
Meeting in a Polygon by Anonymous Oblivious
Robots∗

Giuseppe A. Di Luna1, Paola Flocchini2, Nicola Santoro3,
Giovanni Viglietta4, and Masafumi Yamashita5

1 University of Ottawa, Ottawa, Canada
gdiluna@uottawa.ca

2 University of Ottawa, Ottawa, Canada
paola.flocchini@uottawa.ca

3 Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

4 University of Ottawa, Ottawa, Canada
gvigliet@uottawa.ca

5 Kyushu University, Fukuoka, Japan
mak@inf.kyushu-u.ac.jp

Abstract
The Meeting problem for k ≥ 2 searchers in a polygon P (possibly with holes) consists in making
the searchers move within P , according to a distributed algorithm, in such a way that at least
two of them eventually come to see each other, regardless of their initial positions. The polygon is
initially unknown to the searchers, and its edges obstruct both movement and vision. Depending
on the shape of P , we minimize the number of searchers k for which the Meeting problem is
solvable. Specifically, if P has a rotational symmetry of order σ (where σ = 1 corresponds to no
rotational symmetry), we prove that k = σ + 1 searchers are sufficient, and the bound is tight.
Furthermore, we give an improved algorithm that optimally solves the Meeting problem with
k = 2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons
with no holes). Our algorithms can be implemented in a variety of standard models of mobile
robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but
are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of
clockwise direction, then our algorithms work even if the initial memory contents of the searchers
are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms
as well, encoding information by carefully positioning themselves within the polygon. This code
is computable with basic arithmetic operations (provided that the coordinates of the polygon’s
vertices are algebraic real numbers in some global coordinate system), and each searcher can
geometrically construct its own destination point at each cycle using only a compass. We stress
that such memoryless searchers may be located anywhere in the polygon when the execution
begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-
stabilizing map construction subroutine which is of independent interest.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence – multiagent systems

Keywords and phrases Meeting problem, Oblivious robots, Polygon, Self-stabilization

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.14

∗ Full version available at https://arxiv.org/abs/1705.00324.

© Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 Meeting in a Polygon by Anonymous Oblivious Robots

1 Introduction

1.1 Framework
Consider a set of k ≥ 2 autonomous mobile robots, modeled as geometric points located in a
polygonal enclosure P , which may contain holes. The boundary of P limits both visibility
and mobility, in that robots cannot move or see through the edges of P . Each robot observes
the visible portion of P (taking an instantaneous snapshot of it), executes an algorithm to
compute a visible destination point, and then moves to that point. Such a Look-Compute-
Move cycle is repeated forever by every robot, each time taking a new snapshot and moving
to a newly computed point. In this paper we study the Meeting problem, which prescribes
the k robots to move in such a way that eventually at least two of them come to see each
other and become “mutually aware”. We will refer to these robots as P -searchers, or simply
searchers.

Our searchers are severely limited, which makes the Meeting problem harder to solve.
They do not know the shape of P in advance, nor their whereabouts within P . They are
anonymous, implying that they all execute the same algorithm to determine their destination
points. They are oblivious, meaning that each destination point is computed based only on
the last snapshot taken, while older snapshots are forgotten, and no memory is retained
between cycles. They are deterministic, meaning that they cannot resort to randomness
in their computations. They are asynchronous, in the sense that we make no assumptions
on how fast each searcher completes a Look-Compute-Move cycle compared to the others
(these parameters are dynamic and are controlled by an adversarial scheduler). They are
disoriented, which means that they have no magnetic compasses, GPS devices, or agreements
of any kind. Each searcher has its own independent local orientation, unit of length, and
handedness. They are silent, in that they cannot communicate with one another in any way.
They have arbitrary initial locations within P .

In real-life applications, being in line of sight may allow robots to communicate in
environments where non-optical means of communication are unavailable or impractical [22].
Solving the Meeting problem is also a necessary preliminary step to more complex tasks,
such as space coverage [23] or the extensively studied Gathering problem, where all k robots
have to physically reach the same point and stop there. In the special case of k = 2 robots,
the Gathering problem is also called Rendezvous problem. Clearly, the terminating condition
of the Meeting problem is more relaxed than that of Gathering; hence, any solution to the
Gathering problem would also solve Meeting. Unfortunately, no solution to the Gathering
problem in the setting considered here exists in the literature (see Section 1.4), and to the
best of our knowledge there are no previous results on the Meeting problem.

In fact, given our searchers’ many handicaps, and especially their lack of memory and
orientation, it is hard to see how they could solve any non-trivial problem at all. Nonetheless,
in this paper we will present the surprising result that the Meeting problem is solvable in
almost every polygon, even for k = 2 searchers. Moreover, with the addition of a simple
synchronization phase, our Meeting algorithms can be turned into Rendezvous algorithms,
as we will discuss in Section 5.

1.2 Techniques
Since our searchers are disoriented and have no kind of a-priori agreement, they must use
the geometric features of P to implicitly agree on some “landmarks” which can help them in
their task. In order to identify such landmarks, each searcher has to visit P and construct a



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:3

map of it. But this cannot be done straightforwardly, because searchers are oblivious, and
they forget everything as soon as they move. To cope with this handicap, they carefully
move within P in such a way as to implicitly encode information as their distance from the
closest vertex.

