfer. Append-mode writes are harder as th
further require allocating disk blocks on the serve
checking resource limits, and potentially serializin
over concurrent appending accesses.

Low NIC TLB hit rates. Satisfying TLB misses for a
NIC on the I/O bus can be significantly more expensiv
than for a CPU TLB. In addition, network storage work
ing sets can be very large and access patterns may
have enough locality to render NIC TLBs effective.
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Finally, mixing ORDMA- and RPC-based file access
has implications on the atomicity of file I/O. RPC-based
file access guarantees that the entire I/O operation is
atomic by locking the entire file for the duration of the
I/O. However, ORDMA-based file access guarantees
that at most one memory word is read or written atomi-
cally. By using both access methods, ODAFS effectively
offers ORDMA’s atomicity semantics. For UNIX file
I/O semantics, client applications should explicitly lock
files for the duration of I/O.

5 Experimental Results

Our experimental setup consists of a cluster of four PCs
each with a 1GHz Pentium III processor, 2GB SDRAM
and the ServerWorks LE chipset. The PCs are connected
via a 2Gb/s switch over full-duplex ports. Each NIC has
a 200MHz LANai9.2 network processor with 2MB of
on-board SRAM in 64MHz/66-bit PCI slots. PCI bus
throughput is measured at 450MB/s. All PCs run
FreeBSD 4.6. The LANai drivers and firmware are
based on GM-2.0 alpha1 release featuring support for
remote direct memory accessgetandputprimitives. The
VI library is based on the Myricom VI-GM 1.0 release.
This is a host-based user-level library mapping VI oper-
ations to GM operations and used by the user-level
DAFS client [20]. A kernel port of the VI library sup-
ports the DAFS/ODAFS server [21]. Ethernet emulation
is implemented in the standard LANai GM-2.0 firmware
and drivers and supports UDP and IP checksum offload-
ing and interrupt coalescing. The Ethernet packet MTU
is 9KB. GM data transfers, however, are fragmented and
reassembled by the LANai using a 4KB MTU. The GM
driver and firmware are modified as described in
Section 3.2 for RDDP-RPC and Section 4.1 for
ORDMA (except for capabilities, which are not yet sup-
ported in our implementation).NFS pre-postingand
NFS hybrid are implemented by modifying the
FreeBSD 4.6 kernel, as shown in Figure 2.NFS pre-
posting uses the RDDP-RPC device interface.NFS
hybrid uses GMput to perform server-initiated RDMA

writes to client memory buffers. Given the very low
transmission error rates of Myrinet, we use UDP as o
transport protocol to avoid the higher overhead of TC
This configuration approximates the benefits of offloa
ing TCP if it were supported by the NIC. Table 2 report
baseline network performance of the protocols us
over the Myrinet network. These numbers are collect
using thegm_allsize, pingpongandnetperfprograms for
GM, VI-GM and UDP/IP protocols respectively.

5.1  Client overhead

In this section, we measure read throughput with a sim
ple client and application performance with the Berke
ley DB database.

Client read throughput . This experiment measures file
read throughput with a simple client performing asyn
chronous read-ahead without any data processing.
compare DAFS to the two optimized NFS implementa
tions,NFS pre-postingandNFS hybrid, and to standard
NFS. The client reads data sequentially, using a varyi
block size, from a 1.5GB file warm in the server file
cache. Read-ahead prefetching at the application leve
done via the DAFS and POSIXaio APIs. NFS is
mounted with the readahead parameter set to zero in
cases. UDP/IP is modified so that the NFS transfer s
can match the application block size up to 512KB.

Figure 3 shows that for block sizes larger than 32K
DAFS can sustain read throughput of about 230 MB/
As shown in Figure 4, it achieves this throughput con
suming less than 15% of the client CPU for 64KB o
larger blocks, by offloading the transport to the NIC an
by being able to avoid all memory copies. Per-I/O ove
head is progressively better amortized since the unit
data movement always matches the application blo

Figure 3. Client bandwidth performing read-
ahead with variable application I/O block size.
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NFS pre-posting
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Protocol
Roundtrip

(us)
Bandwidth

(MB/s)

GM 23 244

VI
23

53

poll

block

244

244

UDP/Ethernet 80 166

Table 2. Baseline Myrinet performance. One-byte
roundtrip time.
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size. For small block sizes, DAFS achieves low per-I/O
overhead by using polling instead of interrupts. Simi-
larly to DAFS,NFS hybridsustains 230 MB/s for block
sizes of 32KB or larger with CPU utilization dropping
exponentially with increasing block size. However, even
though both DAFS andNFS hybriduse RDMA, NFS
hybriduses more of the client CPU due to its higher per-
RPC overhead. Both DAFS and theNFS hybridclients
avoid registering application buffers with the NIC on
each I/O by caching registrations.

