
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2016

Model-Based Analysis of User Behaviors in
Medical Cyber-Physical Systems
Sanjian Chen
University of Pennsylvania, sanjian.chen3@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1652
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Chen, Sanjian, "Model-Based Analysis of User Behaviors in Medical Cyber-Physical Systems" (2016). Publicly Accessible Penn
Dissertations. 1652.
http://repository.upenn.edu/edissertations/1652

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1652?utm_source=repository.upenn.edu%2Fedissertations%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1652
mailto:libraryrepository@pobox.upenn.edu


Model-Based Analysis of User Behaviors in Medical Cyber-Physical
Systems

Abstract
Human operators play a critical role in various Cyber-Physical System (CPS) domains, for example,
transportation, smart living, robotics, and medicine. The rapid advancement of automation technology is
driving a trend towards deep human-automation cooperation in many safety-critical applications, making it
important to explicitly consider user behaviors throughout the system development cycle. While past research
has generated extensive knowledge and techniques for analyzing human-automation interaction, in many
emerging applications, it remains an open challenge to develop quantitative models of user behaviors that can
be directly incorporated into the system-level analysis.

This dissertation describes methods for modeling different types of user behaviors in medical CPS and
integrating the behavioral models into system analysis. We make three main contributions. First, we design a
model-based analysis framework to evaluate, improve, and formally verify the robustness of generic (i.e., non-
personalized) user behaviors that are typically driven by rule-based clinical protocols. We conceptualize a
data-driven technique to predict safety-critical events at run-time in the presence of possible time-varying
process disturbances. Second, we develop a methodology to systematically identify behavior variables and
functional relationships in healthcare applications. We build personalized behavior models and analyze
population-level behavioral patterns. Third, we propose a sequential decision filtering technique by leveraging
a generic parameter-invariant test to validate behavior information that may be measured through unreliable
channels, which is a practical challenge in many human-in-the-loop applications. A unique strength of this
validation technique is that it achieves high inter-subject consistency despite uncertain parametric variances in
the physiological processes, without needing any individual-level tuning. We validate the proposed
approaches by applying them to several case studies.
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ABSTRACT

MODEL-BASED ANALYSIS OF USER BEHAVIORS IN MEDICAL

CYBER-PHYSICAL SYSTEMS

Sanjian Chen

Insup Lee

Human operators play a critical role in various Cyber-Physical System (CPS) do-

mains, for example, transportation, smart living, robotics, and medicine. The rapid

advancement of automation technology is driving a trend towards deep human-

automation cooperation in many safety-critical applications, making it important to

explicitly consider user behaviors throughout the system development cycle. While

past research has generated extensive knowledge and techniques for analyzing human-

automation interaction, in many emerging applications, it remains an open challenge

to develop quantitative models of user behaviors that can be directly incorporated

into the system-level analysis.

This dissertation describes methods for modeling different types of user behaviors

in medical CPS and integrating the behavioral models into system analysis. We make

three main contributions. First, we design a model-based analysis framework to eval-

uate, improve, and formally verify the robustness of generic (i.e., non-personalized)

user behaviors that are typically driven by rule-based clinical protocols. We con-

ceptualize a data-driven technique to predict safety-critical events at run-time in

the presence of possible time-varying process disturbances. Second, we develop a

methodology to systematically identify behavior variables and functional relation-

ships in healthcare applications. We build personalized behavior models and ana-

lyze population-level behavioral patterns. Third, we propose a sequential decision

filtering technique by leveraging a generic parameter-invariant test to validate be-

havior information that may be measured through unreliable channels, which is a

practical challenge in many human-in-the-loop applications. A unique strength of
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this validation technique is that it achieves high inter-subject consistency despite

uncertain parametric variances in the physiological processes, without needing any

individual-level tuning. We validate the proposed approaches by applying them to

several case studies.
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Chapter 1

Introduction

1.1 Motivation

Human operators have a critical role in many Cyber-Physical System (CPS) applica-

tion domains, e.g., transportation [208, 121, 202], smart living [185, 284], robotics [80,

68, 71], and medicine [169]. In some cases, such as self-driving cars [26], fully au-

tonomous control with near-zero human intervention may be achievable but still re-

quires extensive research efforts before provably safe and effective products are avail-

able to the general public. In many domains including health care, entertainment,

and avionics, humans play an essential role that is unlikely to be completely replaced

by automation in the foreseeable future. The past decade has observed significant

progress in promoting the level of automation in a broad range of CPS systems: ex-

amples include advanced driver assistance features [41], flight control systems [282],

unmanned aerial/ground vehicles [184], robotic surgeries [204], and smart infusion

pumps [215]. Driven by the advancement of autonomy, a trend towards deeper

“human-automation teamwork” starts to emerge in many areas [280, 159, 131].

The presence of human behaviors in the operation loop introduces new challenges

to system design and analysis. Compared to software-based controllers, humans

exhibit very different characteristics in information processing, decision making, and
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execution [273]. Unlike how computing systems work, human judgment and actions

are shaped by complex physiological, behavioral, and psychological factors [206,

273]. While automation can eliminate some types of human errors by substituting

operators in performing certain tasks, it also introduces new human factor challenges,

e.g., the well-noted “mode confusion” problems in pilot-automation interaction [241,

240, 275]. Human factor research has shown that automation can cause unanticipated

changes to how humans perform cognitive tasks [219]. Some human-automation

issues have led to tragic accidents: For example, divergence between the pilots’

mental model and the actual autopilot behavior is believed to be a contributing

factor to the 2013 Asiana 214 San Francisco crash [186, 251]; the 2016 Tesla fatal

crash, in which the autopilot system was activated but suffered a detection failure,

highlights the challenge to ensure safety of self-driving cars that still require driver

supervision [195].

Ample evidence suggests that the traditional technology-centered design ap-

proach is insufficient in coping with new challenges introduced by the increasingly

sophisticated interaction between human behaviors and technology [273]. Designing

highly reliable Human-in-the-Loop (HiL) CPS requires a new holistic engineering

paradigm that explicitly consider behaviors in the design process [245]. We need

new methodologies to systematically analyze the implications of operator behaviors

on system-level properties.

1.2 Why Model-Based Analysis is Useful

Safety-critical HiL systems ultimately need to be evaluated in live tests before actual

deployment. For example, automotive manufacturers conduct extensive road tests

before releasing new vehicles, and most, if not all, life-critical medical devices must

pass human clinical trials to obtain regulatory approval. The main limitation is that

testing life-critical systems in humans usually involves significant risks and costs.

2



For example, due to the safety concerns, some critical medical devices must pass

“preclinical” tests [135] to prove that they are reasonably safe before they are allowed

to be evaluated in human trials. As HiL CPS become increasingly more complex,

evaluating different design choices by human tests becomes more costly and risky.

Additionally, it is impossible to cover all operation scenarios solely by testing.

Model-based analysis is a particularly useful methodology to complement testing

in the development cycle. For medical systems, model-based analysis may substi-

tute certain costly preclinical trials, especially during the earlier design stages. The

rationale is that model-based analysis can efficiently rule out improper designs in

a risk-free manner, which not only enables quick system prototyping but also saves

cost and possibly also lives in subsequent human trials. One recent successful exam-

ple is the Type 1 Diabetes Metabolism Simulator (T1DMS) [75], which is accepted

by the U.S. Food and Drug Administration (FDA) as the first software tool that can

be used to substitute animal tests in certain pre-clinical trials of glucose control al-

gorithms. In addition to evaluating automation design, model-based analysis results

can also provide feedback to refine user behaviors. Model-based simulators are used

to train operators, e.g., surgical simulators [243] and driving simulators [94].

1.3 Research Problems and Challenges

Scope of this dissertation. A lot of research has been done in applying model-

based analysis to CPS applications that consist of only non-human components,

e.g., mechanical and electrical systems [165, 232, 79]. This dissertation proposes

new modeling paradigms and techniques for analyzing user behaviors in the emerg-

ing generation of HiL medical CPS that encompass complex interactions between

humans, physiology, and technology. These so-called “sociotechnical” systems re-

cently started to garner increasing attention from the CPS community [206]. More

specifically, we focus on modeling user behaviors and their impact on the safety of
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medical CPS that include physiological processes, sensors, actuators, and human &

non-human control agents. Although we focus on medical applications, the proposed

methodologies can be applied to other HiL CPS domains.

Applying model-based analysis to HiL CPS involves two key research problems:

How to model behaviors and how to use behavior models in analysis.

Modeling behaviors can be broken down into three sub-problems: Identifying

relevant behaviors, applying proper modeling techniques, and validating models.

Determining which behaviors should be modeled involves a deliberate trade-off of

a few factors: Relevance (does the behavior has a major impact on the relevant

system properties?), observability (can the behavior be measured with reasonable

cost?), modeling difficulty (can the behavior be quantified and modeled?), and model

utility (will the model be useful for analysis?).

One of the main purposes of modeling behaviors is to generate quantitative in-

sights into how human factors impact the operational properties of the entire HiL

systems. The behavior model and models of other system components need to be

expressed at the same level so that meaningful closed-loop analysis (e.g., simulation

and formal verification) can be done. If analysis results reveal that system prop-

erties may be violated, then the user behaviors and/or the design of non-human

components must be refined.

There are several challenging issues that are especially relevant to model-based

analysis of human behaviors in medical CPS:

Identifying quantifiable behavior metrics. Modeling requires precisely defined

quantifiable metrics. In many HiL applications, engineers are interested in under-

standing certain behavioral patterns, e.g., aggressive driving [139, 199] and automa-

tion trust [219]. Those patterns are higher-level information that provides deep

insights into behavioral traits. The challenging issue is how to quantify descriptive

behavioral trends such as “aggressiveness” and “trust” in the application context.
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Non-determinism of behaviors. Unlike automation agents, humans are influ-

enced by physiological (e.g., level of attentiveness) and psychological factors (e.g.,

trust and mood) [273] that their behaviors can be highly personalized and inherently

probabilistic. Such non-determinism introduces challenges to analysis.

Uncertainties in physiological processes. In medical CPS, patients’ physio-

logical parameters can vary across different individuals and the same patient’s pa-

rameters can exhibit short-term fluctuations in certain scenarios. Constrained by

available sensing technology, many physiological parameters are simply not measur-

able [187]. As a result, the same action may trigger drastically different observable

physiological responses, making it challenging to analyze the physiological impact of

behaviors.

Unreliable behavior measurements. Behavior measurements are sometimes

collected through unreliable channels. For example, some smart infusion pumps rely

on possibly erroneous patient self-reported information to calculate recommended

doses [247], and some driver-assistance systems use computer vision techniques to

infer driver poses [248], which have inherent misdetection rates. Faulty behavior

information may jeopardize safety: For example, if a smart insulin infusion pump

receives incorrect eating information, it may deliver insulin unnecessarily and impose

life-threatening hypoglycemia risk.

1.4 Overview of the Proposed Approach

This dissertation focuses on developing methods to solve the behavior modeling

problems and address the challenges that are discussed in the previous section. We

start with a key observation that the user behaviors in many medical CPS can be

broadly categorized into one of two types: Generic behaviors and personalized be-

haviors. Generic behaviors are seen in systems in which users are expected to exhibit
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pre-defined behaviors that are designed to work in a target patient population, i.e.,

the behaviors are not tuned to each individual on-the-fly. This type of behaviors

is common in hospital care: Standard clinical protocols guide how caregivers con-

duct treatments and interact with medical devices. For example, clinicians use pain

management protocols to control opioid consumption for post-surgery patients [228].