This positional encoding technique poses some obvious difficulties. First, it greatly limits
the freedom of the searchers: they have to do precise movements to encode the correct
information, and still manage to visit all of P and update the map as they go. Second, since
searchers can be located anywhere in P when the execution starts, they could be implicitly
encoding anything. This includes misleading information, such as a false map of P that
happens to be locally coherent with the surroundings of the searcher. Therefore, a searcher
can never rely on the information it is implicitly encoding, but it must constantly re-visit
the entire polygon to make sure that the map it is encoding is correct.

Hence, searchers cannot simply agree on a landmark and sit on it waiting for one
another, because that would prevent them from re-visiting P . This inconvenience drastically
complicates the Meeting problem, and forces the searchers to follow relatively complicated
movement patterns that make at least two of them necessarily meet.

There is also a subtle problem with the actual encoding of complex data as the distance
from a point, which is a single real number. One could naively pack several real numbers
into one by interleaving their digits, but this encoding would not be computable by real
random-access machines [3]. Hence, we propose a more sophisticated technique, which only
requires basic arithmetic operations. Such a technique can substitute the naive one under
the reasonable assumption that the vertices of P be points with algebraic coordinates (as
expressed in some global coordinate system, which is not necessarily the local one of any
searcher).

1.3 Our Contributions
We prove that the Meeting problem in a polygon P can be solved by k = σ + 1 searchers,
where σ is the order of the rotation group of P (which is also called the symmetricity of P ).
We also give a matching lower bound, showing that there are polygons of symmetricty σ
where σ searchers cannot solve the Meeting problem.

Then, since all our lower-bound examples are polygons with a hole around the center, we
wonder if the Meeting problem can be solved by fewer searchers if we exclude this small class
of polygons. Surprisingly, it turns out that in all the remaining polygons only two searchers
are sufficient to solve the Meeting problem. In particular, these include all the polygons with
no holes.

Additionally, searchers can geometrically construct their destination points with a compass,
provided that the vertices of P are algebraic points. Equivalently, searchers only have to
compute combinations of basic arithmetic operations and square root extractions on the
coordinates of the visible vertices of P . This is done via an encoding technique of independent
interest, which we apply to mobile robots for the first time.

As a subroutine of our algorithms, we employ a self-stabilizing map construction algorithm
that is of independent interest, as well.

In Section 2, we formally define all the elements of the Meeting problem. In Section 3,
we consider the Meeting problem for searchers equipped with an unlimited amount of
persistent internal memory whose initial contents can be arbitrary (hence also “incorrect”).
This simplification allows us to present “cleaner” versions of our algorithms, which are not
burdened by the technicalities of our positional encoding method. In Section 4, we present our
encoding technique and we show how to apply it to the Meeting algorithms of Section 3, thus

DISC 2017



14:4 Meeting in a Polygon by Anonymous Oblivious Robots

extending our results to oblivious searchers. Finally, in Section 5 we discuss complementary
results and directions for further research. Among other things, we briefly explain how to
convert our Meeting algorithms into Rendezvous algorithms.

1.4 Related Work
The Gathering problem has been extensively studied in several contexts [1, 16]. The literature
can be divided into works considering robots in a geometric space, and works considering
agents on a graph [1, 11, 14]. The works on Gathering in the plane, which are more related to
our setting, pertain to robots that inhabit an unbounded plane where no extraneous objects
can block visibility or movement [2, 7, 12, 15, 18, 19]. In particular, none of these results
considers robots in a polygon.

The work that is most relevant to ours is represented by a series of papers on Rendezvous
and approximate Rendezvous by two robots in polygons or more general planar enclosures [9,
10, 11, 13]. The authors show how to guarantee that the two robots’ trajectories will intersect
(or get arbitrary close to each other in case of approximate rendezvous) within finite time, in
spite of a powerful adversary that controls the speed and the movements of the robots on
their trajectories. However, termination happens implicitly: the robots are not necessarily
aware of each other’s presence, and Rendezvous is considered solved even if they are both
moving. Moreover, none of these papers considers oblivious robots, and none of them allows
the initial memory contents of the robots to be arbitrary. Both are simplifications of the
problem, because they allow robots to implicitly agree on a single landmark and just move
there.

Other mildly related works consider robots searching for an intruder in a polygon [27, 28],
robots in an empty plane that obstruct each other’s view, whose task is to become all
mutually visible [20, 24, 25], robots tasked with constructing a map of the visibility graph
of a polygon [4, 5, 6], and a static version of the Meeting problem called the hidden set
problem [26].

The issue of defining a model of computation for mobile robots has hardly ever been
addressed in the relevant literature. It is nonetheless interesting to establish what destination
points are computable by mobile robots, and what it means for them to compute a point. To
the best of our knowledge, only two papers deal with this problem [7, 17], explicitly rejecting
transcendental functions and deeming them not intuitively computable. Interestingly, other
papers, such as [9], allow robots to compute transcendental functions.

Another contribution of this paper is a formal definition of the concept of computability
for mobile robots (see the beginning of Section 4.2). Accordingly, all of our geometric
constructions can be performed with a compass.