NFS pre-postingsustains 235 MB/s for block sizes
32KB or larger, performing data transfer in 8KB IP frag-
ments. It slightly outperforms systems using RDMA
because the size of Ethernet packets (8KB) is twice the
size of the 4KB GM fragments. The decline in its client
CPU utilization is eventually limited for large block
sizes as the total number of IP fragments is independent
of the block size. In addition, theNFS pre-postingclient
interacts with the NIC for pre-posting application
receive buffers on each I/O. Standard NFS (not shown in
Figure 4) achieves a maximum throughput of 65 MB/s,
limited primarily by memory copying, which saturates
the client CPU.

Berkeley DB performing asynchronous I/O. In this
experiment, we use Berkeley DB to show the effect of
client CPU overhead in application performance. Berke-
ley DB [28] (db) is an embedded database management
system that provides recoverable, transaction-protected
access to databases of key/data pairs. It is linked into the
application address space and maintains its own user-
level cache of recently accessed database pages.Db is
modified to asynchronously prefetch database pages
when it is possible to pre-compute a set of required
pages.

In this experiment, an application usesdb to compute a
simple equality join with 60KB records. The result o
the join is a large list of keys, retrieved from the data
base file located on the server.Db pre-computes the list
of required pages and performs read-ahead, maintain
a window of outstanding I/Os. To vary the computa
tional requirements of the application, we increase t
amount of data copied from thedb cache into the appli-
cation buffer for each record, from one byte to 60KB
and report the application throughput in Figure 5. Th
throughput sustained by the application when there
little memory copying is close to the wire throughput fo
all systems except standard NFS.NFS pre-postingper-
forms slightly better than the other systems, as is al
the case in Figure 3. As the amount of copyin
increases, performance becomes limited by the clie
CPU. Relative system performance is inversely propo
tional to each system’s client CPU overhead for 64 K
network I/O transfers.

5.2  Server I/O throughput and response time

In this section we present microbenchmark and Po
Mark results highlighting the properties of ORDMA and
the upper bounds for performance improvements
ODAFS applications. In all cases, a file cache based
DAFS open delegations [12] is interposed between t
application and the DAFS/ODAFS API. To avoid intro
ducing platform-specific parameters, such as the cost
NIC memory registration and TLB misses, we ensu
that RDMA is done on pre-registered buffers and alwa
hits in the NIC TLB. The cost of a NIC TLB miss is
about 9µs for ORDMA in our prototype. This penalty
can be reduced in NICs that have large TLBs, are int
grated on the memory bus, or share a TLB with the ho
CPU [4].

Figure 4. Client CPU utilization performing read-
ahead with variable application I/O block size.
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Microbenchmarks. We measure I/O response time in
reading a 4KB block from server memory using (a) in-
line RPC read, that is, the data payload in-lined with the
RPC response, (b) direct RPC read, that is, the data pay-
load transferred by server-initiated RDMA write, and
(c) client-initiated ORDMA read. The file cache is con-
figured with a small number of data blocks but with a
large number of headers that can retain remote memory
references. In this microbenchmark, a simple applica-
tion sequentially reads a 1GB file warm in the server
cache twice, in increments of 4KB. The client cache is
configured with a 4KB block size and is cold prior to
starting the experiment.

During the first pass, all I/O requests miss in the client
cache, which, in response, initiates remote file accesses
using either in-line or direct RPC. RPC responses carry
remote memory references to file blocks on the server
cache. During the second pass, I/Os still miss in the cli-
ent cache. However, this time remote I/O may also be
performed by ORDMA since the client cache managed
to map the entire file on the server after having accessed
it once during the first pass. Table 3 shows the I/O
response time during the second pass using different
network I/O mechanisms. RPC in-line involves a mem-
ory copy in the client from the communication buffers to

the file cache. ORDMA yields about 36% lowe
response time than direct RPC.