The protocols define a set of rules that apply to all patients within the target pop-

ulation. On the other hand, personalized behaviors are shaped by users’ individual

discretions and preferences, which are common in out-patient healthcare applica-

tions. For example, some Type 1 diabetics use smart insulin pumps to help control

blood glucose [2]. The users’ meal intake and exercise habits can significantly impact

their glucose levels as well as the pump’s operation, and those behaviors are highly

personalized.

We model generic behaviors primarily based on domain knowledge, e.g., the pro-

tocols that drive the user behaviors. For personalized behaviors, we develop a data-

driven technique to individualize the behavior model. To address the challenge that

some behavior measurements might be unreliable, we design a novel technique to

validate the behavior information considering uncertain individual physiological pa-

rameters.

After developing the behavior models, we integrate them with models of other

components, such as automation and physiological processes, to analyze the safety

of the closed-loop systems. To this end, we propose two analysis paradigms to fit

the different requirements for generic and personalized behaviors. Generic behaviors

must maintain safety over the entire target population, i.e., they must be “robust”

against the possible inter-subject physiological variances. We harness the strengths

of numerical simulation and hybrid system verification tools to achieve a synergy

in ensuring robustness of generic behaviors. Personalized behaviors are expected to

be “adaptive” to individual physiology and are inherently statistical, i.e., the daily

carb intake of an insulin pump user is most likely a random variable with a certain
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distribution rather than a fixed value. We leverage machine learning techniques to

analyze the relevant behavior trends from data and use probabilistic model checking

to verify the individualized physiological impacts of personalized behaviors. The

closed-loop analysis results provide feedback on how behaviors, either generic or

personalized, can be revised to ensure safety.

1.5 Summary of Contributions

This dissertation makes the following contributions:

1. We propose a model-based analysis framework to evaluate, improve, and verify

the robustness of generic (i.e., non-personalized) behaviors driven by rule-based

protocols. We apply the framework to an intraoperative glycemic control case

study: we identify the weaknesses of a current protocol, design an enhance-

ment, and formally verify the new protocol using a state-of-the-art physiological

model. We verify that the new protocol maintains safety over a virtual patient

population that maps to continuous ranges of uncertain physiological states

and parameters. Our verification work provides a new level of safety guaran-

tee than other simulation-based evaluation methods that can only cover finite

discrete samples of the virtual population. Additionally, we develop a novel

virtual-subject based, data-driven run-time safety monitor technique to predic-

tively alert caregivers to critical events in the presence of possible time-varying,

unobservable physiological disturbance.

2. We develop a “Time-Apps-Physiology triggered Living-Treatment actions” (TAP-

LT) framework to systematically identify behavior metrics and functions in

patient-centered healthcare applications. We design a data-driven method to

instantiate the TAP-LT framework to represent personalized behaviors. We

apply the methodology to an insulin pump case study and identify quantifi-

able user behavior patterns. The analysis results reveal new clinical insights
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that enable more efficient and personalized diagnosis (confirmed by expert clin-

ical review). We formally evaluate the individualized physiological impacts of

switching behavior patterns by probabilistic model checking. The verification

results suggest patients may improve clinical outcomes by behavioral change.

3. We design a model-based detection method to validate unreliable real-time be-

havioral measurements. The detector leverages a generic parameter-invariant

test that is enhanced by a sequential decision filtering technique. An impor-

tant feature of the proposed validation technique is high inter-subject perfor-

mance consistency despite physiological variances across different individuals.

We apply the technique to a diabetic meal detection case study and design

a novel meal detector. Simulation and clinical evaluations demonstrate that

our meal detector provides the highest detection rate, lowest false alarm rate,

and shortest detection time, compared to three other state-of-the-art meal de-

tectors. Moreover, our detector achieves consistent inter-subject performance

without any individual-level parameter tuning.

1.6 Outline of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 reviews related work including the Human-Automation Interaction

(HAI) research and a few recent CPS projects on using behavior models for system-

level analysis. We discuss how this dissertation work will complement existing body

of knowledge.

Chapter 3 introduces a model-based analysis framework to evaluate, improve,

and verify the robustness of protocol-guided generic behaviors in medical systems.

We apply the framework to a concrete clinical case study, in which we enhance an

existing clinical protocol to overcome its weaknesses and formally prove that the new

protocol is safe over a virtual population. To address the challenge of unobservable
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time-varying physiological disturbance, we introduce a data-driven safety monitor

technique to predict critical events at run time.

Chapter 4 describes the TAP-LT framework to systematically identify person-

alized behavior metrics and a data-driven technique of instantiating quantifiable

personalized behavior features. We apply the proposed approach to an insulin pump

case study and analyze individualized diabetic user behaviors.

Chapter 5 proposes a behavior event validation method that is designed to achieve

a consistent detection performance despite parametric variances across individuals.

We apply the technique to a meal detection case study and show that the new

detector significantly outperforms other state-of-the-art detectors.

Chapter 6 concludes the dissertation and discusses future research opportunities.
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Chapter 2

Background

Researchers in varies fields of engineering, psychology, and computer science have

studied issues stemmed from human-automation interactions (HAI) since the 80s [36,

125, 136, 273]. Modeling behaviors for system-level analysis of HiL systems becomes

an inter-disciplinary area that started to garner increasing attention in the CPS

community over the past few years. Research in this domain has so far been done

in a bottom-up fashion, i.e., modeling problems are formulated in the application

context, and the techniques are tailored to specific case studies. In this chapter, we

first survey some of the key results of the HAI research in Section 2.1. In Section 2.2,

we review a few recent CPS projects on using behavior modelings for system-level

analysis. Section 2.3 concludes this chapter and discusses how this dissertation

contributes to the existing body of research.

2.1 Human-Automation Interaction

The engineering community has long recognized that automation can create new

problems, sometimes more than it eliminates, when it interacts with human opera-

tors [17]. Human-automation interaction (HAI) related problems have been iden-

tified in the investigations of a number of catastrophic system failures in areas
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including transportation [257, 96], power plants [214], and medicine [148]. The

accidents have stimulated over two decades’ active research by human factor and

control engineering communities in understanding HAI issues and designing better

human-automation interfaces [120, 175, 233]. Despite numerous results and design

improvements in HAI engineering, it remains a grand challenge to systematically

identify potentially risky interactions between human operators, automation, and

the physical processes being controlled [226].

In this section, we review some of the key results and insights of past HAI research

that are closely related to this dissertation. Section 2.1.1 describes the HAI issues

identified by engineering psychology research. Section 2.1.2 surveys research by

computer scientists and system engineers on applying formal methods to modeling

and verifying HAI.

2.1.1 Engineering Psychology Research Related to HAI

Engineering psychology researchers approach the HAI problem mainly from the per-

spective of considering how automation can change the nature of human cognitive

functions and subsequently lead to accidents. In the widely-cited textbook [273],

Wickens et al. identify several automation and human performance issues, among

which uncalibrated automation “trust” and inappropriate automation state feedback

are highlighted [273].

One of the most-studied HAI issue is “trust” [17, 205, 275, 171]. Human opera-

tors may over-trust or under-trust automation [218], and both can compromise safety.

Over-trust arises when operators believe automation is highly reliable and develop

the tendency of not paying enough attention to monitoring system functions when

they should. When automation failures do occur, distracted humans may be less

capable of handling emergencies quickly and properly. Engineers use the term “com-

placency” to describe such phenomenon [276]. Another form of over-trust, closely

related to complacency, is automation bias [203]. It describes over-trusting users as-
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signing more authority to automation than they should, and thereby increasing the

likelihood of following incorrect guidance when automation malfunctions. In addition

to causing loss of situation awareness, over-trust can also lead to “deskilling” [172].

For example, reliance on auto-pilot systems may result in degradation of manual

fly skills among pilots [239]. Under-trust describes the phenomenon that operators

ignore automation outputs even when they are actually correct, because automation

is perceived to be unreliable or too complex to apprehend [219]. One example is the

widely recognized “alarm fatigue” problem in healthcare [72]. Getting tired of too

many false alarms [82], caregivers may totally ignore all alarms including the true

ones.

Another issue that has been extensively studied by human factor engineers is

feedback to humans on automation states [210]. A lot of research has been done in

aviation systems concerning the interaction between pilots and autopilots. “Mode

confusion” describes the phenomenon that pilots may misjudge which mode the

autopilot is functioning in, jeopardizing safety in critical situations [240].

Recognizing the various HAI issues and their adverse impact on safety and sys-

tem performance, researchers advocate the need of a design paradigm shift from

technology-centered perspective to human-centered automation [29]. Several factors

have been highlighted in promoting the safety and efficacy of HAI, including design-

ing appropriate levels of automation [274], efficient automation feedback [246], and

calibrating automation trust through training [16].

2.1.2 Formal Analysis of HAI

HAI has also attracted attention from the formal methods community. Bolton, Bass,

and Siminiceanu write a review article that surveys more than 100 publications

related to formally verifying HAI [36]. As pointed out in their review, research in

this area broadly falls into two categories: Those that concern the interface between

humans and automation, and those that include the whole system into the modeling
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scope [36].

Human-automation interfaces (HCI) have been formally modeled and checked

against desired properties. Most existing work model HCI as some forms of state

transition systems [220, 105, 81, 86, 35]. The properties being checked are typi-

cally expressed using temporal logic [59] and mainly concern usability [37]. Campos

and Harrison identify four classes of HAI properties that can be formally checked:

Reachability [223], visibility [48], task related [1], and reliability [49]. A major re-

search branch of formally verifying HCI is dedicated to identifying potential mode

confusions [174], for which several techniques have been proposed to apply model

checking to verifying interfaces [45] and analyzing human mental/knowledge mod-

els [211, 21, 127].

Another research thrust in formally verifying HAI expands the scope of modeling

from focusing on the interface to considering system-level properties. In their review

article [36], Bolton, Bass, and Siminiceanu categorize research along this direction

into two types: Those that consider measurable behaviors, and those that aim at

understanding the cognitive factors that drive observable behaviors. The former

class focuses on using formal models to represent tasks [143]. Several formalisms

have been proposed, including operator function models [201, 37], user action no-

tation [108], and concur-tasktrees [224]. The later class concentrate on modeling

cognitive behaviors and operators’ knowledge in interacting with automation. A

number of cognitive modeling methods have been developed, including the operator

choice model [51, 179], programmable user model [46, 32], and distributed cognition

models [192].

2.2 Model Operator Behaviors in CPS

In the problem space of modeling human-automation teamwork in CPS, research

progress has been made recently in several applications. The techniques are typically
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Figure 2.1: The open-loop view of a behavior model.

configured and evaluated in the application context. The specific characteristics of

the applications make them amenable to the corresponding modeling methods. In

this section, we review three recent projects by other research groups, including semi-

autonomous driving [248], human-UAV teamwork modeling [5], and living-assistance

robot [265]. Those projects represent three different types of behavior models (open-

loop model, closed-loop model, and system-level model) and cover a range of model

analysis techniques (simulation, formal verification, and statistical analysis). In the

rest of this section, we briefly review the case studies and discuss their strengths and

limitations.

2.2.1 Open-Loop Behavior Model

The open-loop behavior model treats behaviors as a disturbance to the coupled sys-

tem of the automatic controller and the controlled plant, as illustrated in Figure 2.1.

