8,522 research outputs found

    Unsupervised delineation of the vessel tree in retinal fundus images

    Get PDF
    Retinal imaging has gained particular popularity as it provides an opportunity to diagnose various medical pathologies in a non-invasive way. One of the basic and very important steps in the analysis of such images is the delineation of the vessel tree from the background. Such segmentation facilitates the investigation of the morphological characteristics of the vessel tree and the analysis of any lesions in the background, which are both indicators for various pathologies. We propose a novel method called B-COSFIRE for the delineation of the vessel tree. It is based on the classic COSFIRE approach, which is a trainable nonlinear filtering method. The responses of a B-COSFIRE filter is achieved by combining the responses of difference-of-Gaussians filters whose areas of support are determined in an automatic configuration step. We configure two types of B-COSFIRE filters, one that responds selectively along vessels and another that is selective to vessel endings. The segmentation of the vessel tree is achieved by summing up the response maps of both types of filters followed by thresholding.We demonstrate high effectiveness of the proposed approach by performing experiments on four public data sets, namely DRIVE, STARE, CHASE DB1 and HRF. The delineation approach that we propose also has lower time complexity than existing methods.peer-reviewe

    MEDICAL IMAGE PROCESSING USING MATLAB

    Get PDF
    MATLAB and the Image Processing Toolbox provide a wide range of advanced image processing functions and interactive tools for enhancing and analyzing digital images. The interactive tools allowed us to perform spatial image transformations, morphological operations such as edge detection and noise removal, region-of-interest processing, filtering, basic statistics, curve fitting, FFT, DCT and Radon Transform. Making graphics objects semitransparent is a useful technique in 3-D visualization which furnishes more information about spatial relationships of different structures. The toolbox functions implemented in the open MATLAB language has also been used to develop the customized algorithms.Histogram, 3-D Surface Plot, Round-off Noise Power Spectrum

    Machine Learning/Deep Learning in Medical Image Processing

    Get PDF
    Many recent studies on medical image processing have involved the use of machine learning (ML) and deep learning (DL). This special issue, “Machine Learning/Deep Learning in Medical Image Processing”, has been launched to provide an opportunity for researchers in the area of medical image processing to highlight recent developments made in their fields with ML/DL. Seven excellent papers that cover a wide variety of medical/clinical aspects are selected in this special issue

    Medical image processing using fractal functions

    Get PDF
    In this paper, a comparison was made between a modified methods for repeated engineering modeling in order to increase the accuracy of medical images. A comparison was made between different types in terms of classification accuracy. The lacuinartiy feature has also been used to reduce the noise ratio in the received images. The results showed the importance of fractal IFS in medical pulse compression, where a ratio of (98%) was obtained in reducing noise and a ratio of (0.421) in the gap coefficient was obtained. It separated the diseased tissues from the healthy tissues by applying several multi-fractal factors. Fractal image compression is dependent on subjective similarity, with one part of the image being the same as the other part of a similar image. The partial coding is constantly linked to the grayscale images by dividing a color RGB image into three channels - red, green and blue, and is compressed independently by considering each color segment as a specific gray scale image. Based on the smart neural network, the patterns are distinguished for the medical images used by a few learning time and positive error 0.22%