Effect of client caching.In this experiment, we model a
file client accessing a set of small files synchronous
over DAFS and ODAFS. The file set size exceeds th
client cache size in all cases. We model such a laten
sensitive workload by configuring the PostMark [19
benchmark for read-only transactions without file cre
ations or deletions. Each read I/O is preceded by a fi
open and followed by a file close operation. After th
first open of a file, which grants the client an open del
gation, each subsequent open or close for that file is s
isfied locally. We use a 4KB average file size an
configure the client cache with a 4KB block size. Th
client cache hit ratio determines the frequency of remo
memory access. By varying the size of the client cac
and keeping the file set size constant we progressiv
increase its hit ratio from 25% to 50% to 75%. We fin
that in all cases ODAFS yields about 34% highe
throughput than DAFS (Figure 6), reflecting the differ
ence in response time between ORDMA and dire
RPC. This is because, despite the benefit of client cac
ing, overall performance is sensitive to the cost o
remote memory accesses. The DAFS server CPU ut
zation drops from 30% to 25% to 20% as the clien
cache hit ratio improves. However, ODAFS uses n
server CPU after it manages to collect remote memo
references for the entire server cache, which occurs af
the client has accessed each file at least once.

Server throughput. In this experiment, we show the
effect of per-I/O overhead on server throughput. W
model a multi-client, throughput-intensive workload
dominated by small I/Os by configuring two clients to
sequentially read a 1GB file warm in the server cach
twice, using a large block size. For reads larger than t
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Figure 6. PostMark I/O throughput. Single client
with variable cache hit ratio.

I/O mechanism
Response Time (us)

in mem. in cache

RPC in-line read 128 153

RPC direct read 144 144

ORDMA read 92 92

Table 3. I/O response time with 4KB block size.
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Figure 7. Server throughput. Two clients reading a
large file using a large block size.
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cache block size, the cache starts internal read-ahead up
to the size of the application request. To vary the unit of
network I/O, we progressively increase the cache block
size from 4KB to 64KB and measure server throughput
for each cache block size during the second pass, as
shown in Figure 7. We find that with ODAFS, the two
clients are able to saturate the server network link for all
cache block sizes (except for 64KB due to a perfor-
mance bug in GMget) without using the server CPU.
DAFS yields lower server throughput for small I/O
blocks, saturating the server CPU due to processing
direct RPCs. For the smallest cache block size of 4KB
for which the difference between DAFS and ODAFS is
maximal, the DAFS server is primarily constrained by
network interrupts. Switching to polling for all network
events, DAFS throughput improves to about 170 MB/s
reducing the performance improvement attainable from
ODAFS to 32%.

6 Conclusions

In this paper, we show that two network I/O mecha-
nisms for RDDP,pre-posting application receive buffers
and RDMA, are effective in reducing per-byte CPU
overhead in NAS end-systems. Our experiments show
that they both enable a throughput-intensive streaming
client to achieve file access at the speed of a 2Gb/s net-
work link. RDMA offers the advantage of a general-pur-
pose user-level API, enabling portable user-level
implementations. Workloads dominated by small I/Os
are more sensitive to per-I/O overhead. For such work-
loads, we propose a new network I/O mechanism,Opti-
mistic RDMA, that aims to improve server throughput
and response time. We have implemented a prototype of
ORDMA and ofOptimistic DAFS, our extension of the
DAFS protocol that uses ORDMA. We measured
improvement in server throughput and response time by
up to 32% and 36%, respectively, in small I/O transfers.
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8 Software Availability
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FreeBSD patches and Myrinet driver, library and firm-

ware modifications, used in this paper is freely availab
from http://www.eecs.harvard.edu/dafs.

References

[1]. S. Addetia, “User-level Client-side Caching fo
DAFS”, Harvard University TR-14-01, March 2002.

[2]. D. Anderson, J. Chase, S. Gadde, A. Gallatin, K
Yocum, “Cheating the I/O Bottleneck: Network Storag
with Trapeze/Myrinet”, inProc. of USENIX Annual
Technical Conference, pp. 143-154, New Orleans, LA,
June 1998.

[3]. D. Anderson, J. Chase, A. Vahdat, "Interpose
Request Routing for Scalable Network Storage",
Proc. of 4th USENIX OSDI Symposium, pp. 259-272,
San Diego, CA, October 2000.

[4]. B. Ang, D. Chiu, L. Rudolph, Arvind, “Message
Passing Support on StarT-Voyager”,CSG Memo 387,
MIT Laboratory for Computer Science, July 1996.