Webster et al. apply the open-loop behavior modeling to a living assistant robot

application [265, 266, 255, 254].

Problem description. They conduct experiments using a commercially available

Care-O-bot “robot butler” [234]. The robot can locate itself and navigate in a house

that is equipped with various sensors. The robot can receive and interpret high-level
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Figure 2.2: Overview of the modeling method in the human-care robot case
study [265].

operation commands through its robot operating system, e.g., “put an object on the

tray and move to the living room”. The human-robot teamwork system includes

three components: The human, robot, and environment. The system model de-

scribes the operation logic and interaction relations between the components. Their

approach solves the following formal verification problem: Given a model of the sys-

tem and a set of requirements, prove or disprove that all possible executions of the

system model satisfy the requirements.

Methodology overview. Figure 2.2 shows their overall methodology. They model

the human-robot system in a multi-agent modeling and simulation language called

Brahms [250], for which formal operational semantics have been defined [255]. The

specifications are expressed in linear temporal logic, which is a formalism that en-

ables specifying temporal properties, e.g., “at all points in time something must be

true” (the global G operator).

The activity data is recorded from a person living in the robot house for four

days [85]. The user activity log is used to construct three different modeling sce-

narios: A deterministic scenario that is directly converted from the activity log;

a nondeterministic scenario that allows random selection of any of the 26 unique

activities identified from the activity log; a nondeterministic conjoined activity sce-

nario that extends the nondeterministic scenario and decomposes overlapping events
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into mutually exclusive events by renaming. The three scenario models are verified

against four sample requirements, which are expressed as formalized properties in

linear temporal logic (LTL), e.g., “the robot will remind the person that medicine is

due at 5 PM every day.”. The four properties are verified on all three models using

the SPIN model checker. All properties are satisfied by the three models.

Remarks. Their approach demonstrates the utility of formal methods in verifying

functional properties of the human-robot application. The Brahms language allows

modeling the interaction of agents using IF-THEN style statements. The BrahmsTo-

Promela tool automatically translates Brahms models into PROMELA models that

the SPIN model checker accepts.

For safety verification, the formal model must exactly represent or over-approximate

the target system with respect to the requirements: The possible model execution

traces must form a superset of real system behaviors; if the formal model does not

express all possible behaviors of the real system, passing model checking does not

guarantee that the real system always satisfy the requirements. In the robotic as-

sistant application, the nondeterministic scenario models assume the human agent

can arbitrarily take any action at a given time step, which is an over-approximation

of reality. In some applications where the system is very well conditioned, over-

approximation can easily lead to requirement violations, in which case no conclusion

can be made about whether the real system would violate the requirements. In those

situations, identifying a non-trivial over-approximated model to generate meaningful

verification results can be a major challenge. Another limitation is that the proper-

ties in the presented work [265] are a few disjointed simple examples, and they do

not seem to constitute a complete, coherent set of system requirements.
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Figure 2.3: The closed-loop view of a behavior model.

2.2.2 Closed-Loop Behavior Model

The closed-loop behavior model explicitly considers information feedback to opera-

tors, as shown in Figure 2.3. Shia et al. apply the closed-loop behavior model to a

semi-autonomous driving application [248, 238, 230, 263, 84].

Problem description. Figure 2.4 illustrates the workflow of semi-autonomous

driving. The driver is given a specific driving task, e.g., make turns or go straight.

The driver’s actions are influenced by both the driver’s state, e.g., distracted or

attentive, and the environmental conditions, e.g., the presence of obstacles. The

semi-autonomous controller has three key components. The first component predicts

future vehicle trajectories given the driver’s inputs, e.g., steering, acceleration, and

braking, under different environmental conditions and driver states. The second

component compares the predicted vehicle trajectories with unsafe regions, e.g., an

obstacle or road curbs, and decides whether the controller needs to apply a correction

to the driver’s inputs. If the controller decides to intervene, the third component

computes the control inputs, e.g., steering angle.

The model-based analysis framework must solve three technical problems that

correspond to the three components of the semi-autonomous controller shown in

Figure 2.4:
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Figure 2.4: The workflow of semi-autonomous driving.

1. At each time point, given the measurements of the driver’s pose in a past time

window and the information of the vehicle as well as its environment in a future

time window, predict the driver’s action and the resulting vehicle trajectory

within a near-future time window.

2. Given the vehicle trajectory predictions and the environmental conditions, de-

cide if the vehicle could enter unsafe regions.

3. Given the driver’s input, the vehicle information, and the environmental con-

dition, compute correctional control inputs, if necessary, such that the vehicle

stays in the safe region.

Methodology overview. Twenty-four drivers participate in a two-hour driving

session on the industry driving simulator CarSim. The first hour is for driver data

collection, during which the semi-autonomous controller is turned off, and the sec-

ond hour is for testing, during which the controller is activated. The drivers need

to perform specific driving tasks, e.g., maintain a certain speed and/or keep a safe

distance from the leading car. Drivers may be distracted by text messages. The
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simulator emulates obstacles by sudden speed drops of the leading car or appear-

ances of simulated animals, forcing the driver to take defensive maneuvers. The

full combinations of environmental conditions (with or without obstacles) and the

driver’s states (with or without phone distraction) yield four possible driving scenar-

ios. A Microsoft Kinect monitors the driver pose in real time, and it tracks the 3-D

movements of the driver’s joints using computer vision technologies. The simulator

records vehicle dynamics measurements, the driver’s inputs, and road information.

Shia et al. propose a procedure that uses the training data to learn the mapping

from the driver pose and environmental conditions to the driver’s actions. They

associate the driver pose data with the environmental condition at each time step,

and apply k-means algorithm [107] to cluster the combined dataset. For each cluster,

they identify the driver’s actions in the next 1.2 seconds time window and pass the

inputs into a vehicle model [231] to predict trajectories.

The expected vehicle trajectories are intersected with unsafe regions that are

defined by obstacle locations, the lane boundaries, and the road boundaries. The

autonomous controller intervenes if the intersection is non-empty [248], and the con-

trol inputs are calculated using the standard Model Predictive Control (MPC) tech-

nique [47].

The driver-controller performance is evaluated in the second hour of the simulated

driving experiment. The key result is that at a medium clustering setting, the semi-

autonomous controller intervenes 93% of the instances when the driver is in danger;

71% of times that the controller chooses to intervene, the driver is going to be in

danger in a near future time window. The semi-autonomous controller keeps the

vehicle safe during the entire testing period for all drivers.

Remarks. Their technique enables validating the safety of a semi-autonomous

driving system by incorporating a driver behavior model. The proposed framework

is modular, i.e., the driver and controller are explicitly modeled as separate compo-
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Figure 2.5: The system-level view of a behavior model.

nents, and thus it allows the use of more complex driver and/or control models.

One limitation is that the semi-autonomous controller is designed and tested on

exactly the same group of drivers. As a result, any possible selection bias is unlikely

to be revealed in the testing, i.e., the semi-autonomous controller may fail to handle

certain situations that are not observed on those recruited into the study. Addition-

ally, the approach does not account for the “behavioral feedback”, i.e., drivers may

behave differently when they know there is a semi-autonomous controller acting as

a safety backup. In the experiments of the surveyed work, the drivers know whether

the controller is activated, and many drivers admit that the controller changes their

own behaviors [248]. This is a critical issue in HAI: The automation may impact

human psychology and make them more willing to engage in aggressive control ac-

tions. The problem is also noted by researchers in other HiL application domains,

e.g., the closed-loop medical devices [222].

2.2.3 System-Level Behavior Model

The system-level behavior model, shown in Figure 2.5, focuses on a holistic analysis

of the input-output performance. Ahmed et al. develop statistical models that

predict the system-level performance of human-UAV networks [5, 6, 4, 38].

Problem description. Thirty volunteers participate in a simulated study using

the Aptima’s Dynamic Distributed Decision-making simulation software. With the
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assistant of system messages, each participant controls eight friendly UAVs to accom-

plish simulated tasks with varying task load (TL) and message quality (MQ). The

participants are evaluated using a version of the standard Operation Span (OSPAN)

test to measure their Working Memory (WM) capacity [90]. Four performance met-

rics were evaluated for each subject during the experiment: Red Zone Performance

(RZP), Time to Destroy enemy Target (DT), and Enemy Destroyed Performance

(EDP). Ahmed et al.’s work’ solves the following problem: Given TL, MQ, and

WM, develop a statistical model to predict the four performance metrics, RZP, DT,

EDP, and AE.

Methodology overview. Ahmed et al. apply three statistical models to solving

the prediction problem [5]. As a starting point, classic linear regression is applied to

the experimental data [31]. To address the limitations of linear regression (LR), two

alternative models are evaluated: Gaussian processes (GP) directly relate predictions

to the training data, and Bayesian networks (BN) enable inverse inference.

Results. The LR, GP, and BN models are evaluated using cross validation. All

models achieve good prediction performance (an error rate of 3.63%) on EDP. Closer

examination of the raw data reveals that a lot of false predictions are borderline cases,

where either the predicted value is close to the discretization cut-offs or has a high

variance. Confidence thresholds are introduced to reject such borderline cases, i.e.,

the model does not make a prediction if the MAP value probability does not exceed

the corresponding confidence threshold. Introducing the confidence thresholds signif-

icantly improves the prediction performance of all models on the three performance

metrics.

Remarks. Their work applies several statistical models to predicting the perfor-

mance of the human-UAV network. It reveals several insights into the advantages

and limitations of each model with respect to the application. LR has an easy-
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to-understand form but may generate unreliable predictions when the testing point

is far from any sampled point, which may be problematic when the space is high-

dimensional and can only be sparsely sampled due to experimental constraints. In

the GP model, the predicted uncertainty range adapts to the similarity between the

testing point and sampled points. However, tuning a GP model requires carefully

picking the kernel function and non-convex optimization of parameters [31]. BN

explicitly captures the conditional probabilistic dependencies between variables, and

it enables inverse inference. But learning the BN structure can be challenging and

often requires heuristics to trim down the model selection space. Moreover, the vari-

able discretization has a significant impact on the model complexity and prediction

performance.

The technique is an offline, black-box modeling approach: It concerns only

system-level characteristics and high-level performance metrics; the model does not

capture any runtime operation dynamics. The approach is applicable when it is

reasonable to conjecture that system characteristics that are measured offline (e.g.,

task load, message quality, and operator cognitive factors) can sufficiently explain

all performance metrics. If a system has highly complex internal dynamics, the re-

lationship between the system characteristics and performance is likely to be highly

complex, non-linear, and harder to model. Moreover, some system characteristics

may change over time, e.g., task load, and the offline model does not account for

temporal changes in parameters. The model prediction results can guide high-level

system configurations, but they are probably insufficient to inform low-level real-time

control and/or decision support at the operational level, because the model does not

capture any operational details.
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2.3 Discussion

Designing safe and effective HAI in complex systems requires developing a deep holis-

tic understanding of various aspects including human factors, control engineering,

user interface design, and risk analysis. Plenty of research opportunities exist in

working towards an integrated analytical framework that allows engineers to build,

validate, and use behavior models to uncover useful insights for system design.

The engineering psychology research lay out basic understanding of what types of

issues need to be considered in designing HAI. The insights from psychology studies

and accident investigations generate (often qualitative) guidelines and principals that

can be useful for developing quantitative models for rigorous system analysis. For

example, one of the most important issues that needs to be considered in analyzing

most HAI systems is automation trust.

