6,170 research outputs found

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Iot Based Alzheimer’s Disease Diagnosis Model for Providing Security Using Light Weight Hybrid Cryptography

    Get PDF
    Security in the Internet of things (IoT) is a broad yet active research area that focuses on securing the sensitive data being circulated in the network. The data involved in the IoT network comes from various organizations, hospitals, etc., that require a higher range of security from attacks and breaches. The common solution for security attacks is using traditional cryptographic algorithms that can protect the content through encryption and decryption operations. The existing solutions are suffering from major drawbacks, including computational complexities, time and space complexities, slower encryption, etc. Therefore, to overcome such drawbacks, this paper introduces an efficient light weight cryptographic mechanism to secure the images of Alzheimer’s disease (AD) being transmitted in the network. The mechanism involves major stages such as edge detection, key generation, encryption, and decryption. In the case of edge detection, the edge maps are detected using the Prewitt edge detection technique. Then the hybrid elliptic curve cryptography (HECC) algorithm is proposed to encrypt and secure the images being transmitted in the network. For encryption, the HECC algorithm combines blowfish with the elliptic curve algorithm to attain a higher range of security. Another significant advantage of the proposed method is selecting the ideal private key, which is achieved using the enhanced seagull optimization (ESO) algorithm. The proposed work has been tested in the Python tool, and the performance is evaluated with the Alzheimer’s dataset, and the outcomes proved its efficacy over the compared methods

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power
    • …
    corecore