[5]. A. Birrell, B. Nelson, “Implementing Remote Pro-
cedure Calls”,ACM Transactions on Computer System,
(2)1:29-59, Feb. 1984.

[6]. J. Brustoloni, “Interoperation of Copy Avoidance in
Network and File I/O”, inProc. of the IEEE INFO-
COM’99 Conference,pp. 534-542, New York, NY,
March 1999.

[7]. P. Buonadonna, D. Culler, “Queue-Pair IP: A
Hybrid Architecture for System Area Networks", in
Proc. of 29th ISCA Symposium, Anchorage, AK, May
2002.

[8]. G. Buzzard, D. Jacobson, M. Mackey, S. Marovich
J. Wilkes, “An Implementation of the Hamlyn Sender
Managed Interface Architecture”, inProc. of 2nd
USENIX OSDI Symposium, pp. 245-259, Seattle, WA,
October 1996.

[9]. B. Callaghan, NFS over RDMA,Work in progress
presented at 1st USENIX FAST Conference,Monterey,
CA, January 2002.

[10]. J. Chase, A. Gallatin, K. Yocum, “End System
Optimizations for High-Speed TCP”,IEEE Communi-
cations, (39)4:68-74, April 2001.

[11]. D. Culler, R. Karp, D. Patterson, A. Sahay, K
Schauser, E. Santos, R. Subramonian, T. von Eick
“LogP: Towards a Realistic Model of Parallel Computa
tion”, in Principles and Practice of Parallel Program-
ming, pp. 1-12, 1993.

[12]. M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D
Noveck, T. Talpey, M. Whittle, “The Direct Access File



.
-

X

k

-
,

t-
g
-
t-

-

,

-
k

r

System” , to appear inProc. of 2nd USENIX FAST Con-
ference, San Francisco, CA, March 2003.

[13]. EMC Cellera HighRoad, White Paper
http://www.emc.com/pdf/proucts/celerra_file_server/Hi
ghRoad_wp.pdf, January 2002.

[14]. E. Felten, J. Zahorjan. “Issues in the Implementa-
tion of a Remote Memory Paging System”, CS TR 91-
03-09, University of Washington, March 1991.

[15]. G. Gibson, D. Nagle, K. Amiri, J. Buttler, F.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
J. Zelenka, “A Cost-Effective, High-Bandwidth Storage
Architecture”, inProc. of 8th ASPLOS Conference, pp.
92-103, San Jose, CA, October 1998.

[16]. D. Pease, IBM Storage Tank,Work in progress pre-
sented at 1st USENIX FAST Conference, Monterey, CA,
January 2002.

[17]. IETF Remote Direct Data Placement(RDDP)
Working Group, http://www.ietf.org/

[18]. C. Jurgens, “FibreChannel: A Connection to the
Future”,IEEE Computer, 28(8):88-90, August 1995.

[19]. J. Katcher, “PostMark: A New File System Bench-
mark”, Network Appliance TR-3022, October 1997.

[20]. K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, D. Gallatin, R. Kisley, R. Wickremesinghe, E.
Gabber, “Structure and Performance of the Direct
Access File System”, inProc. of USENIX Technical
Conference, Monterey, CA, pp. 1-14, June 2002.

[21]. K. Magoutis, “Design and Implementation of a
Direct Access File System Kernel Server for FreeBSD”,
in Proc. of USENIX BSDCon 2002 Conference, San
Franscisco, CA, pp. 65-76, February 2002.

[22]. R. Martin, A. Vahdat, D. Culler, T. Anderson,
“Effects of Communication Latency, Overhead and
Bandwidth in a Cluster Architecture”,Proc. of the 24th
Annual ISCA, pp. 85-97, Denver, Colorado, June 1997.

[23]. R. Martin and D. Culler, “NFS Sensitivity to High-
Performance Networks”, inProc. of SIGMETRICS ’99/
PERFORMANCE ’99 Joint International Conf. on Mea-
surement and Modeling of Computer Sys., pp. 71-82,
Atlanta, GA, May 1999.

[24]. S. Mullender and A. Tanenbaum, “The Design of a
Capability-based Distributed Operating System”,The
Computer Journal, 29(4):289-299, 1986.

[25]. D. Muntz and P. Honeyman, “Multi-level Caching
in Distributed File Systems (your cache ain’t nuthin’ but
trash), InProc. of USENIX Technical Conference, pp.
305-314, San Antonio, TX, January 1992.