    Cellular Automata for Medical Image Processing

    Get PDF

    Deep learning for medical image processing

    Get PDF
    Medical image segmentation represents a fundamental aspect of medical image computing. It facilitates measurements of anatomical structures, like organ volume and tissue thickness, critical for many classification algorithms which can be instrumental for clinical diagnosis. Consequently, enhancing the efficiency and accuracy of segmentation algorithms could lead to considerable improvements in patient care and diagnostic precision. In recent years, deep learning has become the state-of-the-art approach in various domains of medical image computing, including medical image segmentation. The key advantages of deep learning methods are their speed and efficiency, which have the potential to transform clinical practice significantly. Traditional algorithms might require hours to perform complex computations, but with deep learning, such computational tasks can be executed much faster, often within seconds. This thesis focuses on two distinct segmentation strategies: voxel-based and surface-based. Voxel-based segmentation assigns a class label to each individual voxel of an image. On the other hand, surface-based segmentation techniques involve reconstructing a 3D surface from the input images, then segmenting that surface into different regions. This thesis presents multiple methods for voxel-based image segmentation. Here, the focus is segmenting brain structures, white matter hyperintensities, and abdominal organs. Our approaches confront challenges such as domain adaptation, learning with limited data, and optimizing network architectures to handle 3D images. Additionally, the thesis discusses ways to handle the failure cases of standard deep learning approaches, such as dealing with rare cases like patients who have undergone organ resection surgery. Finally, the thesis turns its attention to cortical surface reconstruction and parcellation. Here, deep learning is used to extract cortical surfaces from MRI scans as triangular meshes and parcellate these surfaces on a vertex level. The challenges posed by this approach include handling irregular and topologically complex structures. This thesis presents novel deep learning strategies for voxel-based and surface-based medical image segmentation. By addressing specific challenges in each approach, it aims to contribute to the ongoing advancement of medical image computing.Die Segmentierung medizinischer Bilder stellt einen fundamentalen Aspekt der medizinischen Bildverarbeitung dar. Sie erleichtert Messungen anatomischer Strukturen, wie Organvolumen und Gewebedicke, die fĂŒr viele Klassifikationsalgorithmen entscheidend sein können und somit fĂŒr klinische Diagnosen von Bedeutung sind. Daher könnten Verbesserungen in der Effizienz und Genauigkeit von Segmentierungsalgorithmen zu erheblichen Fortschritten in der Patientenversorgung und diagnostischen Genauigkeit fĂŒhren. Deep Learning hat sich in den letzten Jahren als fĂŒhrender Ansatz in verschiedenen Be-reichen der medizinischen Bildverarbeitung etabliert. Die Hauptvorteile dieser Methoden sind Geschwindigkeit und Effizienz, die die klinische Praxis erheblich verĂ€ndern können. Traditionelle Algorithmen benötigen möglicherweise Stunden, um komplexe Berechnungen durchzufĂŒhren, mit Deep Learning können solche rechenintensiven Aufgaben wesentlich schneller, oft innerhalb von Sekunden, ausgefĂŒhrt werden. Diese Dissertation konzentriert sich auf zwei Segmentierungsstrategien, die voxel- und oberflĂ€chenbasierte Segmentierung. Die voxelbasierte Segmentierung weist jedem Voxel eines Bildes ein Klassenlabel zu, wĂ€hrend oberflĂ€chenbasierte Techniken eine 3D-OberflĂ€che aus den Eingabebildern rekonstruieren und segmentieren. In dieser Arbeit werden mehrere Methoden fĂŒr die voxelbasierte Bildsegmentierung vorgestellt. Der Fokus liegt hier auf der Segmentierung von Gehirnstrukturen, HyperintensitĂ€ten der weißen Substanz und abdominellen Organen. Unsere AnsĂ€tze begegnen Herausforderungen wie der Anpassung an verschiedene DomĂ€nen, dem Lernen mit begrenzten Daten und der Optimierung von Netzwerkarchitekturen, um 3D-Bilder zu verarbeiten. DarĂŒber hinaus werden in dieser Dissertation Möglichkeiten erörtert, mit den FehlschlĂ€gen standardmĂ€ĂŸiger Deep-Learning-AnsĂ€tze umzugehen, beispielsweise mit seltenen FĂ€llen nach einer Organresektion. Schließlich legen wir den Fokus auf die Rekonstruktion und Parzellierung von kortikalen OberflĂ€chen. Hier wird Deep Learning verwendet, um kortikale OberflĂ€chen aus MRT-Scans als Dreiecksnetz zu extrahieren und diese OberflĂ€chen auf Knoten-Ebene zu parzellieren. Zu den Herausforderungen dieses Ansatzes gehört der Umgang mit unregelmĂ€ĂŸigen und topologisch komplexen Strukturen. Diese Arbeit stellt neuartige Deep-Learning-Strategien fĂŒr die voxel- und oberflĂ€chenbasierte medizinische Segmentierung vor. Durch die BewĂ€ltigung spezifischer Herausforderungen in jedem Ansatz trĂ€gt sie so zur Weiterentwicklung der medizinischen Bildverarbeitung bei
    • 

    corecore