2 Definitions

A polygon in the Euclidean plane R2 is a non-empty, bounded, connected, and topologically
closed 2-manifold whose boundary is a finite collection of line segments. The vertices, edges,
and diagonals of a polygon are defined in the standard way, as well as the notion of adjacency
between vertices. One connected component of a polygon’s boundary, called the external
boundary, encloses all others, which are called holes. We say that a point p ∈ P sees a point
q ∈ P (or, equivalently, that q is visible to p) if the line segment pq lies in P .

If a polygon has an axis of symmetry, we say that it is axially symmetric. The largest
integer σ such that rotating a polygon around its barycenter by 2π/σ radians leaves it
unchanged is called the symmetricity of the polygon. In other words, the symmetricity is the
order of the rotation group of the polygon. If σ > 1, the polygon is said to be rotationally
symmetric.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:5

If P is a polygon, by P -searcher we mean an anonymous robot represented by a point
in P , which, informally, can observe its surroundings and move within P . The technical
specifications of our searchers have been listed in Section 1.1. We remark that each searcher’s
snapshots are expressed in its own local reference system, which is a Cartesian system of
coordinates with the searcher’s current location as the origin. A searcher’s local coordinate
system translates as the searcher moves (to keep the searcher’s location at the origin), but it
retains its orientation, scale, and handedness.

We say that two P -searchers are mutually aware at some point in time if they have seen
each other during their most recent Look phases. That is, if searcher s1 sees searcher s2
during a Look phase at time t1, s2 sees s1 during a Look phase at time t2 ≥ t1, and neither s1
nor s2 performs another Look phase in the time interval (t1, t2), then s1 and s2 are mutually
aware at time t2 (and they remain mutually aware until s1 performs a Look phase without
seeing s2, or vice versa). A very similar notion of mutual awareness has been defined in [21].

Given a team of P -searchers, the Meeting problem prescribes that at least two of them
become mutually aware. More precisely, the Meeting problem for k searchers in P is solvable
if there exists an algorithm A such that, if all k searchers execute A during all their Compute
phases, at least two of them eventually become mutually aware, regardless of how the
searchers are initially laid out in P , and regardless of how the scheduler decides to control
their behavior. Occasionally, we will say that two searchers meet, as a synonym of becoming
mutually aware.

In Section 3, we are going to assume that each searcher has an unlimited amount of
persistent internal memory, which can be read and updated by the searcher during each
Compute phase, and is retained for use in later Compute phases. The initial contents of the
internal memory of each searcher are arbitrary, and possibly “incorrect”. In Section 4, we
will drop the persistent memory requirements, and we will extend our algorithms to oblivious
searchers, whose computations only rely on the single snapshot taken in the most recent
Look phase, and whose internal memory is erased during each Move phase.

3 Algorithms and Correctness

3.1 General Algorithm
First we give a lower bound on the minimum number of searchers required to solve the
Meeting problem in a polygon. Our bound is in terms of the polygon’s symmetricity.

I Theorem 1. For every integer σ > 0, there exists a polygon with symmetricity σ in which
σ (or fewer) searchers cannot solve the Meeting problem.

Proof. If σ = 1, the statement is trivial. If σ > 1, we construct a polygon with symmetricity
σ shaped as a σ-pointed star with one large hole almost touching the external boundary,
as shown in Figure 1. We then arrange σ′ ≤ σ searchers and orient their local coordinate
systems in a symmetric fashion, as in Figure 1. Now, let the initial memory contents of all
the searchers be equal, and suppose that the scheduler always activates them synchronously.
By the rotational symmetry of our construction, each searcher gets an identical snapshot of
the polygon, and therefore all searchers compute symmetric destination points and modify
their memory in the same way. This holds true at every cycle, and so, by induction, the
searchers will always be found at σ′ symmetric locations throughout the execution. Note
that our polygon has the property that no two of its points whose angular distance (with
respect to the barycenter) is a multiple of 2π/σ can see each other. Hence, no matter what
algorithm the searchers are executing, no two of them will ever be mutually aware. J

DISC 2017



14:6 Meeting in a Polygon by Anonymous Oblivious Robots

x
y

x

y

x
y

x

y

x

y

x
y

x
y

Figure 1 Constructions used in Theorem 1 for σ = 2 and σ = 5.

Algorithm 1 Meeting algorithm for general polygons.
Persistent variables
SnapshotList
Action
Direction
Polygon
PivotPoint

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if SnapshotList is inconsistent or (Action = PATROL and PivotPoint is not consistent with Polygon) then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
U := Extract unvisited vertices from SnapshotList
if U 6= ∅ then

v := First vertex of U
Move to the next vertex in a shortest path to v

else
Action := PATROL
Direction := CLOCKWISE
Polygon := Extract polygon from SnapshotList
S := Set of axes of symmetry of Polygon
if S = ∅ then

C := Select a rotation class of vertices of Polygon in a similarity-invariant way
PivotPoint := Select any vertex in C

else
S′ := Select a class of equivalent axes in S in a similarity-invariant way
` := Select any axis in S′

C := Select a class of points of ` on the boundary of Polygon in a similarity-invariant way
PivotPoint := Select any point in C

Augment Polygon using PivotPoint as pivot in a similarity-invariant way to make it simply connected
if Action = PATROL then

if I am in PivotPoint then
Invert Direction

Move to the next vertex of Polygon, following its boundary in the direction stored in variable Direction

Next we will prove that the bound of Theorem 1 is tight, and hence σ + 1 searchers
are optimal. We do so by giving a Meeting algorithm called Algorithm 1, which works by
constructing a map of the polygon in a self-stabilizing way. This algorithm assumes that
searchers have unlimited memory, and hence they can store the entire history of the snapshots
they have taken since the beginning of the execution. In Section 4, we will show how to drop
this requirement and apply our algorithms to oblivious searchers.

