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ABSTRACT: Retinal imaging has gained particular popularity as it provides an opportunity to diagnose vari-
ous medical pathologies in a non-invasive way. One of the basic and very important steps in the analysis of such
images is the delineation of the vessel tree from the background. Such segmentation facilitates the investigation
of the morphological characteristics of the vessel tree and the analysis of any lesions in the background, which
are both indicators for various pathologies. We propose a novel method called B-COSFIRE for the delineation
of the vessel tree. It is based on the classic COSFIRE approach, which is a trainable nonlinear filtering method.
The responses of a B-COSFIRE filter is achieved by combining the responses of difference-of-Gaussians fil-
ters whose areas of support are determined in an automatic configuration step. We configure two types of
B-COSFIRE filters, one that responds selectively along vessels and another that is selective to vessel endings.
The segmentation of the vessel tree is achieved by summing up the response maps of both types of filters fol-
lowed by thresholding. We demonstrate high effectiveness of the proposed approach by performing experiments
on four public data sets, namely DRIVE, STARE, CHASE DB1 and HRF. The delineation approach that we
propose also has lower time complexity than existing methods.
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1 INTRODUCTION

Retinal fundus imaging is a non-invasive technique
that has gained popularity for the diagnosis of sev-
eral pathologies, including diabetic retinopathy, glau-
coma, hypertension, arteriosclerosis and multiple
sclerosis. The automatic analysis of retinal images
may be used to assist medical specialists to diagnose
such pathologies.

The separation of the blood vessels from the rest of
the image is an important segmentation step, which
facilitates the subsequent analysis. For instance, the
detection of vessel bifurcations, whose progression
may provide signs for cardiovascular diseases, may
be better detected in the segmented image. Moreover,
subtracting the delineated vessel tree from the back-
ground provide better opportunity for the automatic
detection of any retinal lesions.

There are two categories of methods that have
been proposed so far, namely supervised (Staal et al.
2004, Soares et al. 2006, Ricci and Perfetti 2007,

Marin et al. 2011, Fraz et al. 2012) and unsuper-
vised (Hoover et al. 2000, Jiang and Mojon 2003,
Mendonca and Campilho 2006, Al-Rawi et al. 2007)
approaches. Supervised approaches form pixel-wise
feature vectors and learn a binary classifier that la-
bels pixels as vessel or non-vessel. On the other
hand, unsupervised approaches, typically rely on
tracking, filtering or morphological operations fol-
lowed by thresholding. Supervised methods require
reasonably-sized data sets of training images and cor-
responding ground truth, which is usually very diffi-
cult and expensive to obtain.

We propose a novel unsupervised delineation al-
gorithm that is based on the Combination of Re-
ceptive Fields (CORF) computational model of a
simple cell in visual cortex (Azzopardi and Petkov
2012, Azzopardi et al. 2014) and its implementa-
tion called Combination of Shifted Filter Responses
(COSFIRE) (Azzopardi and Petkov 2013). It uses two
types of COSFIRE filters, one that gives a response
along the vessels and the other one that selectively
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Figure 1: (a) A synthetic vessel-like structure used
to configure a B-COSFIRE filter. (b) The output of
a center-on DoG filter to the image in (a). The cross
marker is the center of support of the B-COSFIRE fil-
ter while the enumerated spots represent the positions
at which the strongest DoG responses are achieved.

responds to vessel endings. In general, the two COS-
FIRE filters that we use respond to bar structures and
thus we call them bar-selective COSFIRE filters or B-
COSFIRE for brevity.

The rest of the paper is organized as follows: in
Section 2 we present the B-COSFIRE filters; in Sec-
tion 3, we present the experimental protocol and the
results achieved on four public data sets of retinal fun-
dus images, which we compare with state-of-the-art
methods in Section 4. Finally, we draw conclusions
in Section 5.

