437 research outputs found

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    Context-Aware Detection in Medical Cyber-Physical Systems

    Get PDF
    This paper considers the problem of incorporating context in medical cyber-physical systems (MCPS) applications for the purpose of improving the performance of MCPS detectors. In particular, in many applications additional data could be used to conclude that actual measurements might be noisy or wrong (e.g., machine settings might indicate that the machine is improperly attached to the patient); we call such data context. The first contribution of this work is the formal definition of context, namely additional information whose presence is associated with a change in the measurement model (e.g., higher variance). Given this formulation, we developed the context-aware parameter-invariant (CA-PAIN) detector; the CA-PAIN detector improves upon the original PAIN detector by recognizing events with noisy measurements and not raising unnecessary false alarms. We evaluate the CA-PAIN detector both in simulation and on real-patient data; in both cases, the CA-PAIN detector achieves roughly a 20-percent reduction of false alarm rates over the PAIN detector, thus indicating that formalizing context and using it in a rigorous way is a promising direction for future work

    Challenges and Research Directions in Medical Cyber-Physical Systems

    Get PDF
    Medical cyber-physical systems (MCPS) are lifecritical, context-aware, networked systems of medical devices. These systems are increasingly used in hospitals to provide highquality continuous care for patients. The need to design complex MCPS that are both safe and effective has presented numerous challenges, including achieving high assurance in system software, intoperability, context-aware intelligence, autonomy, security and privacy, and device certifiability. In this paper, we discuss these challenges in developing MCPS, some of our work in addressing them, and several open research issue

    Medical cyber-physical systems: A survey

    Get PDF
    Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device's network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included

    Assuring the Safety of On-Demand Medical Cyber-Physical Systems

    Get PDF
    We present an approach to establish safety of on-demand medical cyber-physical systems which are assembled to treat a patient in a specific clinical scenario. We treat such a system as a virtual medial device (VMD) and propose a model-based framework that includes a modeling language with formal semantics and a medical application platform (MAP) that provides the necessary deployment support for the VMD models

    Challenges in the Regulatory Approval of Medical Cyber-Physical Systems

    Get PDF
    We are considering the challenges that regulators face in approving modern medical devices, which are software intensive and increasingly network enabled. We then consider assurance cases, which o er the means of organizing the evidence into a coherent argument demonstrating the level of assurance provided by a system, and discuss research directions that promise to make construction and evaluation of assurance cases easier and more precise. Finally, we discuss some recent trends that will further complicate the regulatory approval of medical cyber-physical systems

    Model-Based Analysis of User Behaviors in Medical Cyber-Physical Systems

    Get PDF
    Human operators play a critical role in various Cyber-Physical System (CPS) domains, for example, transportation, smart living, robotics, and medicine. The rapid advancement of automation technology is driving a trend towards deep human-automation cooperation in many safety-critical applications, making it important to explicitly consider user behaviors throughout the system development cycle. While past research has generated extensive knowledge and techniques for analyzing human-automation interaction, in many emerging applications, it remains an open challenge to develop quantitative models of user behaviors that can be directly incorporated into the system-level analysis. This dissertation describes methods for modeling different types of user behaviors in medical CPS and integrating the behavioral models into system analysis. We make three main contributions. First, we design a model-based analysis framework to evaluate, improve, and formally verify the robustness of generic (i.e., non-personalized) user behaviors that are typically driven by rule-based clinical protocols. We conceptualize a data-driven technique to predict safety-critical events at run-time in the presence of possible time-varying process disturbances. Second, we develop a methodology to systematically identify behavior variables and functional relationships in healthcare applications. We build personalized behavior models and analyze population-level behavioral patterns. Third, we propose a sequential decision filtering technique by leveraging a generic parameter-invariant test to validate behavior information that may be measured through unreliable channels, which is a practical challenge in many human-in-the-loop applications. A unique strength of this validation technique is that it achieves high inter-subject consistency despite uncertain parametric variances in the physiological processes, without needing any individual-level tuning. We validate the proposed approaches by applying them to several case studies
    corecore