By definition, the Meeting problem is solved when two searchers become mutually aware.
So, in our algorithm, whenever a searcher sees another searcher, it stays idle for a cycle and
waits to be noticed (which does not necessarily happen, since the second searcher may be in
the middle of a Move phase and disappear shortly after). Let P be the polygon in which



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:7

ℓ pivot

Figure 2 Augmenting an axially symmetric polygon and defining a tour of its boundary.

the searchers are located. Since the initial memory contents may be incorrect, if a searcher
notices a discrepancy between the current snapshot of P and the history of snapshots stored
in memory, it forgets everything and restarts the execution from wherever it is.

As observed in Section 1.2, each searcher must keep re-visiting every part of the boundary
of P . Hence, our main algorithm is divided into two phases: EXPLORE and PATROL.
Roughly speaking, in the EXPLORE phase, a searcher visits all vertices of P ; in the PATROL
phase, it moves back and forth along the boundary of P , searching for a companion. The
EXPLORE phase is relatively simple: as the searcher explores new vertices, it keeps track of
the ones that it has seen but not visited. Then it picks the first of such vertices and moves
to it along a shortest path.

For the PATROL phase, the searcher must first choose a pivot point of P , which is the
point where the searcher changes direction as it patrols P ’s boundary. It also has to cope
with the fact that the boundary of P may not be connected, since P may have holes. The
pivot point is always chosen on the boundary of P and on a symmetry axis of P , if one
exists. It is also chosen in a similarity-invariant way, meaning that the selection algorithm
should not depend on the scale, rotation, position, and handedness of P , but it should be
a deterministic algorithm that only looks at angles between vertices and ratios between
segment lengths. This is to guarantee that all searchers that have a correct picture of P in
memory (expressed in their respective local coordinates systems) will select pivot points that
are equivalent up to similarity.

Once a searcher has selected a pivot point, it adds some “artificial” edges to P in order
to make it simply connected, i.e., remove all its holes. This may be impossible to do in a
similarity-invariant way, so the pivot point is used to determine how symmetries are broken.
An example of this construction is illustrated in Figure 2, where the polygon is symmetric
and therefore the additional edges are symmetric, as well.

As a result of cutting P along these segments, we obtain a degenerate simply connected
polygon P̃ . It is now possible to perform a tour of the boundary of P̃ , as shown in Figure 2.
The PATROL phase of our algorithm consists in taking a tour of P̃ and switching direction
(from clockwise to counterclockwise and vice versa) every time the pivot point is reached. So,
all vertices of P are perpetually visited in some fixed order, then in the opposite order, and
so on. At any time, the searcher can always determine its next destination vertex based on
the history of snapshots stored in memory.

I Theorem 2. There is an algorithm that, for every integer σ > 0, solves the Meeting
problem with σ + 1 searchers (regardless of their initial memory contents) in every polygon
with symmetricity σ.

DISC 2017



14:8 Meeting in a Polygon by Anonymous Oblivious Robots

Proof. We will show that Algorithm 1 correctly solves the Meeting problem for σ+1 searchers
in any polygon P with symmetricity σ. Since the initial memory contents of a searcher
may be incorrect, when a searcher notices a discrepancy between the current observation
and a previous observation, it erases its own memory and restarts the execution. The same
happens if it realizes that the pivot point it has chosen does not match the polygon. From
that point onward, the searcher’s memory will only contain correct information, and the
execution will never be restarted again. Hence, in the following, we will assume that no such
discrepancy is ever discovered, and therefore the execution is never restarted.

In the EXPLORE phase, a searcher moves to all the discovered but not yet visited vertices
of P , until there are none left. This indeed lets the searcher discover all vertices of P , due to
the connectedness of its visibility graph (which is the graph on the set of vertices of P whose
edges are the edges and diagonals of P ). This means that eventually the searcher will have a
complete and coherent representation of some polygon in memory. If this representation is
incorrect, the searcher will eventually find out during the PATROL phase, when it re-visits
all vertices of P .

We can therefore assume without loss of generality that, at some point, all searchers are
in the PATROL phase, and all have a correct representation of P in memory. Since the pivot
point is chosen by each searcher in a similarity-invariant way, there are only σ points that
can possibly be elected as pivots. By the pigeonhole principle, there are two searchers that
have the same pivot point. So, both searchers will perform a clockwise tour of the boundary
of P̃ , touching all of its vertices is some fixed order, followed by a counterclockwise tour,
touching all vertices in the opposite order, and so on. Since they both turn around at the
same pivot point, they do the same tour. As a consequence, they become mutually aware by
the time one of them has completed a full tour, thus solving the Meeting problem. J

We emphasize that, if a searcher were tasked to construct a map of P , it could do so
by simply executing the above algorithm indefinitely (i.e., ignoring the presence of other
searchers). Since the algorithm eventually discovers and corrects any possible inconsistency
in the initial memory state of the searcher, it is self-stabilizing.