2 PROPOSED METHOD

2.1 B-COSFIRE filter

A B-COSFIRE filter is trainable, in that its selectiv-
ity is determined by an automatic configuration pro-
cess that analyzes a given prototype pattern. Figure 1a
shows a synthetic bar structure that we use as proto-
type. The configuration procedure involves the convo-
lution of a center-on Difference-of-Gaussians (DoG)
filter - with a given standard deviation σ of the outer
Gaussian function1 - and the synthetic bar pattern fol-
lowed by the determination of local maximum DoG
responses along a number of concentric circles, Fig-
ure 1b. For each local maximum point iwe extract the
polar coordinates (ρi, φi) with respect to the center of
the prototype pattern. This location is indicated by the
‘x’ marker in Figure 1b.

This configuration procedure results in a set S =
{(σi, ρi, φi) | i = 1, . . . , n} of 3−tuples. Here we use
one DoG filter and thus the σ values of all tuples
are the same. This design decision allows the use of
multi-scale DoG filtering to a prototype pattern of an
irregular shape. As an example, the filter model au-
tomatically determined from the prototype pattern in

1The standard deviation of the inner Gaussian function is half
the standard deviation of the outer Gaussian function.
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Figure 2: (a) Input retinal image and (b) the (inverted)
output of a rotation-tolerant B-COSFIRE operator us-
ing 12 orientation preferences.

Figure 1b is:

S =


(σ1 = 2.6, ρ1 = 0, φ1 = 0),
(σ2 = 2.6, ρ2 = 2, φ2 = 0),
(σ3 = 2.6, ρ3 = 2, φ3 = 3.14),
(σ4 = 2.6, ρ4 = 4, φ4 = 0),
(σ5 = 2.6, ρ5 = 4, φ5 = 3.14)

 (1)

We compute the response of a B-COSFIRE filter as
the geometric mean of the responses of the concerned
DoG filters at the positions determined in the config-
uration step:

rS(x, y)
def
=

 |S|∏
i=1

(sσi,ρi,φi(x, y))

1/|S|

(2)

where sσi,ρi,φi(x, y) is the blurred response of a DoG
filter with σi. Blurring is achieved by taking the maxi-
mum DoG response in a local neighourhood weighted
by a Gaussian function. The Gaussian function is cen-
tered around the polar coordinates (ρi, φi) with re-
spect to the center of the support of the B-COSFIRE
filter (i.e. the pixel under consideration). It has a stan-
dard deviation σ′

i that is a linear function of the dis-
tance ρi: σ′

i = σ′
0 + αρi. Further details about the pa-

rameters σ′
0 and α are provided in Section 3.3. The

blurring step is important as it allows for some tol-
erance with respect to the preferred positions of the
concerned DoG responses.

In Azzopardi et al. (2014), we also demonstrate that
the AND-type function (geometric mean) that we use
is more robust to noise than an OR-type function (e.g.
arithmetic mean).

2.2 Tolerance to rotations

The B-COSFIRE filter configured above is selective
to horizontal vessels. By using a rotated prototype
pattern we can configure a filter that has preference to
a different orientation. Alternatively, we create a new
set Rψ(S) = {(σi, ρi, φi + ψ) | i = 1, . . . , n} that rep-
resents a new B-COSFIRE filter with an orientation
preference that is offset by ψ radians from that of the
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Figure 3: (b) Example of the configuration of an
asymmetric B-COSFIRE filter by a prototype vessel-
ending (a). The point of interest of the B-COSFIRE
filter is indicated by the cross marker and lies on the
end of the prototype.

original filter S. We denote by r̂S(x, y) the rotation-
tolerant response at location (x, y) that is achieved by
taking the maximum value of various B-COSFIRE fil-
ters with different orientation preferences:

r̂S(x, y)
def
= max

ψ∈Ψ

{
rRψ(S)(x, y)

}
(3)

where Ψ = {0, π
12
, π

6
, . . . , 11π

12
}. Figure 2b shows the

rotation-tolerant output of a B-COSFIRE filter when
applied to the green channel of the image in Figure 2a.