Previous research on applying formal methods to analyzing HAI have made no-

table progress towards modeling and verification [34, 20], but how to develop indi-

vidualized behavior model and use it in closed-loop analysis with well-conditioned

physical processes remains a largely open problem. HCI research limit the scope to

the interface and do not explicitly include other components of the system in the

models. Most existing work on formally modeling the entire system either concerns

mechanical/electrical system whose dynamics are well-understood [19, 217, 37], or

use abstract environmental models to hide the detailed dynamics of the controlled

process [34].

This dissertation complements existing work on the model-based analysis of HAI

in several aspects. First, our proposed approach considers the end-to-end design

problem from developing behavior model to using behavior model in closed-loop anal-

ysis and generating feedback to improve behaviors and/or automation design. Sec-

ond, we evaluate behavior models by coupling them with models of well-conditioned

physiological processes. Third, we propose a method that allows the automation

agent to validate potentially unreliable information on operator behaviors. Previous
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research on state feedback in HAI mostly concerns the opposite direction of infor-

mation flow: Feedback from automation to humans, where information reliability

may not be a prominent issue as it is machine recorded. As we will describe in

Chapter 5, the information channel from humans to automation can be unreliable

and may compromise safety if automation receives false behavior measurements.
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Chapter 3

Model-Based Analysis of Generic

Behaviors

This chapter considers medical CPS in which user behaviors are “generic”, i.e., the

behaviors are not adapting on-the-fly to physiological variances among different pa-

tients. This type of behavior is common in many in-hospital medical systems, where

caregivers follow established protocols to interact with medical devices in treatment

procedures [58, 163]. The protocols standardize medical practice for treating a

certain patient population. Therefore, it is crucial to validate that a protocol is

“robust”, i.e., it is safe for everyone within the target population despite possible

individual physiological differences.

Hospitals currently design protocols mostly based on literature survey and med-

ical consensus among a local group of physicians [69]. Most notably, clinicians typ-

ically tune the protocol towards the anticipated “average” physiological response

based on their clinical experiences. The problem is that the protocol may not be safe

on those “outlier” subjects who are extremely sensitive or insensitive to treatments.

Furthermore, it is risky to test different protocol designs by repeated experiments on

humans, especially considering that many protocols apply to surgical or critically-ill

patients. There is a critical need for a method to validate the robustness of a protocol
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design without incurring significant life risk.

In this chapter, we propose a model-based analysis framework to evaluate, im-

prove, and verify the robustness of protocol-guided user behaviors in medical CPS.

By applying the framework to a clinical case study, we are able to formally prove that

an enhanced surgical insulin protocol is safe over a virtual patient population that

maps to continuous regions of uncertain physiological parameters and unmeasurable

initial physiological states. To the best of our knowledge, this is the first attempt

towards formally verifying an insulin protocol using the most advanced glucose/in-

sulin metabolism model, which contains unidentifiable parameters and unobservable

states. To address the practical challenge that a patient’s physiological parameters

may change over time, we propose a novel data-driven computational virtual sub-

ject based adaptive technique for ensuring run-time safety using the most advanced

physiological model.

Part of the work described in this chapter has been published in our previous

papers [147, 55].1

The rest of this chapter is organized as follows: Section 3.1 motivates and formu-

lates the problem of modeling and evaluating generic behaviors driven by rule-based

protocols; Section 3.2 describes our approach; Section 3.3 presents a case study in

which we apply the model-based analysis technique to identifying the weaknesses

of an existing protocol, designing an enhancement, formally verifying the safety of

the new protocol design, and ensuring run-time safety in the presence of temporal

physiological variances; Section 3.4 concludes our work in this research thrust

3.1 Problem Description

In current hospital care, clinicians are responsible for taking measurements from

sensing devices (e.g., vital sign monitors) and changing configurations on therapy

1The publishers and/or the copyright agreements grant using any portion of the papers in a
dissertation.
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devices (e.g., infusion pumps). Clinical protocols are standardized procedures that

guide medical practice [58, 163]. Examples include insulin infusion protocols for

glucose level regulation [258], analgesia protocols for pain management [228], se-

dation control protocols [69], and ventilator weaning protocols [89]. Clinicians are

expected to follow those protocols, although deviations can happen due to practical

reasons, e.g., nurses may delay or miss a protocol-specified check point because of

an emergency situation.

Designing a protocol to reliably achieve a clinical goal, particularly when faced

with patient-specific physiologic parameters such as insulin sensitivity is, at best,

challenging and, at worst, harmful [162, 52, 93]. Current clinical protocols are mostly

derived from experience and intuition. They are typically developed by consensus

among local groups of clinicians, often taking into account available resources from

the medical literature review. It is common that different institutions use their own

protocols for the same clinical scenario [69]. However, it is unclear which protocol

design would result in better clinical practice and outcomes because it is neither

feasible nor ethical to repeatedly test all potential variations of a protocol on human

patients.

By consulting healthcare practitioners at the Hospital of the University of Penn-

sylvania and reviewing a number of current clinical protocols for different medical

scenarios including insulin infusion, sedation control, and pain management, we find

that most protocols share a similar rule-based logical structure: They define a set of

clinical metrics to be monitored (e.g., vital signs) and variables that can be controlled

(e.g., infusion rates); the main logic is specified as a set of rules that tell clinicians

when to measure the monitoring variables and how to set control variables accord-

ingly. As an example, a rule in an insulin infusion protocol may be “if the glucose

reading has dropped by 30 mg/dL or less from last measurement (30 minutes ago),

then decrease insulin rate by 2 U/h and do not give any insulin bolus”. This chapter

concerns user behaviors that are driven by those rule-based clinical protocols, which
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we formally define as follows:

Definition 1 A rule-based protocol is a tuple 〈w,y,u, L〉 that consists of four com-

ponents:

• Monitoring variables, denoted as y ∈ Ry, which is a vector of physiological

variables that need to be monitored, defined in the space of Ry.

• Control variables, denoted as u ∈ Ru, which is a vector of control variables

that can be set, defined in the space of Ru. 2

• A set of n rules, denoted as L :=
⋃n
i=1{Mi}, where Mi is the i-th rule

specified as Mi : Gi(y) == True → u = ui. Gi(y) is a function that maps y

to a boolean value. Mi dictates that if Gi(y) is True, then assign the predefined

value ui to u. In addition, L must be consistent and complete. Consistency

requires that ∀y ∈ Ry, ∀i and j ∈ {1, . . . , n},Gi(y) ∧Gj(y) 6= True, i.e., no

more than one rule can be enabled by a measurement y. Completeness requires

that ∀y ∈ Ry, G1(y) ∨ . . . ∨ Gn(y) = True, i.e., a measurement y enables at

least one rule.

• Sampling period, denoted as w. At the beginning of each period, y is sampled

and u is updated according to a rule in L.

The research problem is to evaluate the safety and robustness of behaviors driven

by the rule-based protocols. In the clinical environment, safety objectives are com-

monly defined in terms of keeping the relevant physiological variables within the

target regions. Because a rule-based protocol is supposed to work on the entire

target patient population, it must be robust, i.e., it should maintain safety for every-

one within the target population, regardless of possible inter-subject physiological

variances.

2Here we follow the control system notation convention, where y represents system measure-
ments and u represents control variables.
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3.2 A Model-Based Analysis Framework

In this section, we propose an analytical framework that leverages physiological

models to ensure safety and robustness of behaviors driven by rule-based protocols.

Closed-loop analysis requires precise semantics of the execution of rule-based proto-

cols. Therefore, we start by modeling protocol-driven behaviors as hybrid systems.

The hybrid system behavior model is first evaluated in numerical simulation against

the physiological model with discrete samples of physiological parameters and initial

states. Numerical simulation allows efficient protocol prototyping and is particularly

useful at ruling out unsafe protocol designs. However, because simulation can only

cover finite samples of the physiological parameters and initial states, passing simu-

lation evaluation does not guarantee safety on everyone within the target population

in all possible scenarios. To ensure robust safety, we further evaluate candidate pro-

tocol designs in formal verification, which enables exhaustively checking the entire

state space given ranges of physiological parameters and initial states. Our frame-

work achieves synergy between numerical simulation and formal verification: The

former enables efficient testing and revision of protocol design but does not provide

hard safety guarantees with respect to uncertain physiological parameters and states;

the latter provides robust safety guarantees but is computationally more expensive.

The rest of this section is organized as follows: Section 3.2.1 presents hybrid

system modeling of protocol-driven behaviors; Section 3.2.2 reviews physiological

modeling and the key challenges that are related to using physiological models; Sec-

tion 3.2.3 discusses how we integrate numerical simulation and formal verification to

ensure robustness of protocol-driven behaviors, focusing on addressing the challenges

associated with using physiological models.
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3.2.1 Model Protocol-Driven Generic Behaviors

A hybrid system is a formal model of systems that include both discrete and contin-

uous dynamics [111]. It provides a convenient formalism to model many CPS that

include both discrete behaviors of digital components and continuous dynamics of

physical systems. Modeling, control, and verification of hybrid systems have been

an active research field in the past two decades [166, 79, 142].

A hybrid system is an automaton with discrete states and continuous variables.

The discrete states form a graph structure, in which transitions between the states

are triggered by conditions defined over the continuous variables. Each discrete state

is associated with a “flow” function, which is an equation of the continuous variables

and their first derivatives: While the hybrid system is at a certain discrete state, the

continuous variables evolve along a differential curve as defined by the flow function.

A formal definition of a hybrid system is given as follows [112, 10]:

Definition 2 A hybrid system is a tuple H = 〈X ,Q,Xinit,Xinv,F , T 〉:

• X represents the vector of continuous variables.

• Q denotes the vector of discrete states.

• Xinit ∈ RX specifies an initial condition to each discrete state. H may start

from a discrete state whose initial condition is true.

• F assigns a flow function to each discrete state. A flow function is a predicate

over X and its first derivative Ẋ . While H stays at a discrete state, X evolves

along the differential curve defined by the flow function.

• Xinv maps each discrete state to an invariant condition. An invariant condition

is a predicate over X that must remain true while H stays at the discrete state.

• T maps each of the transitions between Q to a guard condition. A guard con-

dition is a predicate over X ⋃X ′, where X ′ is the updated value of X after a

transition is taken.
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By Definition 1, a protocol is driven by external measurements sampled at a

certain frequency, i.e., the protocol is a reactive system that needs to be constantly

driven by external inputs. However, note that the coupled system of a protocol and

the corresponding physiological process forms a closed loop that can be modeled as a

hybrid system, i.e., the physiology is driven by control inputs from the protocol, and

as the physiological system evolves, it feeds updated physiological measurements to

the protocol. This section focuses on the part of the hybrid system that describes

protocol-driven behaviors. In the following description of the hybrid system model,

we use an abstract function ẏ = f(y,u) to represent the physiological process that

specifies how outputs y evolve given inputs u.

Note that the actual user behaviors may deviate from the protocol rules. This

may be caused by many practical limitations in healthcare, e.g., clinicians may not

be able to take measurements at exactly the check points defined by the protocol

because they are busy handling emergencies, something that is not uncommon in

operating rooms and intensive care units. To capture such practical deviations, our

behavior model expresses the check point timing variations, i.e., the actual update

action may happen within an uncertain time window around the specified check

point.