3.2 Improved Algorithm for Polygons with Barycenter not in a Hole

The worst-case examples given in Theorem 1 are polygons with a hole around the barycenter.
It is natural to wonder if the Meeting problem can be solved with fewer searchers if we
exclude this special type of polygons. It turns out that in all other cases Algorithm 1 can be
drastically improved: only two searchers are needed whenever the polygon’s barycenter is
not in a hole. Notably, this includes all polygons with no holes.

It is not hard to construct counterexamples where simply making the searchers patrol the
boundary of the polygon as in the previous algorithm may not solve the Meeting problem,
even if the polygon has no holes. Hence a new strategy has to be devised: our improved
Meeting algorithm is called Algorithm 2. It begins by testing for the presence of another
searcher, followed by some consistency tests, and an EXPLORE phase, which are essentially
the same as in the previous algorithm. It then proceeds with a PATROL phase, which is
more complex than the old one. Note that Algorithm 1 already solves the Meeting problem
with two searchers if the polygon is not rotationally symmetric (i.e., for σ = 1). So, in this
special case, our improved algorithm works exactly as the previous one. In the following, we
will therefore assume that the polygon is rotationally symmetric, and we will discuss only
the new PATROL phase.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:9

Algorithm 2 Improved Meeting algorithm for polygons with barycenter not in a hole.
Persistent variables
SnapshotList
Action
Stage
Polygon
PivotVertex
PolygonTriangles
PolygonLevels

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if Persistent variables are inconsistent then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
U := Extract unvisited vertices from SnapshotList
if U 6= ∅ then

v := First vertex of U
Move to the next vertex in a shortest path to v

else
Action := PATROL
Stage := −1
Polygon := Extract polygon from SnapshotList
if Polygon is rotationally symmetric then

C := Select a class of vertices of Polygon closest to the center in a similarity-invariant way
PivotVertex := Select any vertex in C
Augment Polygon in a similarity-invariant way to make it simply connected
Triangulate each branch of augmented Polygon in a similarity-invariant way
PolygonTriangles := Total number of triangles in the triangulation of augmented Polygon
PolygonLevels := Height of the dual tree of the triangulation of each branch of augmented Polygon

else
PivotVertex := Select a vertex of Polygon in a similarity-invariant way

if Action = PATROL then
if Polygon is rotationally symmetric then

if I am in PivotVertex then
Stage := Stage + 1
if Stage ≥ 2 · PolygonLevels + 2 · PolygonTriangles2 then

Stage := 0
if Stage = −1 then

Move to the next vertex in a shortest path to PivotVertex
else if Stage < PolygonLevels then

j := Stage
Move to the next vertex of a clockwise j-tour of Polygon

else
j := 2 · PolygonLevels + 2 · PolygonTriangles2 − Stage
if j > PolygonLevels then

j := PolygonLevels
Move to the next vertex of a counterclockwise j-tour of Polygon

else
if I am in PivotVertex then

Stage := Stage + 1
if Stage is odd then

Move to the next vertex of Polygon, following its boundary in the clockwise direction
else

Move to the next vertex of Polygon, following its boundary in the counterclockwise direction

Upon ending the EXPLORE phase, a searcher does some pre-processing on the polygon
P . First it identifies a polygon Q formed by vertices of P that are closest to the center
of rotation and equivalent up to similarity. So, Q is a convex polygon that is completely
contained in P . Each connected component of P \Q is called a branch of P . Each branch is
then augmented by some extra edges to make it simply connected, obtaining a degenerate
polygon P̃ . Then, P̃ \Q is triangulated in a similarity-invariant way. This guarantees that all
searchers compute the same triangulation. Figure 3 shows an example of this construction.

Let Pj be the union of Q and the triangles of the triangulation whose corresponding
nodes of the dual graph have distance at most j from the root Q. Let m be the smallest
integer such that Pm = P . The PATROL phase has a “primitive” operation called j-tour,

DISC 2017



14:10 Meeting in a Polygon by Anonymous Oblivious Robots

Figure 3 Augmented and triangulated axially symmetric polygon with a 3-tour and a 6-tour.

with 0 ≤ j ≤ m, which is a tour of the boundary of Pj , starting and ending at the pivot
point, following the edges of P̃ . For example, a 0-tour is simply a tour of the boundary of Q,
an m-tour is a tour of the boundary of P̃ (much like the tours of Algorithm 1), and Figure 3
shows a 3-tour and a 6-tour.

The PATROL phase consists of several stages, and in each stage the searcher performs
a j-tour, for some j. The j-tours are performed according to the following list, which is
repeated until the Meeting problem is solved: a clockwise 0-tour, a clockwise 1-tour, a
clockwise 2-tour, . . . , a clockwise (m−1)-tour, a sufficiently large number of counterclockwise
m-tours (twice the square of the total number of triangles in the triangulations of all the
branches of P is abundantly enough), a counterclockwise (m− 1)-tour, a counterclockwise
(m− 2)-tour, . . . , a counterclockwise 1-tour. The first m stages, where the searcher performs
clockwise j-tours, are called ascending stages. All the other stages are called descending
stages. Moreover, the first stage is called the central stage, and the stages in which an m-tour
is performed are called perimeter stages.