2.3 Delineation algorithm

The delineation algorithm that we propose uses
two types of B-COSFIRE filters that we refer to
them as symmetric and asymmetric. A symmetric
B-COSFIRE filter is of the type configured above
which considers the same number of DoG responses
on both sides of the support center of the filter. Such
a filter gives strong responses along vessels but re-
sponds weakly on the vessel endings. An asymmet-
ric B-COSFIRE filter is one which achieves strong re-
sponses on vessel endings and it is configured by the
prototype pattern shown in Figure 3a. Delineation is
then achieved by thresholding the sum of the response
maps of the symmetric and asymmetric B-COSFIRE
filters. In Figure 4, we show examples of the output
of the delineation algorithm (third column) and its
thresholded version (fourth column) for each of the
four data sets, together with the manually segmented
ground truth (second column).

3 EXPERIMENTS AND RESULTS

3.1 Data sets

We use four data sets to evaluate the proposed ap-
proach: DRIVE (Staal et al. 2004), STARE (Hoover
et al. 2000), CHASE DB1 (Owen et al. 2009) and
HRF (Odstrcilik et al. 2013).

The DRIVE data set is composed of 40 images
(20 for training and 20 for testing) with resolution
768× 584 pixels. For each image, a mask of the field
of view (FOV) of the retina is provided together with
the binary manual segmentation of the blood vessel
tree. The images in the training set have been manu-
ally segmented by a single observer, while the images
in the test set have been segmented by two other ob-
servers.

The STARE data set consists of 20 images (700×
605 pixels), 10 of which contain signs of pathologies.
Each image is distributed together with two manu-
ally segmented images provided by two different ob-
servers.

The CHASE DB1 data set contains 28 colour im-
ages (999× 960 pixels) from 14 patients in the pro-
gram Child Heart And Health Study in England.The
data set contains two groups of manually segmented
images provided by two observers. For the three data
set the first set of segmented images is used as ground
truth.

The HRF data set consists of images with a resolu-
tion (3504× 2336 pixels) that is substantially higher
than images of the former data sets. It comprises of
three sets of 15 images each collected from healthy
people, patients with signs of glaucoma and patients
with signs of diabetic retinopathy. Each image is cou-
pled with one manually segmented image used as
ground truth.

3.2 Pre-processing

For our experiments we consider only the green chan-
nel of the retinal fundus images as it provides the best
contrast between the vessels and the background. Fur-
thermore, we apply the pre-processing algorithm pro-
posed by Soares et al. (2006) to smoothen the pixels
that are close to the circumference of the FOV. This
is achieved in an iterative way by increasing the ra-
dius of the FOV by one pixel in each iteration. The
value of a new pixel is the average of the neighbouring
pixels within the FOV that is determined in the pevi-
ous iteration. The initial FOV masks for the images of
the DRIVE and HRF data sets are provided with the
ground truth data. For the other data sets this infor-
mation is, however, missing and we obtain the initial
FOV masks by thresholding2 the luminosity channel
of the CIELab version of the original RGB image. For
the HRF data set, we downsampled the original im-
ages by a factor of 2.

3.3 Selection of parameters

The B-COSFIRE filters that we propose have four pa-
rameters, namely the standard deviation σ of the outer
Gaussian function of the afferent DoG filter, a set of ρ
values that are the radii of the concentric circles used

2The thresholds are 0.5 and 0.1 for the STARE and
CHASE DB1, respectively.
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Figure 4: Examples of retinal fundus images (first column) from the four concerned data sets (DRIVE, STARE,
CHASE DB1 and HRF) together with the manually segmented ground truth (second column). The output of
the delineation algorithm (third column) is thresholded in order to obtain the final segmented vessel tree (fourth
column).

in the configuration, together with σ′
0 and α that are

used by the blurring function.
For each data set we consider a validation set of im-

ages and use a grid search to first estimate the param-
eter values of the symmetric B-COSFIRE filter and
then to estimate the parameter values of the asymmet-
ric B-COSFIRE filter that best improves on the perfor-
mance of the symmetrical one. For DRIVE we use the
provided 20 training images as the validation set, and
for the other three data sets we form validation sets
with the first half of the images.

