34 research outputs found

    A conceptual model for megaprogramming

    Get PDF
    Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described

    A NASA-wide approach toward cost-effective, high-quality software through reuse

    Get PDF
    NASA Langley Research Center sponsored the second Workshop on NASA Research in Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina. The workshop was hosted by the Research Triangle Institute. Participants came from the three NASA centers, four NASA contractor companies, two research institutes and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange information on software reuse tool development, particularly with respect to tool needs, requirements, and effectiveness. The participants presented the software reuse activities and tools being developed and used by their individual centers and programs. These programs address a wide range of reuse issues. The group also developed a mission and goals for software reuse within NASA. This publication summarizes the presentations and the issues discussed during the workshop

    RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    Get PDF
    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse

    RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices

    Get PDF
    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems

    Domain architecture a design framework for system development and integration

    Get PDF
    The ever growing complexity of software systems has revealed many short-comings in existing software engineering practices and has raised interest in architecture-driven software development. A system\u27s architecture provides a model of the system that suppresses implementation detail, allowing the architects to concentrate on the analysis and decisions that are most critical to structuring the system to satisfy its requirements. Recently, interests of researchers and practi-tioners have shifted from individual system architectures to architectures for classes of software systems which provide more general, reusable solutions to the issues of overall system organization, interoperability, and allocation of services to system components. These generic architectures, such as product line architectures and domain architectures, promote reuse and interoperability, and create a basis for cost effective construction of high-quality systems. Our focus in this dissertation is on domain architectures as a means of development and integration of large-scale, domain-specific business software systems. Business imperatives, including flexibility, productivity, quality, and ability to adapt to changes, have fostered demands for flexible, coherent and enterprise--wide integrated business systems. The components of such systems, developed separately or purchased off the shelf, need to cohesively form an overall compu-tational environment for the business. The inevitable complexity of such integrated solutions and the highly-demanding process of their construction, management, and evolution support require new software engineering methodologies and tools. Domain architectures, prescribing the organization of software systems in a business domain, hold a promise to serve as a foundation on which such integrated business systems can be effectively constructed. To meet the above expectations, software architectures must be properly defined, represented, and applied, which requires suitable methodologies as well as process and tool support. Despite research efforts, however, state-of-the-art methods and tools for architecture-based system development do not yet meet the practical needs of system developers. The primary focus of this dissertation is on developing methods and tools to support domain architecture engineering and on leveraging architectures to achieve improved system development and integration in presence of increased complexity. In particular, the thesis explores issues related to the following three aspects of software technology: system complexity and software architectures as tools to alleviate complexity; domain architectures as frameworks for construction of large scale, flexible, enterprise-wide software systems; and architectural models and representation techniques as a basis for good” design. The thesis presents an archi-tectural taxonomy to help categorize and better understand architectural efforts. Furthermore, it clarifies the purpose of domain architectures and characterizes them in detail. To support the definition and application of domain architectures we have developed a method for domain architecture engineering and representation: GARM-ASPECT. GARM, the Generic Architecture Reference Model, underlying the method, is a system of modeling abstractions, relations and recommendations for building representations of reference software architectures. The model\u27s focus on reference and domain architectures determines its main distinguishing features: multiple views of architectural elements, a separate rule system to express constraints on architecture element types, and annotations such as “libraries” of patterns and “logs” of guidelines. ASPECT is an architecture description language based on GARM. It provides a normalized vocabulary for representing the skeleton of an architecture, its structural view, and establishes a framework for capturing archi-tectural constraints. It also allows extensions of the structural view with auxiliary information, such as behavior or quality specifications. In this respect, ASPECT provides facilities for establishing relationships among different specifications and gluing them together within an overall architectural description. This design allows flexibility and adaptability of the methodology to the specifics of a domain or a family of systems. ASPECT supports the representation of reference architectures as well as individual system architectures. The practical applicability of this method has been tested through a case study in an industrial setting. The approach to architecture engineering and representation, presented in this dissertation, is pragmatic and oriented towards software practitioners. GARM-ASPECT, as well as the taxonomy of architectures are of use to architects, system planners and system engineers. Beyond these practical contributions, this thesis also creates a more solid basis for expbring the applicability of architectural abstractions, the practicality of representation approaches, and the changes required to the devel-opment process in order to achieve the benefits from an architecture-driven software technology

    MU NewsLetter, December 7, 1995

    Get PDF

    A meta-semantic language for smart component-adapters

    Get PDF
    The issues confronting the software development community today are significantly different from the problems it faced only a decade ago. Advances in software development tools and technologies during the last two decades have greatly enhanced the ability to leverage large amounts of software for creating new applications through the reuse of software libraries and application frameworks. The problems facing organizations today are increasingly focused around systems integration and the creation of information flows. Software modeling based on the assembly of reusable components to support software development has not been successfully implemented on a wide scale. Several models for reusable software components have been suggested which primarily address the wiring-level connectivity problem. While this is considered necessary, it is not sufficient to support an automated process of component assembly. Two critical issues that remain unresolved are: (1) semantic modeling of components, and (2) deployment process that supports automated assembly. The first issue can be addressed through domain-based standardization that would make it possible for independent developers to produce interoperable components based on a common set of vocabulary and understanding of the problem domain. This is important not only for providing a semantic basis for developing components but also for the interoperability between systems. The second issue is important for two reasons: (a) eliminate the need for developers to be involved in the final assembly of software components, and (b) provide a basis for the development process to be potentially driven by the user. To resolve the above remaining issues (1) and (2) a late binding mechanism between components based on meta-protocols is required. In this dissertation we address the above issues by proposing a generic framework for the development of software components and an interconnection language, COMPILE, for the specification of software systems from components. The computational model of the COMPILE language is based on late and dynamic binding of the components\u27 control, data, and function properties. The use of asynchronous callbacks for method invocation allows control binding among components to be late and dynamic. Data exchanged between components is defined through the use of a meta- language that can describe the semantics of the information but without being bound to any specific programming language type representation. Late binding to functions is accomplished by maintaining domain-based semantics as component metainformation. This information allows clients of components to map generic requested service to specific functions

    Lessons learned applying CASE methods/tools to Ada software development projects

    Get PDF
    This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones
    corecore