Note that, when we say “clockwise” and “counterclockwise”, we mean it in the local
reference system of the executing searcher. Recall that two different searchers executing
the algorithm may not have the same notion of clockwise direction, and therefore in their
respective ascending stages they may actually perform tours in opposite directions. If
two searchers have the same notion of clockwise direction, they are said to be concordant;
otherwise, they are discordant.

We can now proceed with the proof of correctness of Algorithm 2. The proof of the
following technical lemmas is found in the appendix.

I Lemma 3. Let two P -searchers be executing Algorithm 2, let both be in the PATROL phase,
and let both have a correct representation of the polygon P in memory, which is rotationally
symmetric. Then, they will either become mutually aware or be in a perimeter stage at the
same time, with at least one full perimeter stage still to perform.

I Lemma 4. Assume the hypotheses of Lemma 3, and let the searchers be concordant. If
one searcher begins a j-tour in an ascending (respectively, descending) stage while the other
searcher is performing a (j + 1)-tour (respectively, (j − 1)-tour) in a descending (respectively,
ascending) stage, with 0 ≤ j < m (respectively, 0 < j < m), they eventually become mutually
aware.

I Theorem 5. There is an algorithm that solves the Meeting problem with two searchers
(regardless of their initial memory contents) in every polygon whose barycenter does not lie
in a hole.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:11

Proof. We will show that Algorithm 2 correctly solves the Meeting problem for two searchers
in any polygon P whose barycenter does not lie in a hole. The proof of correctness is the
same as that of Theorem 2, except for the PATROL phase. So, in the following, we will
assume that both searchers already have a correct picture of P in memory, and are both
in the PATROL phase. Moreover, since the new algorithm works in the same way as the
old one if P is not rotationally symmetric (and the proof of correctness is the same as in
Theorem 2), we will assume that P is rotationally symmetric.

Suppose for a contradiction that the searchers never become mutually aware. By Lemma 3,
at some point they are both in a perimeter stage. If they are discordant, they proceed along
the boundary of P̃ in opposite directions, and therefore they become mutually aware. If
they are concordant, they will perform all the remaining descending stages, followed by the
ascending stages, starting with the central stage. If they start the central stage at the same
time, they necessarily become mutually aware, because they are on the boundary of the
central polygon Q, which is convex and empty. So, one searcher must begin the central
stage while the other is still in a descending stage. Then, as one searcher ascends and the
other descends, the hypotheses of Lemma 4 are going to be satisfied, which means that the
searchers eventually become mutually aware. J

4 Memoryless Implementations

4.1 Encoding Persistent Variables
In order to re-implement our algorithms without using any memory, we first want to be able
to encode all persistent variables (which roughly amount to a list of snapshots) as a single
real number. Since a snapshot is the visible sub-polygon of P expressed in the coordinate
system of the observing P -searcher, it can be easily expressed as the array of the visible
sub-segments of P ’s edges, or as the array of the coordinates of these segments’ endpoints.
Hence, encoding a history of snapshots amounts to encoding a finite array of real numbers
(r1, . . . , rn) as a single real number r.

As a model of computation, we choose the Blum-Shub-Smale machine [3], which is a
random-access machine whose registers can store arbitrary real numbers. Its computational
primitives are the four basic arithmetic operations, but it is customary to extend the basic
model with additional primitives, which should be somewhat well-behaved and intuitively
computable. This immediately rules out the naive approach of constructing the binary
representation of r by interleaving the binary digits of the ri’s. Indeed, such an encoding
function has a set of discontinuities that is dense in its entire domain, and is therefore not
intuitively computable.

We propose a more sophisticated encoding strategy, which is computable even on a basic
Blum-Shub-Smale machine (i.e., the one with the four basic arithmetic operations only). A
small drawback is that we can only apply this method if the vertices of the polygon P have
algebraic coordinates (i.e., they are algebraic points) in some global coordinate system. In
practice, we are not imposing a big limitation on our inputs, in that basically all the polygons
we can reasonably think of fall into this class. In particular, we can construct polygons of any
symmetricity (by contrast, using rational points would only allow us to construct polygons
with symmetricity 1, 2, and 4).

First of all, we observe that we can represent an algebraic number using finitely many
bits: if the algebraic number α is the ith real root of the polynomial with integer coefficients
anx

n + an−1x
n−1 + · · ·+ a1x+ a0, we can encode it as (n, i, an, an−1, . . . , a0), which in turn

requires only finitely many bits. Given α, a suitable polynomial can be found by simply
generating all possible polynomials in some order (they are a countable set) and evaluating
them in α.

DISC 2017



14:12 Meeting in a Polygon by Anonymous Oblivious Robots

Once we have some algebraic numbers expressed in this implicit finite form, we can use
our basic Blum-Shub-Smale machine to do Turing-computable bit manipulations to compute
all kinds of common functions on them. In particular, there are standard ways of computing
the basic arithmetic operations, as well as root extractions of any degree. A comprehensive
exposition of these techniques, along with their theoretical background, is found in [8].
Essentially, this is also one of the several ways in which mathematical software such as Sage,
Mathematica, and CGAL handles algebraic numbers and does exact computations with then.