In Table 1 we report the estimated parameter values
of the two B-COSFIRE filters that we use to process

the images in the four considered data sets.

3.4 Evaluation method

We binarize the summation of the response maps of
the two B-COSFIRE filters by using a threshold value
as a fraction of the maximum response. In this way,
the pixels whose sum of the two B-COSFIRE filters
is greater than the threshold are classified as vessels
and the remaining as non-vessels.

We use a systematic set of threshold values between
0 and 1 in intervals of 0.01 and match every resulting
binary image with the corresponding ground truth im-



Data set Filter σ ρ σ0 α

DRIVE symmetric 2.4 {0,2,. . . ,8} 3 0.7
asymmetric 1.8 {0,2,. . . ,22} 2 0.1

STARE symmetric 2.7 {0,2,. . . ,12} 1 0.6
asymmetric 2.1 {0,2,. . . ,24} 1 0.1

CHASE DB symmetric 4.8 {0,2,. . . ,18} 3 0.2
asymmetric 4.3 {0,2,. . . ,34} 1 0.1

HRF symmetric 3.2 {0,2,. . . ,14} 3 0.3
asymmetric 2.7 {0,2,. . . ,24} 1 0.1

Table 1: Estimated parameter values of the B-
COSFIRE filters used in four public data sets.

age. For each threshold value we compute the number
of true positives, false positives, true negatives and
false negatives, and subsequently use them to com-
pute the Matthews Correlation Coefficient (MCC) as
a performance indicator. The MCC is a suitable mea-
surement for unbalanced classes and thus it is appro-
priate for the problem at hand where the background
pixels outnumber the vessel pixels approximately by
a factor of 7.

Finally, we choose the threshold that provides the
maximum average MCC value over a a validation data
set, and report the Accuracy (Acc), Sensitivity (Se)
and Specificity (Sp) for that threshold. For the sake of
completeness we also compute the ROC curve and its
underlying area (AUC). In Table 2 we report the re-
sults that we achieve for the concerned four data sets.

4 DISCUSSION

In Table 4, we report the results achieved by the
proposed method on the four considered data sets,
in comparison with the ones achieved by other pub-
lished methods. The results of these methods are
achieved by thresholding the response of a filter or
the score output of a classifier. However, the evalu-
ation of algorithms for vessels segmentation in reti-
nal fundus images is complex. The accuracy is not
a suitable metric because it is biased by the high
number of non-vessel pixels (background). Thus, in
order to compare the proposed method with other
published methods we move along the ROC curves.
For the same specificity values reported in state-of-
the-art studies, we compare the value of the sen-
sitivity. For the DRIVE data set and for the same
specificity (Sp = 0.9764) reported by (Mendonca and
Campilho 2006) we achieve a sensitivity of 0.7376,
which is marginally better. Similarly, for the STARE
data set and for the same specificity reported by (Men-
donca and Campilho 2006) and (Al-Diri et al. 2009)
(Sp = 0.9730 and Sp = 0.9681) we achieve a sen-
sitivity of 0.7554 and 0.7848 respectively, which is
a significantly better result. We also achieve the best
AUC value for the DRIVE data set with respect to all
other unsupervised approaches (AUC = 0.9435, Al-
Rawi et al. 2007 – AUC = 0.9558, Ricci and Perfetti
2007 – AUC = 0.9407, Cinsdikici and Aydin 2009 –

Data set Se Sp AUC Acc
DRIVE 0.7655 0.9704 0.9614 0.9442
STARE 0.7763 0.9695 0.9555 0.9496
CHASE DB1 0.7699 0.9476 0.9497 0.9305
HRF (Healthy) 0.7467 0.9850 0.9557 0.9665
HRF (DR) 0.7620 0.9604 0.9413 0.9663
HRF (Glaucoma) 0.7446 0.9781 0.9561 0.9603

Table 2: Experimental results of the proposed delin-
eation algorithm on public data sets.