[26]. Myricom LANai9.2 and GM communication
library, Myricom Inc., http://www.myri.com

[27]. D. Nagle, G. Ganger, J. Butler, G. Goodson, C
Sabol, “Network Support for Network-Attached Stor
age”, in Proc. of Hot Interconnects, Stanford, CA,
August 1999.

[28]. M.Olson, K. Bostic, M. Seltzer, “Berkeley DB”, in
Proc. of USENIX Technical Conference (FREENI
Track), pp. 183-192, Monterey, CA, June 1999.

[29]. V. Pai, P. Druschel, W. Zwaenepoel, “IO-Lite: A
Unified I/O Buffering and Caching System”, inProc. of
3rd USENIX OSDI Symposium, pp. 15-28, New
Orleans, LA, February 1999.

[30]. F. Schmuck and R. Haskin, “GPFS: A Shared-Dis
File System for Large Computing Clusters”, inProc. of
1st USENIX FAST Conference, Monterey, CA, January
2002.

[31]. R. Steward, C. Metz, “SCTP: New Transport Pro
tocol for TCP/IP”, IEEE Internet Computing, pp. 64-69
November 2001.

[32]. M. Thadani, Y. Khalidi, “An Efficient Zero-copy
I/O Framework for UNIX”, SMLI TR95-39, Sun Micro-
systems Lab, Inc., May 1995.

[33]. C. Thekkath, H. Levy and E. Lazowska, “Separa
ing Data and Control Transfer in Distributed Operatin
Systems”,6th International Conference on Architec
tural Support for Programming Languages and Opera
ing Systems, pp. 2-11, San Jose, CA, October 1994.

[34]. C. Thekkath and H. Levy, “Limits to Low-Latency
Communication on High-Speed Networks“,ACM
Trans. on Computer Systems, 11(2):179-203, 1993.

[35]. Virtual Interface Architecture Specification, Ver
sion 1.0, http://www.viarch.org, December 1997

[36]. T. von Eicken, A. Basu, V. Buch and W. Vogels
“U-Net: A User-Level Network Interface for Parallel
and Distributed Computing”,Fifteenth ACM Symposium
on Operating Systems Principles, pp. 40-53, Copper
Mountain Resort, CO, December 1995.

[37]. M. Welsh, A. Basu and T. von Eicken, “Incorporat
ing Memory Management into User-Level Networ
Interfaces”, inProc. of Hot Interconnects,pp. 27-36,
August 1997.

[38]. Y. Zhou, J. Philbin, K. Li, “The Multi-Queue
Replacement Algorithm for Second Level Buffe
Caches”, inProc. of USENIX Technical Conference, pp.
91-104, Boston, MA, June 2001.


	Table 2. Baseline Myrinet performance. One-byte roundtrip time.
	Making the Most out of Direct-Access Network Attached Storage
	Kostas Magoutis, Salimah Addetia, Alexandra Fedorova, Margo I. Seltzer
	Division of Engineering and Applied Sciences, Harvard University
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Network storage communication protocols
	Figure 1 . Protocol stack with the messaging and transport protocols offloaded to the NIC (a). RD...

	2.2 Communication overhead
	Table 1. Network I/O mechanisms and NAS systems evaluated in this paper. RDDP mechanisms target p...

	2.3 I/O throughput and response time

	3 Direct transfer file I/O in NAS systems
	3.1 Direct transfer file I/O using RDDP-RDMA
	3.2 Direct transfer file I/O using RDDP-RPC
	Figure 2. NFS client actions for a read request with either RDDP-RDMA or RDDP-RPC.


	4 Optimistic RDMA
	4.1 ORDMA implementation
	4.2 Optimistic DAFS
	4.2.1 ODAFS implementation
	4.2.2 Benefits and limitations


	5 Experimental Results
	5.1 Client overhead
	Figure 3. Client bandwidth performing read- ahead with variable application I/O block size.
	Figure 4. Client CPU utilization performing read- ahead with variable application I/O block size.
	Figure 5. Berkeley DB performing asynchronous I/O.

	5.2 Server I/O throughput and response time
	Figure 6. PostMark I/O throughput. Single client with variable cache hit ratio.
	Table 3. I/O response time with 4KB block size.
	Figure 7. Server throughput. Two clients reading a large file using a large block size.