Next, we present the hybrid system model of the closed-loop system that con-

sists of behaviors driven by a rule-based protocol 〈w,y,u, L〉 and the physiological

process. The basic idea is to create a hybrid system with one discrete state that

would periodically take self-transitions to update u according to the protocol. Each

protocol rule is mapped to one self-transition. We use a continuous variable t to

model time passage, which gets reset to zero at each self-transition and flows at a

constant rate of 1 in the discrete state. When the automaton stays at the discrete, y

evolves according to the physiological process function f(y,u), and u is only updated

on the self-transitions. Here is a formal definition of our hybrid system model of a

rule-based protocol driven behaviors.
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Definition 3 Given a rule-based protocol 〈w,y,u, L〉 and a physiological process

represented as a function ẏ = f(y,u), the hybrid system model of the closed-loop

system is H = 〈X ,Q,Xinit,Xinv,F , T 〉:

• X = {t,y,u}, where t is the time variable. y and u are defined by the protocol.

• Q = {Q0} is a single discrete state denoted as Q0.

• Xinit(Q0) = True, i.e., the system starts at Q0.

• F(Q0) = {ṫ = 1, ẏ = f(y,u), u̇ = 0}, representing that at Q0, the time vari-

able t progresses at a constant rate, y progresses according to the physiological

process function f(y,u), and control inputs u stay constant because u is only

updated on the transitions, when the protocol is executed.

• Xinv(Q0) = 〈t ≤ w + δ〉, where w is the protocol’s sampling period and δ de-

notes that the actual measurement time may deviate from the specified check

point by at most ±δ.

• T =
⋃n
i=1{Ti}, where Ti denotes the self-transition that corresponds to the i-

th rule: Ti = (t ≥ w − δ ∧ Gi(y) = True
Q0→Q0−−−−→ u = ui ∧ t = 0). The

t ≥ w − δ condition, together with t ≤ w + δ in the invariant Xinv(Q0) would

force one of the self-transitions to happen within the time interval [w−δ, w+δ].

The Q0 → Q0 denotes that all transitions are self-transitions from Q0 to Q0.

The Gi(y) = True condition selects the self-transition that corresponds to the

rule being activated. T basically expresses that within the time interval t ∈
[w − δ, w + δ], the self-transition that corresponds to the activated rule will be

taken, and after the transition, u will be updated according to the enabled rule

and t will be reset to zero.

Note that the physiological process may add additional continuous and discrete

states to the model of the closed-loop system. The hybrid system presented here only
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highlights the behaviors part of the system and uses an abstract function f(y,u) to

represent the entire physiological process. In Section 3.3, we present a case study of

a real closed-loop system in which the physiological process itself also contains both

continuous and discrete dynamics.

3.2.2 Physiological Models

Clinicians and bio-medical engineers have been studying the problem of developing

mathematical models of physiological processes for decades. For example, textbooks

by Cobelli and Carson [50, 62] are good accounts of this subject. Latest advances

in bio-medical engineering have led to high fidelity models of certain physiological

systems. A recent successful example is that the United States Food and Drug Ad-

ministration (FDA) has accepted the Type 1 Diabetes Metabolic Simulator (T1DMS)

as the first software tool that can be used to substitute animal test in pre-clinical

trials of glucose control algorithms [151]. With physiological models, it is possible to

analyze the clinical outcomes of protocol-driven behaviors in risk-free model-based

evaluation.

The most commonly used technique in describing first-principle physiological

processes is “compartmental modeling”. Physiological phenomena typically involve

distribution and interaction of substances (e.g., a medication or hormone) between

different parts of the body, which can be described by compartmental models [50,

65, 62, 64, 124, 100]. A compartmental model is typically a set of differential/d-

ifference equations in which the state variables represent the quantities of the tar-

get substances within each compartment and the equations represent the flows of

the substances between the compartments. The rates at which substances enter or

leave compartments are represented by model parameters. Since most compartmen-

tal models are derived from first-principle physiology, the parameters usually have

actual physiological meanings: For example, a parameter may represent how fast

insulin moves from tissue to blood.
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There are several key challenges in using physiological models to evaluate operator

behaviors by closed-loop analysis:

1. Unidentifiable physiological parameters: The parameters in compart-

mental models represent the generation, transportation, and bio-chemical in-

teraction rates of substances at certain parts of the body, and in many cases,

the parameters are not identifiable by standard medical devices. For example,

one of the parameters in an advanced glucose/insulin model [187] represents

the insulin exchange rates between liver and plasma, which are not measurable

in current hospital settings.

2. Unobservable initial physiological states: The state variables in compart-

mental models represent the quantities of substances. Some body compart-

ments are hard-to-reach by current sensing technologies, and the correspond-

ing states are therefore not measurable. One example from the glucose/insulin

model is the total mass of insulin in interstitial fluids, which cannot be directly

measured by available sensors. A major implication for analysis is that the

initial states of physiological models may be partially unknown. For example,

a surgical glucose model [55] contains seven states, out of which only one (i.e.,

the plasma glucose concentration) is measurable during surgeries. How the

unmeasurable states are initialized can have a profound impact on the analysis

results: For example, the glucose trajectories of two model instances may turn

out completely different when both start at the same observable glucose level

but differ in the unobservable initial quantities of insulin in the body.

3. Non-linear dynamics: Some physiological models contain non-linear terms

that represent complex interactions between physiological states. The non-

linearity may significantly increase the difficulty of analysis and formal verifi-

cation.
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3.2.3 Closed-Loop Safety Analysis

To ensure robustness of protocol-driven behaviors, we integrate hybrid system be-

havior models with physiological models in closed-loop analysis and verify the safety

requirements, e.g., whether the relevant physiological metrics are kept within the safe

zone. To address the aforementioned challenges associated with using physiological

models, we design an analysis process that leverages clinical knowledge about phys-

iological parameters and states. Although some physiological parameters and states

can not be feasibly measured on every patient in the hospital, their ranges of val-

ues and statistical distributions over a particular patient population may be derived

from clinical studies [106, 76, 155, 138, 158]. The information on the distributions of

parameters enables generating “virtual subjects”, each of which is an instantiation

of model parameters [75]. A physiological model, together with its virtual subjects,

constitute a testbed for “virtual” clinical trials (also called in silico trials in some

literature) to evaluate treatment methods.

Model-based virtual clinical trials have been used to test therapy strategies in a

number of medical applications, e.g., cardiac pacemakers [129], glucose control [63],

and pain management [14]. The analysis techniques can be broadly categorized into

two classes: numerical simulation and formal verification.

Numerical simulation is widely used in model-based testing of clinical proce-

dures [183, 277]. Many simulation tools exist, e.g., Matlab/Simulink. The main

limitation is that simulation can only sample finite points in the space of parame-

ters and initial states. Therefore, passing simulation evaluation does not guarantee

safety over the entire population that maps to the continuous regions in the space

of physiological parameters and initial states.

Formal verification is the process of checking whether a system satisfies given

properties. Model checking is an automatic formal verification technique [60]. Fig-

ure 3.1 shows the general workflow of model checking. The system is described in

a formal modeling language, e.g., PROMELA [115] or timed automata [11]. The
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Figure 3.1: The general workflow of model checking.

specifications include a set of properties written in logical formulas, e.g., the Linear

Temporal Logic (LTL) [262]. A model checker, e.g., SPIN [115] or UPPAAL [160],

exhaustively checks the properties along all possible execution paths of the system

model, and it either generates a counterexample with a particular execution path

that violates some of the properties or reports that all properties are satisfied. The

counter example can guide revisions of the system design. A practical challenge in

model checking stems from the state space explosion problem: The size of the state

space grows exponentially with the size of the system [196]. Numerous techniques

have been proposed to tackle this challenge [9, 141].

Model checking has emerged as a powerful technique with successful applications

to many practical problems [24] and has recently been applied to medical applica-

tions [130, 129, 14, 57]. A significant portion of existing medical device verification

work focuses on verifying cardiac pacemakers [130, 129, 57], where physiological mod-

els are represented as linear timing functions with observable states. Arney et al.

propose a technique to simulate and verify patient controlled analgesia algorithms

using a linear, observable physiological model. A key design assumption in their
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Figure 3.2: An iterative model-based analysis framework to evaluate, improve,
and verify protocol-driven behaviors.

approach is that a “fail safe” mode exists, i.e., the system can always fall back to

a pre-determined safe action such as stopping infusion. This assumption does not

universally apply to all physiological systems. Verifying physiological systems that

contain nonlinear dynamics, uncertain parameters and initiate states with no default

safe mode remains a challenging problem.

We propose an iterative model-based analysis approach to evaluate, improve,

and verify the safety of protocol-driven behaviors using physiological models that

may contain nonlinearities, unidentifiable parameters, and unknown initial states.

Figure 3.2 presents an overview of the framework. Our approach integrates numerical
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simulation and formal verification by harnessing their relative strengths in analyzing

physiological models. In our framework, a rule-based protocol is first evaluated in

simulation on a set of virtual subjects. Simulation allows fast prototyping, and it is

particularly useful at efficiently ruling out improper protocol designs during the early

development stages: A protocol that is unsafe even for sample virtual subjects during

finite-time simulation is unlike to be safe to be tested on humans. If a protocol fails

simulation test, the simulated trajectories may provide insights into how the protocol

design can be improved. After the simulation test, successful candidate protocols are

further evaluated in formal verification. The key point is that verification provides

safety guarantees with respect to model uncertainties: If a protocol is safe on certain

regions of parameters and initial states, then it is safe for any patient that maps

into those regions, even though the exact individual parameters and initial states

may not be identifiable. The cost is that formal verification can be much more

computationally expensive than simulation.

3.3 An Inpatient Glucose Control Case Study

In this section, we apply the proposed model-based framework to a clinical case

study. This section is organized as follows: Section 3.3.1 introduces the application

background and explains why model-based analysis is needed; Section 3.3.2 summa-

rizes the contributions of this case study; Section 3.3.3 describes modeling a current

Intra-Operative Glucose Control (IOGC) protocol and validating the model using a

clinical dataset; in Section 3.3.4, we evaluate the IOGC model by simulation, iden-

tify its weaknesses, propose an improved protocol design, and validate that the new

protocol overcomes the weaknesses of the current one while preserving its strengths

in simulation-based virtual clinical trials; Section 3.3.5 formally verifies the safety

of the new IOGC protocol design using an FDA-accepted physiological model; Sec-

tion 3.3.6 proposes a novel technique for predictive safety monitoring in the presence
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of intra-subject run-time physiological variances.

3.3.1 Motivation

For the more than 29 million Americans who have diabetes, the risk of death is nearly

twice as high when compared to age-matched non-diabetic individuals [104, 119, 101,

281]. Those suffering from this disease, especially Type 1 diabetics, depend on insulin

self-injections to manage their blood glucose level. As such, glucose regulation is a

safety-critical control task: Too much insulin causes life-threatening hypoglycemia

(low glucose levels), and too little insulin causes hyperglycemia (high glucose levels),

a condition that has severe adverse outcomes such as blindness and nerve damage.

Hyperglycemia, unless iatrogenic, typically represents a secondary manifestation

(i.e., epiphenomenon) of myriad physiologic, pharmacologic and/or metabolic de-

rangements. While glucose is essential to life, in excess it is associated with increased

cardiovascular morbidity and mortality in both diabetics and non-diabetics [153,

190]. It is therefore not surprising that the prevalence of diabetes mellitus and its

associated complications among hospitalized patients are increasing [61, 264, 176].