The key point to keep in mind is that, once a number is encoded in this form, we cannot
necessarily retrieve it in finite time; we can only approximate it arbitrarily well, for instance
via Sturm’s theorem [8]. However, we can still evaluate computable predicates on these
numbers exactly, and have them influence the flow of our algorithms.

Note that, even if the vertices of P are algebraic points in some global coordinate system,
they may not be algebraic in the coordinate system of a searcher. So, the idea is to let the
searcher use two visible vertices v and v′ as a basis to construct a new coordinate system, and
then compute the coordinates of all other visible vertices of P in this system. The resulting
coordinates are guaranteed to be algebraic numbers, and can be encoded with the above
technique. Note that some vertices of the snapshot are not necessarily vertices of P , and
may not be algebraic even in the new coordinate system. These vertices are easily identified
and discarded. This causes some loss of information, which is not going to matter in our
application to the Meeting problem.

4.2 Adapting the Algorithms
Next we are going to apply our encoding method to the Meeting algorithms of Section 3, and
we will show how oblivious searchers can solve the Meeting problem, as well. We will need
searchers to be able to compute only basic arithmetic operations on real numbers, as well as
extract square roots. Hence, internally, each searcher will run a Blum-Shub-Smale machine
extended with a square-root primitive. Only the four basic arithmetic operations are required
for our encoding method, but square roots are needed in the geometric computations. It
is well known that the points whose coordinates can be computed by composing these five
operations are precisely the ones that can be constructed with a compass and a straightedge.
In turn, the Mohr-Mascheroni theorem states that these points can also be constructed with
a compass alone.

A searcher can simulate memory by encoding data as its distance d from the closest visible
vertex of P , which we call the virtual vertex of the searcher. It is not hard to design the code
in such a way that d and d/2 have the same meaning, for every d. This gives a searcher the
ability to get arbitrarily close to its virtual vertex without losing memory. After decoding d,
a searcher will execute one of the old Meeting algorithms pretending to be located on the
virtual vertex. This approach poses several technical problems, which we examine next.

Recall that snapshots are encoded in a special coordinate system defined by two visible
vertices v and v′. As the searcher moves to a different virtual vertex, it has to re-express all
the history of snapshots into a new coordinate system, choosing a v and a v′ that will be
visible from its destination point. This can be done by letting v be the current virtual vertex
and v′ be the destination virtual vertex, and adding enough information to the encoded data
to retrieve v once the virtual vertex is v′. This way, the searcher can transport snapshots
around P and is still able to decode them.

In the EXPLORE phase, a searcher completely explores one connected component of the
boundary of P before moving to the next component. To determine the position of the next
vertex, it has to move close enough to the current virtual vertex, and possibly around it if it



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:13

Figure 4 Symmetric partition of a branch with a 5-tour and part of a perimeter tour.

is reflex. The searcher makes sure to stop on the angle bisector of each vertex it visits and
take a snapshot from there. If implemented properly, this strategy guarantees that, when
the list of discovered but not visited vertices is empty, all vertices of P have actually been
visited, and the map of P is faithful.

For the PATROL phase, recall that a tour turns at the vertices of the augmented polygon
P̃ , which are not necessarily vertices of P . Unfortunately, our oblivious searchers cannot
approach generic points without losing information. Our solution is to modify the tours so
that they turn only at vertices of P . These modifications should retain the axes of symmetry
of the tours whenever they are required by the original algorithms. This is especially tricky
for the j-tours of Algorithm 2, where we need to redesign the partition of P̃ including not
only triangles but also isosceles trapezoids, as shown in Figure 4. Note that our new j-tours
may self-overlap and touch the same vertices multiple times, but this is not an issue. These
new j-tours have the relevant properties that are required by Lemmas 3 and 4: the pieces of
the partition are convex, and each point on a (j + 1)-tour is visible to at least an entire edge
of a j-tour.

Of course, a j-tour defines a curve that is followed only approximately by our oblivious
searchers, because they have to keep encoding information as they go. Still, they follow this
curve closely enough and without ever properly crossing it, in such a way as to preserves the
aforementioned relevant properties. Also, while they do so, they have to stop on the angle
bisector of each vertex whenever they get the opportunity: this is to guarantee that they
will discover any discrepancies between the encoded map and the real polygon.

Finally, if two searchers are doing the same tour in opposite directions, and they stay
within a thin-enough “band” around the correct curve, they are guaranteed to become
mutually aware when they cross each other.

Therefore, Theorems 2 and 5 can be extended to oblivious searchers.

I Theorem 6. There is an algorithm that, for every integer σ > 0, solves the Meeting problem
with σ + 1 oblivious searchers in every polygon with symmetricity σ. There is an algorithm
that solves the Meeting problem with two oblivious searchers in every polygon whose barycenter
does not lie in a hole. If the polygon’s vertices are algebraic points, these algorithms are
implementable on a real random-access machine that can compute basic arithmetic operations
and extract square roots.

