13,248 research outputs found

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP

    A Memetic Algorithm for the Generalized Traveling Salesman Problem

    Get PDF
    The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling salesman problem. In GTSP, we are given a partition of cities into groups and we are required to find a minimum length tour that includes exactly one city from each group. The recent studies on this subject consider different variations of a memetic algorithm approach to the GTSP. The aim of this paper is to present a new memetic algorithm for GTSP with a powerful local search procedure. The experiments show that the proposed algorithm clearly outperforms all of the known heuristics with respect to both solution quality and running time. While the other memetic algorithms were designed only for the symmetric GTSP, our algorithm can solve both symmetric and asymmetric instances.Comment: 15 pages, to appear in Natural Computing, Springer, available online: http://www.springerlink.com/content/5v4568l492272865/?p=e1779dd02e4d4cbfa49d0d27b19b929f&pi=1

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    MEMOTS : a memetic algorithm integrating tabu search for combinatorial multiobjective optimization

    Get PDF
    We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the first parent. A local search is then applied to the offspring. We experiment this scheme with a new multiobjective tabu search called PRTS, which leads to the memetic algorithm MEMOTS. We show on the multidimensional multiobjective knapsack problem that if the number of objectives increase, it is preferable to have a diversified research rather using an advanced local search. We compare the memetic algorithm MEMOTS to other multiobjective memetic algorithms by using different quality indicators and show that the performances of the method are very interesting

    Addressing Expensive Multi-objective Games with Postponed Preference Articulation via Memetic Co-evolution

    Full text link
    This paper presents algorithmic and empirical contributions demonstrating that the convergence characteristics of a co-evolutionary approach to tackle Multi-Objective Games (MOGs) with postponed preference articulation can often be hampered due to the possible emergence of the so-called Red Queen effect. Accordingly, it is hypothesized that the convergence characteristics can be significantly improved through the incorporation of memetics (local solution refinements as a form of lifelong learning), as a promising means of mitigating (or at least suppressing) the Red Queen phenomenon by providing a guiding hand to the purely genetic mechanisms of co-evolution. Our practical motivation is to address MOGs of a time-sensitive nature that are characterized by computationally expensive evaluations, wherein there is a natural need to reduce the total number of true function evaluations consumed in achieving good quality solutions. To this end, we propose novel enhancements to co-evolutionary approaches for tackling MOGs, such that memetic local refinements can be efficiently applied on evolved candidate strategies by searching on computationally cheap surrogate payoff landscapes (that preserve postponed preference conditions). The efficacy of the proposal is demonstrated on a suite of test MOGs that have been designed

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency
    corecore