While outpatient management of hyperglycemia has historically been the primary

focus in this population, and has unquestionably reduced diabetic morbidity and

mortality, mounting evidence suggests that inpatient glycemic control may impart a

similar benefit [67, 102, 253, 18, 44, 193, 209, 207, 259].

More recent investigations have begun focusing efforts towards reducing hyper-

glycemia specifically among critically ill and perioperative patients. The primary

genesis of this approach stems from a 2001 randomized, controlled study that re-

ported significant decreases in ICU and hospital mortality when blood glucose levels

(BGLs) were maintained between 80 – 100 mg/dL compared to a less aggressive level

of 180 – 200 mg/dL [261]. Subsequent enthusiasm for aggressive glucose manage-

ment, however, has tempered as multiple groups attempting to replicate those results

were unable to show comparable reductions in morbidity and mortality and have
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consistently observed high rates of hypoglycemia [229, 92, 43, 13, 78, 30]. Whether

the lack of mortality benefit in these studies can be directly attributed to the high

rates of hypoglycemia is uncertain. Many groups that have effectively maintained

euglycemia while avoiding hypoglycemia have demonstrated improved outcomes in

those treated more aggressively with insulin [161, 189, 173, 256]. Furthermore, wide

and frequent oscillations in plasma glucose (so called, glycemic variability) appear

to be as, if not more, important as absolute glucose values in critically ill patients

and may compound any deleterious effects of hyperglycemia [87, 8, 83, 154].

While the appropriate target of plasma glucose in critically ill or perioperative

patients remains elusive, there is general consensus with regards to three points:

1) Profound and sustained hyperglycemia in critically ill patients is likely harmful;

2) Isolated or sustained hypoglycemia in critically ill patients is likely harmful; 3)

Wide and frequent variations in serum glucose values are likely harmful. As these

three goals, nebulous as they may be, appear to be recurrent and unifying themes,

attention must be directed towards methods, protocols and/or devices that can aid

in achieving all three. Until accurate and reliable continuous glucose monitors are

available for critically ill patients, we remain limited in our ability to measure, re-

spond, and predict future glucose values. Protocols that take into account prior

glucose readings and rates of change have been more successful but are far from

foolproof [40, 39, 216, 198, 249, 12, 116].

Designing a protocol to reliably achieve glucose control, particularly when faced

with frequent changes in physiologic parameters such as insulin sensitivity (as is

seen perioperatively) is extremely challenging [162, 52, 93]. Current protocols are

mostly derived from experience and intuition and are developed by local consensus.

Unlike many engineering systems (e.g., electronic circuits and automobiles), where

first-principle plant models can be derived from classical physics, it is extremely

difficult to identify a mathematical model that would accurately predict the glucose-

insulin dynamics of an individual with only limited measurable clinical data [114].
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Furthermore, it is neither feasible nor ethical to test all potential insulin protocols

in human patients.

While attempts to model glucose metabolism using computer simulation were

first proposed in the 1960s, newer simulations that incorporate data-driven plant

modeling of glucose metabolism now exist and are able to more accurately mimic

glucose regulation in diabetic patients [118, 53, 126]. Repeated evaluations of nu-

merous insulin infusion protocols, all slightly different, on live patients are neither

realistic nor feasible. In-silico evaluation and simulation is a well accepted and val-

idated means to examine a large number of iterative changes and is only recently

being used to evaluate insulin infusion protocols [170].

3.3.2 Contributions

Using the proposed iterative analysis approach, we identify the weaknesses of a cur-

rent intraoperative glycemic control (IOGC) protocol and design a new protocol that

overcomes the weaknesses in simulation-based virtual clinical trials. We then for-

mally verify the safety of the new protocol using a recently developed hybrid system

model checker and demonstrate that the new protocol is safe over continuous spaces

of parameters and initial states on an FDA-accepted advanced glucose metabolism

model, the T1DMS model [73]. The safety requirements for insulin protocols are

from established clinical consensus: Hypoglycemia (usually defined as glucose level

less than 70 mg/dL [15]) can be life-threatening and severe hyperglycemia (usually

defined as glucose level in the high range of more than 200 mg/dL [260]) have long-

term complications. To the best of our knowledge, this is the first work on formally

verifying insulin protocols using the T1DMS model that is initiated to continuous

uncertain ranges of parameters and initial states. The verification results provide

stronger safety evidence than other existing work along this line of research that

rely on simulation over finite samples of virtual subjects [277, 182]. To further cope

with the practical challenge that a patient’s physiological parameters may experience
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transient fluctuations during surgery, we propose a novel run-time predictive safety

monitoring technique that leverages a maximal model coupled with online training

of a computational virtual subject (CVS) set. To the best of our knowledge, the

idea of using CVS for data-driven adaptive safety monitoring has not been explored

before.

3.3.3 Protocol Modeling and Validation

By collaborating with clinicians at the Hospital of the University of Pennsylvania, we

accessed and investigated a paper-based Insulin Infusion Protocol (referred to as IIP

in the rest of the writing) that is currently used for cardiac bypass surgery patients.

The IIP (as shown in Figure 3.3) consists of two parts: 1) a table that categorizes

the BGL into a finite number of intervals and, based upon the current interval, sets

a fixed intravenous bolus and infusion rate; 2) a set of infusion rate adjustment rules

that take into account the relative change in BGL with respect to the previous value

(Figure 3.3). The target BGL defined by the IIP is 70 – 130 mg/dL.

The IIP conforms to the rule-based protocol 〈w,y,u, L〉 in Definition 1. The

sampling period w is 30 minutes. At the k-th sample point, it has two monitoring

variables y = [y(k), y(k − 1)]: Current BG, y(k), and the previous BG, y(k − 1).

There are two control variables u = [ub(k), uc(k)]: Insulin bolus ub(k) and insulin

infusion rate uc(k). We apply the hybrid system model in Definition 3 to representing

the clinicians’ behaviors as guided by the IIP.

Definition 4 Given the IIP 〈w,y,u, L〉 (Figure 3.3) and the glucose physiological

process represented as a function ẏ = f(y,u), the hybrid system model of the closed-

loop system is H = 〈X ,Q,Xinit,Xinv,F , T 〉:

• X = {t,y,u}.

• Q = {Q0}.
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!
Target Glucose: 70 - 130 mg/dL  

** Glucose must be checked every 30 minutes ** 
                          * INSULIN Bolus / Infusion Protocol *  
Initiation of Protocol             
Initiate protocol if any one of the following criteria 
exist: 
 

• Previous diagnosis of diabetes mellitus 
• Any blood glucose (BG) > 120 mg/dL 
• Any patient arriving to operating room 

on I.V. Insulin 
• Anticipated administration of steroids 
• Planned circulatory arrest 

 
           

 
INSULIN TITRATION PROTOCOL (start after INITIATING insulin infusion) 

* If BG unchanged- repeat action on Infusion Protocol * 
 

 

Blood Glucose 
(mg/dL) 

Insulin Bolus  (U)* 
(No bolus pre-CPB) 

Insulin Infusion (U/h) 

< 100 0 0 
100 – 110 0 2 
111 - 130 0 4 
131 – 150 2 4 
151 – 170 4 6 
171 – 190 4 8 
191 – 210 6 8 
211 – 230 8 10 
231 – 250 10 10 
251 – 300 12 14 

> 300 15 15 

Blood Glucose 
(mg/dL) 

Action 

< 60 25 mL of D50 I.V. AND STOP ALL INSULIN 
60 – 99 • If BG ↓ by 30 mg/dL or less from last BG, stop infusion 

• If BG ↓ by greater than 30 mg/dL from last BG, 25 mL of D50 I.V. 
 
• If BG ↑ from last BG, NO infusion and NO bolus 

100 – 150 BG Less than Prior 
• If BG ↓ by 30 mg/dL or less from last BG,  ↓ infusion by 2 U/h and NO bolus 
• If BG ↓ by greater than 30 mg/dL from last BG, ↓ infusion by 4 U/h and NO bolus 

BG Greater than Prior 
• If BG ↑ by 10 mg/dL or less from last BG, continue infusion with ½ bolus 
• If BG ↑ by greater than 10 mg/dL from last BG, continue per infusion protocol 

151 – 170 BG Less than Prior 
• If BG ↓ by 30 mg/dL or less from last BG, continue per infusion protocol, NO bolus 
• If BG ↓ by greater than 30 mg/dL, start ½ recommended infusion, NO bolus 

BG Greater than Prior 
• If BG ↑ by 10 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↑ by greater than 10 mg/dL from last BG, continue per infusion protocol 

171 – 200 BG Less than Prior 
• If BG ↓ by 30 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↓ by greater than 30 mg/dL, continue per infusion protocol, NO bolus 

BG Greater than Prior 
• If BG ↑ by 10 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↑ by greater than 10 mg/dL from last BG, continue per infusion protocol 

201 – 250 BG Less than Prior 
• If BG ↓ by 30 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↓ by greater than 30 mg/dL, continue per infusion protocol, NO bolus 

BG Greater than Prior 
• If BG ↑ by 10 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↑ by greater than 10 mg/dL from last BG, continue per infusion protocol 

251 – 300 BG Less than Prior 
• If BG ↓ by 30 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↓ by greater than 30 mg/dL, continue per infusion protocol, NO bolus 

BG Greater than Prior 
• If BG ↑ by 10 mg/dL or less from last BG, continue per infusion protocol with ½ bolus 
• If BG ↑ by greater than 10 mg/dL from last BG, continue per infusion protocol 

> 300 Continue per infusion protocol 

Figure 3.3: The insulin infusion protocol. Abbreviations: BG, Blood glucose;
CPB, Cardiopulmonary bypass; D50, 50 percent Dextrose (50 gram/100 mL).

• Xinit(Q0) = True.
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• F(Q0) = {ṫ = 1, ẏ = f(y,u), u̇ = 0}.

• Xinv(Q0) = 〈t ≤ w + δ〉.

• T =
⋃n
i=1{Ti}, where Ti denotes the self-transition that corresponds to the i-th

rule: Ti = (t ≥ w − δ ∧ Gi(y) = True
Q0→Q0−−−−→ u = ui ∧ t = 0). Each rule in

the IIP is encoded as a self-transition, e.g., the first rule in the “BG in 60-90

mg/dL” box is encoded as Ti = (t ≥ 30− δ∧ y(k) ∈ [60, 99]∧ y(k)− y(k− 1) ≤
30

Q0→Q0−−−−→ ub(k) = 0 ∧ uc(k) = 0 ∧ t = 0).

To validate the behavior model, we simulate it using an FDA-accepted high-

fidelity physiological model and compare the simulated glucose measurements with

a clinical glucose dataset that is collected from patients who were on IIP. After

obtaining the acknowledgment from the University of Pennsylvania Institutional Re-

view Board (IRB), blood glucose measurements were retrospectively evaluated on 57

type 1 diabetic patients controlled with the IIP during the period of cardiopulmonary

bypass.