	6 Conclusions
	7 Acknowledgements
	8 Software Availability
	References
	[1]. S. Addetia, “User-level Client-side Caching for DAFS”, Harvard University TR-14-01, March 2002.
	[2]. D. Anderson, J. Chase, S. Gadde, A. Gallatin, K. Yocum, “Cheating the I/O Bottleneck: Networ...
	[3]. D. Anderson, J. Chase, A. Vahdat, "Interposed Request Routing for Scalable Network Storage",...
	[4]. B. Ang, D. Chiu, L. Rudolph, Arvind, “Message Passing Support on StarT-Voyager”, CSG Memo 38...
	[5]. A. Birrell, B. Nelson, “Implementing Remote Procedure Calls”, ACM Transactions on Computer S...
	[6]. J. Brustoloni, “Interoperation of Copy Avoidance in Network and File I/O”, in Proc. of the I...
	[7]. P. Buonadonna, D. Culler, “Queue-Pair IP: A Hybrid Architecture for System Area Networks", i...
	[8]. G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, J. Wilkes, “An Implementation of the Hamlyn...
	[9]. B. Callaghan, NFS over RDMA, Work in progress presented at 1st USENIX FAST Conference, Monte...
	[10]. J. Chase, A. Gallatin, K. Yocum, “End System Optimizations for High-Speed TCP”, IEEE Commun...
	[11]. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, T. von ...
	[12]. M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T. Talpey, M. Whittle, “The Dire...
	[13]. EMC Cellera HighRoad, White Paper http://www.emc.com/pdf/proucts/celerra_file_server/Hi ghR...
	[14]. E. Felten, J. Zahorjan. “Issues in the Implementation of a Remote Memory Paging System”, CS...
	[15]. G. Gibson, D. Nagle, K. Amiri, J. Buttler, F. Chang, H. Gobioff, C. Hardin, E. Riedel, D. R...
	[16]. D. Pease, IBM Storage Tank, Work in progress presented at 1st USENIX FAST Conference, Monte...
	[17]. IETF Remote Direct Data Placement (RDDP) Working Group, http://www.ietf.org/
	[18]. C. Jurgens, “FibreChannel: A Connection to the Future”, IEEE Computer, 28(8):88-90, August ...
	[19]. J. Katcher, “PostMark: A New File System Benchmark”, Network Appliance TR-3022, October 1997.
	[20]. K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D. Gallatin, R. Kisley, R. Wick...
	[21]. K. Magoutis, “Design and Implementation of a Direct Access File System Kernel Server for Fr...
	[22]. R. Martin, A. Vahdat, D. Culler, T. Anderson, “Effects of Communication Latency, Overhead a...
	[23]. R. Martin and D. Culler, “NFS Sensitivity to High- Performance Networks”, in Proc. of SIGME...
	[24]. S. Mullender and A. Tanenbaum, “The Design of a Capability-based Distributed Operating Syst...
	[25]. D. Muntz and P. Honeyman, “Multi-level Caching in Distributed File Systems (your cache ain’...
	[26]. Myricom LANai9.2 and GM communication library, Myricom Inc., http://www.myri.com
	[27]. D. Nagle, G. Ganger, J. Butler, G. Goodson, C. Sabol, “Network Support for Network-Attached...
	[28]. M.Olson, K. Bostic, M. Seltzer, “Berkeley DB”, in Proc. of USENIX Technical Conference (FRE...
	[29]. V. Pai, P. Druschel, W. Zwaenepoel, “IO-Lite: A Unified I/O Buffering and Caching System”, ...
	[30]. F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing Clusters”, i...
	[31]. R. Steward, C. Metz, “SCTP: New Transport Protocol for TCP/IP”, IEEE Internet Computing, pp...
	[32]. M. Thadani, Y. Khalidi, “An Efficient Zero-copy I/O Framework for UNIX”, SMLI TR95-39, Sun ...
	[33]. C. Thekkath, H. Levy and E. Lazowska, “Separating Data and Control Transfer in Distributed ...
	[34]. C. Thekkath and H. Levy, “Limits to Low-Latency Communication on High-Speed Networks“, ACM ...
	[35]. Virtual Interface Architecture Specification, Version 1.0, http://www.viarch.org, December ...
	[36]. T. von Eicken, A. Basu, V. Buch and W. Vogels, “U-Net: A User-Level Network Interface for P...
	[37]. M. Welsh, A. Basu and T. von Eicken, “Incorporating Memory Management into User-Level Netwo...
	[38]. Y. Zhou, J. Philbin, K. Li, “The Multi-Queue Replacement Algorithm for Second Level Buffer ...




