283 research outputs found

    An analytical modeling and estimating losses of power semiconductors in a three-phase dual active bridge converter for MVDC grids

    Get PDF
    Due to the increasing installation of renewable and decentralized power sources, Medium-voltage dc (MVDC) grids has been considered for an alternative application to medium-voltage ac (MVAC) application. Three-phase dual active bridge DC-DC (3DAB) converter is proposed as an attractive topology for MVDC grids due to its high power capability, smaller filtering parts, and galvanic isolation. In this paper, a first harmonic approximation (FHA) modeling of 3DAB converter is derived. Using the FHA modeling, a symmetrical modeling of switching devices is introduced and a 4MVA system for 40kV MVDC system has been validated in terms of conduction and switching losses. Experimental implementation of a 10kVA prototype and the results are presented

    Lost at Sea: Assessment and Evaluation of Rootkit Attacks on Shipboard Microgrids

    Full text link
    Increased dependence of the maritime industry on information and communication networks has made shipboard power systems vulnerable to stealthy cyber-attacks. One such attack variant, called rootkit, can leverage system knowledge to hide its presence and allow remotely located malware handlers to gain complete control of infected subsystems. This paper presents a comprehensive evaluation of the threat landscape imposed by such attack variants on Medium Voltage DC (MVDC) shipboard microgrids, including a discussion of their impact on the overall maritime sector in general, and provides several simulation results to demonstrate the same. It also analyzes and presents the actions of possible defense mechanisms, with specific emphasis on evasion, deception, and detection frameworks, that will help ship operators and maritime cybersecurity professionals protect their systems from such attacks.Comment: 2023 IEEE Electric Ship Technologies Symposium (ESTS

    A review of power electronics equipment for all-electric ship MVDC power systems

    Get PDF
    Medium Voltage DC (MVDC) distribution Power Systems for all-electric ships (AES) can be regarded as functionally composed of three subsystems, namely the power sources, the load centers and the distribution network. Extensive use of power electronics is required for connecting power sources and load centers to the MVDC bus and for protecting the MVDC power system through properly placed DC circuit breakers. In this paper, an overview is given of the power electronics equipment found in the literature and on the market that could be suitable for use in future AES MVDC power systems. Some industrial experiences regarding DC generator systems, energy storage apparatus and solid-state DC circuit breaker prototypes are reported in the paper as examples of state-of-the-art realizations. Different DC/DC converters, which can be employed as solid-state transformers, are also discussed and a structure obtained by combining them is proposed

    The impact of MVDC upon conventional distance protection schemes in hybrid ac-dc distribution networks

    Get PDF
    This paper looks at the protection implications of introducing fully controllable, embedded, medium voltage dc (MVDC) power electronic links into power distribution networks. Studies have indicated, protection notwithstanding, that embedded MVDC can be used to provide economically attractive, enhanced capacity and control of power flows. Through a series of simulation studies, the impact on distance protection schemes (in terms of reach and response time) resulting from the introduction of a controlled MVDC link have been examined for symmetrical faults. The paper also considers under what conditions a dc side fault can be observed from the ac grid. A series of recommendations for system integrators are made

    Transformer‐Based Z‐Source Inverter with MVDC Link

    Get PDF
    Z‐source inverters have attracted considerable attention in renewable energy systems like photovoltaic (PV) systems due to advantages such as buck–boost power conversion in single stage, shoot-through capability, and wide range of input voltage regulation. Transformer-Based Z-source inverters (TransZSI) based on magnetically coupled inductors and reduced number of passive components can be used to improve the boost capacity of these inverters, and to increase the voltage levels. Medium voltage DC (MVDC) is being used more and more in distribution grids and renewable energy systems. This paper presents a transZ-source inverter with MVDC link where renewable energy systems and energy storage systems can be integrated. The active and reactive powers and DC voltage are controlled by acting on the modulation index and shoot-through duty cycle of the converter. The trans-Z-source inverter is evaluated under different operating conditions to illustrate its suitable operation. © 2022, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved

    Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    Get PDF
    corecore