We use the T1DM Simulator [75], which is developed in Matlab/Simulink®. The

patient glucose model that it utilizes is based on a high-dimensional, non-linear dif-

ferential equation model [73, 151]. The T1DM Simulator (academic version) comes

with 10 pre-identified Type 1 Diabetic “virtual” adult subjects. Each virtual sub-

ject is a realization of the patient-specific parameters that are used by the simulation

model (e.g., body weight and insulin/glucose transportation rates between different

body compartments). Many of these parameters cannot be directly identified from

the clinical data that hospitals currently have (e.g., total insulin/glucose distribution

volumes). The virtual population in the software was identified based on laboratory

data collected from a group of individuals who participated in a triple-tracer meal

experiment [151]: The meals are marked with isotope tracers so that the glucose/in-

sulin fluxes in the body can be measured. In 2008, the T1DM Simulator received

FDA approval for computer simulations that could be substituted for animal trials
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in pre-clinical testing and has become an accepted method of evaluation for studies

in patients with type 1 diabetes mellitus [225]. The simulator is a Simulink® model

file within MATLAB® that includes the patient model, glucose sensor and insulin

pump models, and an interface for user-defined controllers [221]. We implement the

hybrid system behavior model in Simulink using the Stateflow® toolbox.

Using the T1DMS model, we simulate the protocol-based behavior model on 10

virtual patients. The experiments are repeated with different initial BGL values

to more thoroughly investigate the protocol’s performance. Blood glucose measure-

ments are taken every 30 minutes (as defined in the protocol). For each real patient’s

measured BGL trajectory, we run closed-loop simulation on the 10 virtual subjects

starting from the same initial BGL and pick the virtual subject whose simulated

BGL trajectory best matches the measured BGLs, i.e., had the lowest maximum de-

viation. Simulated BGL data is then compared with the actual BGL data measured.

We validate the behavior model by comparing the key metrics of the simulated

BGLs and the real patients’ BGLs. In addition to comparing the mean and stan-

dard deviation of the per-subject BGL values, we calculate the normalized glucose

lability index (NGLI, [mg/dL]2/hour2), akin to the weekly glucose lability index

(GLI) [237]. The GLI
∑N(of 1 week)

i=1
(Glui+1−Glui)2

Ti+1−Ti is a measure of the weekly sum of

the rate of change of BGL, where Glui is the i-th glucose reading (mg/dL) taken at

time Ti. Because the length of surgery is different for each patient, the GLI must

be normalized to the total length of the measurement time, TN − T1, where N is the

total number of glucose values obtained for the patient (dependent on the length of

surgery), TN is the final time of the measurement period and T1 is the initial time.

We define this normalized metric as the NGLI. The NGLI was thus calculated as

follows:

NGLI =

∑N
i=1

(Glui+1−Glui)2
Ti+1−Ti

TN − T1
A higher NGLI implies that the BGL trajectory exhibits more variability.

Table 3.1 presents the summative data for validation of the virtual subjects.
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Table 3.1: Comparison of the effect of IIP on BGL in 10 virtual patients in-
silico with those of IIP on BGL in real patients. Abbreviations: IIP, Insulin
infusion protocol; STD, standard deviation; BGL, blood glucose level; NGLI,
normalized glucose lability index; NS, not significant. Mean values were com-
pared via two-tailed unpaired t-test.

Real Patients
(n = 57)

Virtual Patients
(n = 10)

p

Average per-subject
Mean STD of BGL (mg/dL)

130 ± 16.0 114 ± 15.3 0.0047

Average per-subject NGLI
([mg/dL]2/hr2)

1775 1782 NS

This represents the effect of the IIP on the virtual patients compared with the

retrospectively observed data in the actual 57 patients. Of note, the T1DM Simulator

does not and cannot account for all parameters, both in-vivo (i.e., time varying

insulin sensitivity) and ex-vivo (i.e., the effect of cardiopulmonary bypass). However,

as seen in Table 3.1, the standard deviations of BGL values and NGLIs of the two

groups (virtual and real) are similar. Thus, the virtual population is able to closely

reproduce the BGL variability observed in the real data.

While the standard deviations and NGLIs are quite similar, the per-subject means

in the two populations are significantly different. We believe this is due to several

reasons. First, the initial physiological states of the two populations are possibly

mismatched, due to the unobservable physiological states challenge described in Sec-

tion 3.2.2. Each virtual patient needs an initial configuration that includes all phys-

iological states at simulation time zero, which defines the initial condition for the

differential equations that describe the patient model. Most of these physiological

states are not directly measurable (i.e., the total mass of glucose and insulin in dif-

ferent compartments). In our experiments, these physiological variables were set to

be started in a stable state. Mathematically this means that the initial conditions

of the differential equations are solved by setting all derivatives to zero. However,

such exquisite homeostasis is unlikely to be present in a real patient at the start of

surgery. An additional reason for the observed mean inter-subject variability is that
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we have a limited quantity of real population data from which we could draw conclu-

sions. Intraoperatively, the BGL was measured at a relatively low frequency (every

30 minutes), and therefore, for each individual patient, there are usually fewer than

10 BGL readings over the entire surgery. If the initial states of the two populations

are mismatched, the virtual population may not be able to converge to the state of

the real patients within such limited time and with such few measurements. Further-

more, while the IIP dictates measuring the BGL every 30 minutes, the reality is that

sampling unlikely occurred exactly every 30 minutes in our actual patient popula-

tion. Finally, we use a relatively small group size for our virtual patient population.

The “best match” for each patient could only be chosen from 10 virtual subjects and

may not include a good match for each real patient. This would explain why the

population standard deviation and NGLI match better than individual data.

3.3.4 Protocol Evaluation and Enhancement by Simulation

When evaluating the behavior model (see Definition 4) on the in-silico population,

the simulation time length for each in silico experiment is 24 hours. While the typical

cardiac surgical procedure usually takes only 3 – 4 hours, running the simulation for

longer periods revealed the “stable” control pattern. A pattern typical of all con-

trollers is an initial variability around the set target before stability. It is essential to

evaluate for an extended period to ensure prolonged stability. Each BGL trajectory

was then divided into two epochs: 0 – 5 hours (“initial” phase) and 12 – 24 hours

(“oscillating” phase). By adjusting the initial BGL in all 10 virtual patients, we

evaluate the efficacy of the IIP.

Key metrics of the simulated BGL trajectories on the 10 virtual subjects in

response to the IIP are shown in Table 3.2. For each initial BGL, a simulation run

generates 10 BGL trajectories (from 10 virtual subjects) and metrics are reported

for the initial (0 – 5 hours) phase and the oscillating (12 – 24 hours) phase. This

data illustrates that during the oscillating phase, the IIP is able to keep most BGLs
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Table 3.2: Key metrics of simulated BGL controlled by the IIP in
virtual patients (n=10)

Simulated BGL (0 – 5h)

Init BGL Mean BGL STD of BGL NGLI 70 – 1302 > 1302 < 702 Min BGL

(mg/dL) (mg/dL)1 (mg/dL)1 ([mg/dL]2/h2)1 (mg/dL)1

70 86[80,92] 15[9,18] 411[55,1533] 99%[90%,100%] 0%[0%,0%] 1%[0%,10%] 70[66,70]
80 93[89,98] 12[9,16] 286[48,1253] 99%[90%,100%] 0%[0%,0%] 1%[0%,10%] 78[63,80]
90 99[97,102] 8[5,19] 216[16,915] 99%[90%,100%] 1%[0%,10%] 0%[0%,0%] 88[78,90]
100 98[88,101] 7[2,15] 318[9,1400] 99%[90%,100%] 0%[0%,0%] 1%[0%,10%] 89[68,98]
110 104[97,107] 6[2,16] 388[10,1781] 99%[90%,100%] 0%[0%,0%] 1%[0%,10%] 95[69,105]
120 102[91,111] 12[5,22] 789[24,3044] 95%[80%,100%] 0%[0%,0%] 5%[0%,20%] 85[60,106]
130 107[96,119] 14[6,25] 928[37,3278] 97%[80%,100%] 0%[0%,0%] 3%[0%,20%] 90[58,112]
140 104[91,117] 17[11,28] 1314[112,4226] 84%[60%,90%] 11%[10%,20%] 5%[0%,30%] 85[53,106]
150 107[93,125] 20[12,31] 1719[129,5728] 81%[60%,90%] 14%[10%,20%] 5%[0%,30%] 87[55,113]
160 101[85,113] 26[20,36] 2734[415,7501] 80%[50%,90%] 12%[10%,20%] 8%[0%,40%] 74[41,98]
170 103[87,115] 29[22,38] 2992[605,8214] 79%[50%,90%] 14%[10%,20%] 7%[0%,40%] 75[42,99]
180 103[88,112] 34[27,41] 3633[778,8644] 73%[50%,80%] 17%[10%,30%] 10%[0%,40%] 70[38,90]
190 106[89,119] 36[30,43] 3984[860,9464] 74%[50%,80%] 17%[10%,30%] 9%[0%,40%] 72[39,95]
200 105[89,130] 39[31,48] 5310[966,11978] 71%[50%,80%] 17%[10%,30%] 12%[0%,40%] 69[32,108]
210 106[91,118] 43[36,50] 5829[1435,13084] 71%[50%,80%] 17%[10%,30%] 12%[0%,40%] 67[33,94]
220 101[89,115] 49[40,56] 7301[2065,15537] 65%[40%,80%] 17%[10%,30%] 18%[0%,40%] 57[26,85]
230 105[92,117] 51[43,59] 8207[2243,16927] 69%[50%,80%] 17%[10%,30%] 14%[0%,40%] 60[27,88]
240 102[89,117] 55[46,62] 9286[2788,18936] 63%[40%,80%] 17%[10%,30%] 20%[0%,50%] 56[24,84]
250 105[91,121] 58[49,65] 10204[3010,21115] 63%[40%,80%] 17%[10%,30%] 20%[0%,50%] 57[24,87]

Simulated BGL (12 – 24h)
70 104[91,108] 10[4,29] 882[19,5088] 94%[58%,100%] 2%[0%,17%] 4%[0%,25%] 88[60,101]
80 104[91,108] 10[2,27] 878[9,5083] 92%[38%,100%] 2%[0%,21%] 6%[0%,42%] 89[64,104]
90 104[92,108] 10[1,30] 877[4,5045] 94%[54%,100%] 2%[0%,21%] 4%[0%,25%] 87[60,105]
100 104[91,109] 10[1,31] 927[4,5782] 92%[42%,100%] 2%[0%,21%] 6%[0%,38%] 89[59,106]
110 104[91,111] 10[3,31] 951[12,5707] 93%[42%,100%] 2%[0%,21%] 5%[0%,38%] 87[59,100]
120 104[89,109] 10[1,29] 889[8,5030] 93%[54%,100%] 2%[0%,21%] 5%[0%,25%] 88[59,105]
130 104[89,109] 10[2,30] 879[3,4997] 93%[46%,100%] 2%[0%,21%] 5%[0%,33%] 89[59,106]
140 104[94,109] 10[2,29] 903[10,5411] 94%[50%,100%] 2%[0%,21%] 4%[0%,29%] 89[59,101]
150 104[91,111] 10[2,31] 962[4,5690] 92%[42%,100%] 2%[0%,21%] 6%[0%,38%] 89[59,103]
160 104[91,110] 10[1,29] 921[4,5441] 93%[50%,100%] 2%[0%,21%] 5%[0%,29%] 89[59,106]
170 104[91,109] 10[2,29] 901[9,5410] 93%[50%,100%] 2%[0%,21%] 5%[0%,29%] 89[59,105]
180 106[97,109] 10[2,29] 984[8,5315] 95%[54%,100%] 2%[0%,21%] 3%[0%,25%] 89[59,104]
190 105[96,110] 10[2,32] 1049[15,5867] 94%[46%,100%] 2%[0%,21%] 4%[0%,33%] 89[59,105]
200 104[90,108] 10[2,32] 972[12,5804] 93%[46%,100%] 2%[0%,21%] 5%[0%,33%] 88[58,103]
210 104[90,108] 10[2,32] 954[8,5767] 93%[46%,100%] 2%[0%,21%] 5%[0%,33%] 89[58,105]
220 105[95,109] 9[2,28] 868[10,4954] 95%[63%,100%] 1%[0%,13%] 3%[0%,25%] 89[58,106]
230 105[95,108] 10[1,28] 874[2,4967] 95%[63%,100%] 1%[0%,13%] 3%[0%,25%] 89[58,107]
240 105[91,109] 9[2,27] 869[13,5005] 94%[63%,100%] 2%[0%,17%] 4%[0%,21%] 91[58,105]
250 105[92,109] 9[1,27] 849[6,5005] 95%[63%,100%] 2%[0%,17%] 4%[0%,21%] 90[58,105]