DISC 2017



14:14 Meeting in a Polygon by Anonymous Oblivious Robots

5 Conclusions and Further Work

Our Meeting algorithms can be converted into Rendezvous algorithms for two searchers.
Indeed, once two searchers realize that they have become mutually aware, they can implicitly
agree on a rendezvous point using the boundary of the polygon as a static reference. Note
that this “rendezvous phase” should only be performed if the searchers are in fact mutually
aware, or else they may behave incorrectly and compromise the algorithms. To detect mutual
awareness, a searcher that sees another searcher performs a preliminary “synchronization
phase”, in which it moves very slightly a few times and sees if the other searcher does the
same or disappears. If the pattern of these “synchronization moves” is unique to this phase,
i.e., it cannot be normally performed during an EXPLORE or a PATROL phase, then the
searchers know that they are mutually aware, and they can proceed to the rendezvous phase.

In some cases, we can also extend our algorithms to weaker models of searchers. Namely,
searchers with limited visibility, which can only see up to a fixed distance, and the non-rigid
setting, in which a searcher can be stopped by the scheduler during each Move phase before
reaching its destination point, but not before having moved by at least a constant δ (for
details on this model, refer to [16]). However, a complete solution for these and other searcher
models remains an open problem.

References
1 S. Alpern and S. Gal. The theory of search games and rendezvous. Springer, 2003.
2 H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence

algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

3 L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-
Verlag New York, 1998.

4 J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Mapping simple polygons:
how robots benefit from looking back. Algorithmica, 65(1):43–59, 2013.

5 J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Simple agents learn to find
their way: an introduction on mapping polygons. Discrete Applied Mathematics, 161(10–
11):1287–1307, 2013.

6 J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Mapping simple polygons:
the power of telling convex from reflex. ACM Transactions on Algorithms, 11(4):33:1–33:16,
2015.

7 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile
robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.

8 H. Cohen. A course in computational algebraic number theory. Springer, 1993.
9 J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Asynchronous deterministic rendezvous

in bounded terrains. Theoretical Computer Science, 412(50):6926–6937, 2011.
10 J. Czyzowicz, A. Kosowski, and A. Pelc. Deterministic rendezvous of asynchronous

bounded-memory agents in polygonal terrains. Theory of Computing Systems, 52(2):179–
199, 2013.

11 J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere.
ACM Transactions on Algorithms, 8(4):37:1–37:14, 2012.

12 X. Défago, M. Gradinariu, S. Messika, and P. Raïpin-Parvédy. Fault-tolerant and self-
stabilizing mobile robots gathering. In Proceedings of the 20th International Conference on
Distributed Computing, (DISC), pages 46–60, 2006.

13 Y. Dieudonné and A. Pelc. Deterministic polynomial approach in the plane. Distributed
Computing, 28(2):111–129, 2015.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita 14:15

14 Y. Dieudonné, A. Pelc, and V. Villain. How to meet asynchronously at polynomial cost.
SIAM Journal on Computing, 44(3):844–867, 2015.

15 Y. Dieudonné and F. Petit. Self-stabilizing gathering with strong multiplicity detection.
Theoretical Computer Science, 428:47–57, 2012.

16 P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by oblivious mobile robots.
Morgan & Claypool, 2012.

17 P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing by mobile
robots: Uniform Circle Formation. Distributed Computing, in press.

18 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, 337(1–3):147–168, 2005.

19 P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant
memory. Theoretical Computer Science, 621:57–72, 2016.

20 G. A. Di Luna, P. Flocchini, S. Gan Chaudhuri, F. Poloni, N. Santoro, and G. Viglietta.
Mutual visibility by luminous robots without collisions. Information and Computation,
254(3):392–418, 2017.

21 L. Pagli, G. Prencipe, and G. Viglietta. Getting close without touching: Near-Gathering
for autonomous mobile robots. Distributed Computing, 28(5):333–349, 2015.

22 W. Rabinovich, J. Murphy, M. Suite, M. Ferraro, R. Mahon, P. Goetz, K. Hacker, W. Free-
man, E. Saint Georges, S. Uecke, and J. Sender. Free-space optical data link to a small
robot using modulating retroreflectors. In Proceedings of SPIE 7464, Free-Space Laser
Communications IX, volume 7464, 2009.

23 I. Rekleitis, V. Lee-Shue, A. Peng New, and H. Choset. Limited communication, multi-robot
team based coverage. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3462–3468, 2004.

24 G. Sharma, C. Busch, and S. Mukhopadhyay. Mutual visibility with an optimal number of
colors. In Proceedings of the 11th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks (ALGOSENSORS), pages 196–210, 2016.

25 G. Sharma, R. Vaidyanathan, J. L. Trahan, C. Busch, and S. Rai. Complete visibility for
robots with lights in O(1) time. In Proceedings of the 18th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), pages 327–345, 2016.

26 T. Shermer. Hiding people in polygons. Computing, 42(2):109–131, 1989.
27 I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM

Journal on Computing, 21(5):863–888, 1992.
28 M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for mobile intruders in

a polygonal region by a group of mobile searchers. Algorithmica, 31(2):208–236, 2001.

DISC 2017


	Introduction
	Framework
	Techniques
	Our Contributions
	Related Work

	Definitions
	Algorithms and Correctness
	General Algorithm
	Improved Algorithm for Polygons with Barycenter not in a Hole

	Memoryless Implementations
	Encoding Persistent Variables
	Adapting the Algorithms

	Conclusions and Further Work

