8 research outputs found

    Meeting in a Polygon by Anonymous Oblivious Robots

    Full text link
    The Meeting problem for k≄2k\geq 2 searchers in a polygon PP (possibly with holes) consists in making the searchers move within PP, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of PP, we minimize the number of searchers kk for which the Meeting problem is solvable. Specifically, if PP has a rotational symmetry of order σ\sigma (where σ=1\sigma=1 corresponds to no rotational symmetry), we prove that k=σ+1k=\sigma+1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k=2k=2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations, and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest.Comment: 37 pages, 9 figure

    Meeting in a Polygon by Anonymous Oblivious Robots

    Get PDF
    The Meeting problem for k>=2 searchers in a polygon P (possibly with holes) consists in making the searchers move within P, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of P, we minimize the number of searchers k for which the Meeting problem is solvable. Specifically, if P has a rotational symmetry of order sigma (where sigma=1 corresponds to no rotational symmetry), we prove that k=sigma+1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k=2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations (provided that the coordinates of the polygon\u27s vertices are algebraic real numbers in some global coordinate system), and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest

    Positional Encoding by Robots with Non-Rigid Movements

    Full text link
    Consider a set of autonomous computational entities, called \emph{robots}, operating inside a polygonal enclosure (possibly with holes), that have to perform some collaborative tasks. The boundary of the polygon obstructs both visibility and mobility of a robot. Since the polygon is initially unknown to the robots, the natural approach is to first explore and construct a map of the polygon. For this, the robots need an unlimited amount of persistent memory to store the snapshots taken from different points inside the polygon. However, it has been shown by Di Luna et al. [DISC 2017] that map construction can be done even by oblivious robots by employing a positional encoding strategy where a robot carefully positions itself inside the polygon to encode information in the binary representation of its distance from the closest polygon vertex. Of course, to execute this strategy, it is crucial for the robots to make accurate movements. In this paper, we address the question whether this technique can be implemented even when the movements of the robots are unpredictable in the sense that the robot can be stopped by the adversary during its movement before reaching its destination. However, there exists a constant ÎŽ>0\delta > 0, unknown to the robot, such that the robot can always reach its destination if it has to move by no more than ÎŽ\delta amount. This model is known in literature as \emph{non-rigid} movement. We give a partial answer to the question in the affirmative by presenting a map construction algorithm for robots with non-rigid movement, but having O(1)O(1) bits of persistent memory and ability to make circular moves

    Pattern Formation by Robots with Inaccurate Movements

    Get PDF
    Arbitrary Pattern Formation is a fundamental problem in autonomous mobile robot systems. The problem asks to design a distributed algorithm that moves a team of autonomous, anonymous and identical mobile robots to form any arbitrary pattern F given as input. In this paper, we study the problem for robots whose movements can be inaccurate. Our movement model assumes errors in both direction and extent of the intended movement. Forming the given pattern exactly is not possible in this setting. So we require that the robots must form a configuration which is close to the given pattern F. We call this the Approximate Arbitrary Pattern Formation problem. With no agreement in coordinate system, the problem is unsolvable, even by fully synchronous robots, if the initial configuration 1) has rotational symmetry and there is no robot at the center of rotation or 2) has reflectional symmetry and there is no robot on the reflection axis. From all other initial configurations, we solve the problem by 1) oblivious, silent and semi-synchronous robots and 2) oblivious, asynchronous robots that can communicate using externally visible lights

    Oblivious permutations on the plane

    Get PDF
    We consider a distributed system of n identical mobile robots operating in the two dimensional Euclidian plane. As in the previous studies, we consider the robots to be anonymous, oblivious, dis-oriented, and without any communication capabilities, operating based on the Look-Compute-Move model where the next location of a robot depends only on its view of the current configuration. Even in this seemingly weak model, most formation problems which require constructing specific configurations, can be solved quite easily when the robots are fully synchronized with each other. In this paper we introduce and study a new class of problems which, unlike the studied formation problems, cannot always be solved even in the fully synchronous model with atomic and rigid moves. This class of problems requires the robots to permute their locations in the plane. In particular, we are interested in implementing two special types of permutations - permutations without any fixed points and permutations of order n. The former (called Move-All) requires each robot to visit at least two of the initial locations, while the latter (called Visit-All) requires every robot to visit each of the initial locations in a periodic manner. We provide a characterization of the solvability of these problems, showing the main challenges in solving this class of problems for mobile robots. We also provide algorithms for the feasible cases, in particular distinguishing between one-step algorithms (where each configuration must be a permutation of the original configuration) an

    Meeting in a polygon by anonymous oblivious robots

    No full text
    The Meeting problem for k≄ 2 searchers in a polygon P (possibly with holes) consists in making the searchers move within P, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of P, we minimize the number of searchers k for which the Meeting problem is solvable. Specifically, if P has a rotational symmetry of order σ (where σ= 1 corresponds to no rotational symmetry), we prove that k= σ+ 1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k= 2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look–Compute–Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations (provided that the coordinates of the polygon’s vertices are algebraic real numbers in some global coordinate system), and each searcher can geometrically construct its own destination point at each cycle using only a compass and a straightedge. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest

    Meeting in a Polygon by Anonymous Oblivious Robots

    No full text
    The Meeting problem for Îș ≄ 2 searchers in a polygon P (possibly with holes) consists in making the searchers move within P, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of P, we minimize the number of searchers k for which the Meeting problem is solvable. Specifically, if P has a rotational symmetry of order σ (where σ = 1 corresponds to no rotational symmetry), we prove that Îș = σ + 1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with Îș = 2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations (provided that the coordinates of the polygon's vertices are algebraic real numbers in some global coordinate system), and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a selfstabilizing map construction subroutine which is of independent interest
    corecore