Method Processing time
B-COSFIRE 10 seconds
(Jiang and Mojon 2003) 20 seconds
(Staal et al. 2004) 15 minutes
(Mendonca and Campilho 2006) 2.5 minutes
(Soares et al. 2006) 3 minutes
(Lam et al. 2010) 13 minutes
(Marin et al. 2011) 1.5 minutes
(Fraz et al. 2012) 2 minutes

Table 3: Comparison of the time required to process
an image from the DRIVE and STARE data sets.

AUC = 0.9614, Lam et al. 2010).
For the HRF data set we achieve better results than

the other published method (Odstrcilik et al. 2013).
Indeed, for the same specificity achieved by Odstr-
cilik et al. 2013 for the healthy, diabetic retinopa-
thy and glaucoma sets, we achieve sensitivity val-
ues of 0.8063, 0.7528 and 0.8168, respectively. Such
values are higher than the ones reported by Odstrci-
lik et al. 2013 (0.7861, 0.7463 and 0.79). As for the
CHASE DB1 there are no other unsupervised meth-
ods to compare with. The only other state-of-the art
method is a complex supervised approach (Fraz et al.
2012) based on an ensemble of classifiers.

As regards the time required to process an image
(from DRIVE and STARE data sets), the proposed
method is the most efficient with respect to other
methods from the state of the art (Table 3).

5 CONCLUSIONS

The results that we achieve on DRIVE, STARE,
CHASE DB1 and HRF data sets demonstrate the high
effectiveness of the proposed method. B-COSFIRE
filters are versatile as they can be automatically con-
figured to be selective for any given vessel-like pat-
tern, including bifurcations and crossovers. We have
made the Matlab implementation available online3.
The processing of a B-COSFIRE filter is also very ef-
ficient. In fact, the proposed method is the most time-
efficient algorithm for vessels delineation in retinal
fundus images published so far.

3http://www.mathworks.com/matlabcentral/fileexchange/49172



DRIVE STARE
Method Se Sp AUC Acc Se Sp AUC Acc

U
ns

up
er

vi
se

d B-COSFIRE 0.7655 0.9704 0.9614 0.9442 0.7716 0.9701 0.9563 0.9497
(Mendonca and Campilho 2006) 0.7344 0.9764 - 0.9463 0.6996 0.9730 - 0.9479
(Martinez-Pérez et al. 2007) 0.7246 0.9655 - 0.9344 0.7506 0.9569 - 0.9410
(Al-Rawi et al. 2007) - - 0.9435 0.9535 - - 0.9467 0.9090
(Ricci and Perfetti 2007) - - 0.9558 0.9563 - - 0.9602 0.9584
(Lam et al. 2010) - - 0.9614 0.9472 - - 0.9739 0.9567

Su
pe

rv
is

ed

(Niemeijer et al. 2004) - - 0.9294 0.9416 - - - -
(Staal et al. 2004) - - 0.9520 0.9441 - - 0.9614 0.9516
(Soares et al. 2006) 0.7332 0.9782 0.9614 0.9466 0.7207 0.9747 0.9671 0.9480
(Ricci and Perfetti 2007) - - 0.9633 0.9595 - - 0.9680 0.9646
(Marin et al. 2011) 0.7067 0.9801 0.9588 0.9452 0.6944 0.9819 0.9769 0.9526
(Fraz et al. 2012) 0.7406 0.9807 0.9747 0.9480 0.7548 0.9763 0.9768 0.9534

CHASE DB1 HRF
Method Se Sp AUC Acc Se Sp AUC Acc

Unsup. B-COSFIRE 0.7585 0.9587 0.9487 0.9387 0.7511 0.9745 0.9510 0.9644
(Odstrcilik et al. 2013) - - - - 0.7740 0.9669 0.9493 0.9668

Sup. (Fraz et al. 2012) 0.7224 0.9711 0.9712 0.9469 - - - -

Table 4: Performance results of the proposed unsupervised B-COSFIRE filter approach on the concerned data
sets compared to other methods from the state of the art.
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