All data are presented on a per-trajectory basis. Each row represents a starting BGL value and
data from 10 trajectories (each virtual patient). 1Data represent Mean[Minimum, Maximum]. Tar-
get range for IIP was 70 – 130 mg/dL. 2Values represent Mean % [minimum %, maximum %] BGL
within stated range for each trajectory. Abbreviations: BGL, blood glucose level; STD, standard
deviation; NGLI, normalized glucose liability index; Min, minimum BGL. Example: when initial
BGL is 70 mg/dL and simulation is run using IIP on the 10 virtual patients, the mean value for
the mean BGL of each trajectory (virtual patient) was 86 mg/dL. The virtual patient with the
lowest mean had a mean BGL of 80 mg/dL and the trajectory with the highest mean had a mean
of 92 mg/dL. Similar interpretations can be made for the STD BGL, NGLI and Min. Within this
same trajectory, the mean % of BGLs that were within target was 99%. At the lowest end, 90% of
the BGLs were within target and at the highest end 100% of the BGLs were within target. Similar
interpretations can be made for the > 130 and < 70 mg/dL ranges.

within the target range (70 – 130 mg/dL) for most subjects. Interestingly, given

that the minimum of in-target percentage during this phase is less than 60% in

most runs, it is also apparent that there exist subjects whose BGL’s do not track

the target well. On the contrary, in the initial phase, the quality of target tracking

with IIP is very dependent on the initial BGL. However, when the initial BGL is

high, the number of in-target BGLs decrease and the number of below-target (< 70
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Figure 2.  Proportional-Derivative (PD) Insulin Protocol 

BGL (n) (mg/dL) Action 

≤ 60 Give 25 mL D50 

60 - 300 Rate (U/hr) = max(0, Kp[BGL(n) – Target] + 
KD[BGL(n) – BGL(n-1)] + RB) 

 
IF [BGL(n) – BGL(n-1)] < -30 AND BGL(n) < 100 

THEN  
Rate= 0 and give [(BGL(n-1) – BGL(n))x 0.2] mL D50 

> 300 Rate (U/hr) = 15 and give 15 U Insulin bolus 

 

Figure 3.4: A Proportional-Derivative Protocol for controlling blood glucose
intraoperatively. Abbreviations: BGL Blood glucose level; U Units; D50
50 percent Dextrose (50 g/100 mL); BGL(n) current blood glucose reading;
BGL(n-1) previous blood glucose reading; KP Proportional gain (U/hr per
mg/dL; after tuning= 0.05); KD Derivative gain (U/hr per mg/dL; after tun-
ing=0.06); Target Blood glucose target (set to 100 mg/dL); RB Basal insulin
rate (U/hr; after tuning= 1.0).

mg/dL) BGLs increase significantly. This is typical of many currently used insulin

infusion protocols and results from the “overshooting” phenomenon. That is, most

protocols start with a high dose of insulin bolus and infusion when the initial BGL is

high, resulting in the subsequent BGL going below the target range. The resultant

hypoglycemia is caused by two primary factors: 1) the overshooting during the initial

phase, and 2) extreme oscillation in the oscillating phase. In the initial phase, when

the initial BGL is greater than 130 mg/dL, overshooting causes a significant percent

(as high as 50%) of low BGL readings. In the oscillating phase, when considering

out-of-target BGL readings, there are more low BGL readings (as high as 42%)

than high BGL readings. Thus, even when the control pattern stabilizes, the risk of

hypoglycemia remains significant with the IIP for some subjects.

After evaluating the weaknesses and strengths of the IIP in silico, we design a

new Proportional-Derivative Protocol (PDP), as described in Figure 3.4. The PDP

is designed so that the sampling period would be the same as the IIP (30 minutes)

and only the calculation method of insulin and dextrose dose would change. Similar

to the IIP, the PDP only makes use of the current and previous BGL readings so

that caregivers do not have to collect any additional information to implement the
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PDP in the real clinical environment. For safety purposes, the PDP retains the

same fixed actions of the IIP if and when the BGL reaches an extreme (e.g., BGL

< 60 mg/dL or BGL > 300 mg/dL). The critical part of PDP is that when the

BGL is in the control zone (60 – 300 mg/dL), the intravenous insulin infusion rate is

calculated and changed in response to a proportional-derivative law, where KP , KD,

Target, and RB are the proportional gain (U/hr per mg/dL), derivative gain (U/hr

per mg/dL), target value (mg/dL), and basal insulin rate (U/hr), respectively. Since

one cannot administer “negative” insulin, when the rate calculated by the PD law is

less than zero, we set the rate to zero. Additionally, if BGL drops too fast (defined as

BGL(n)−BGL(n−1) < −30) and the current BGL(n) is already below 100 mg/dL,

we stop the insulin infusion and give intravenous dextrose to counteract impending

hypoglycemia. The amount of dextrose (D50) administered is proportional to the

magnitude of BGL decrease using the derivative law.

The control gains must be tuned such that performance, however it is defined,

can be optimized. For this study, we pick three performance metrics to monitor and

optimize: 1) the percentage of BGL values in the target range (70 – 130 mg/dL),

2) the percentage of BGL values lower than the target range (< 70 mg/dL), and 3)

NGLI. These represent the quality of target tracking, hypoglycemia risk control, and

variability minimization, respectively. Additionally, from a clinical standpoint, when

tuning the protocol, we consider hypoglycemia to be the primary safety concern.

Thus, if a trade-off has to be made between very low BGL and higher than target

BGL, we favor the latter.

There are classic control theory methods that allow one to analytically calculate

the optimal control gains based on the mathematical model of the control plant.

However, it is very difficult to apply the analytical methods to the patient simulator

that we are using, because the model is highly nonlinear (most classic control ap-

proaches assume linear plant models), and many model variables cannot be directly

measured in real time on general patients (the tracer experiment used to identify
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the virtual subjects is clearly too resource demanding to be applied to all ICU pa-

tients). Therefore, we tune the protocol parameters based on numerical simulations.

To identify the optimal setting of the PDP parameters, we systematically vary KP ,

KD, and RB on a wide range of values and examine how the performance metrics

are impacted by different settings. The optimal setting of KP , KD, and RB is the

one such that the three performance metrics (in-target percentage, lower-than-target

percentage, and NGLI) are optimized.

(a) Initial (0 – 5 hr) phase. RB =

1.0 U/hr and initial BGL = 250 mg/dL.

Metric= in-target (70 – 130 mg/dL) per-

centage.

(b) Initial (0 – 5 hr) phase. RB

= 1.0 U/hr and initial BGL = 250

mg/dL. Metric= lower-than-target (<

70 mg/dL) percentage.

(c) Initial (0 – 5 hr) phase. RB =

1.0 U/hr and initial BGL = 250 mg/dL.

Metric= NGLI.

(d) Oscillating (12 - 24 hr) phase.

RB = 1.0 U/hr and initial BGL =

250 mg/dL. Metric= in-target (70 – 130

mg/dL) percentage.

(e) Oscillating (12 – 24 hr) phase. RB

= 1.0 U/hr and initial BGL = 250

mg/dL. Metric= lower-than-target (<

70 mg/dL) percentage.

(f) Oscillating (12 – 24 hr) phase. RB

= 1.0 U/hr and initial BGL = 250

mg/dL. Metric= NGLI.

Figure 3.5: Impact of KP and KD. Abbreviations: KP Proportional gain
(U/hr per mg/dL); KD Derivative gain (U/hr per mg/dL); RB Basal insulin
rate (U/hr).

We choose the target for the controller to be fixed at 100 mg/dL, which represents

a value in the middle of the IIP target range (70 – 130 mg/dL) and is also the insulin

action start point in the IIP. The impact of incremental changes of KP and KD on

our three primary metrics, both for the initial phase (0 – 5 hours) and oscillating
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(a) Initial (0 – 5 hr) phase. Initial BGL

= 250 mg/dL. Metric= In-target (70 –

130 mg/dL) percentage.

(b) Initial (0 – 5 hr) phase. Initial

BGL = 250 mg/dL. Metric= Lower-

than-target (< 70 mg/dL) percentage.

(c) Initial (0 – 5 hr) phase. Initial BGL

= 250 mg/dL. Metric= NGLI.

(d) Oscillating (12 – 24 hr) phase. Ini-

tial BGL = 250 mg/dL. Metric= In-

target (70 – 130 mg/dL) percentage.

(e) Oscillating (12 – 24 hr) phase. Ini-

tial BGL = 250 mg/dL. Metric= Lower-

than-target (< 70 mg/dL) percentage.

(f) Oscillating (12 – 24 hr) phase. Ini-

tial BGL = 250 mg/dL. Metric= NGLI.

Figure 3.6: Impact of RB on performance metrics after optimal tuning of PD
parameters (KP = 0.05, KD = 0.06). Abbreviations: KP Proportional gain
(U/hr per mg/dL); KD Derivative gain (U/hr per mg/dL); RB Basal insulin
rate (U/hr).

phase (12 – 24 hours) are shown in Figure 3.5. Simulation results show that RB, in its

variance range, does not significantly change the shapes of the KP -KD performance

surfaces shown in Figure 3.5, in which RB = 1.0 U/hr. Therefore, we first identify the

optimal KP -KD setting by integrating the three performance metrics. Key findings

in this analysis include that hypoglycemia (< 70 mg/dL) and NGLI are minimized

when KP and KD are relatively small. The in-target (70 – 130 mg/dL) percentage

is maximized when KP and KD are in the lower middle range (see Figure 3.5 and

Table 3.3). Integrating the data analysis with the performance metrics, we identify

the optimal KP -KD setting, KP = 0.05 U/hr per mg/dL and KD = 0.06 U/hr per

mg/dL, in the region where the peak areas of in-target percentages (Figures 3.5 (a)

and (d)) overlap the low areas of lower-than-target range and NGLI (Figures 3.5 (b),
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Table 3.3: Observations noted when tuning the PD controller.

In-target (70 – 130 mg/dL) BGLs

KP
Initial phase: As KP increases, metric first increases then decreases

Oscillating phase: As KP increases, metric decreases (except when KD is large)

KD
Initial phase: As KD increases, the peak KP increases
Oscillating phase: As KD increases, metric decreases

RB
Initial phase: metric is maximized when RB ≥ 1

Oscillating phase: metric is maximized when RB ≥ 1

Less-than-target (< 70 mg/dL) BGLs

KP
Initial phase: As KP increases, metric increases

Oscillating phase: As KP increases, metric increases when KD is low

KD
Initial phase: KD is not the dominating factor

Oscillating phase: As KD increases, metric increases

RB
Initial phase: As RB increases, metric increases

Oscillating phase: As RB increases, metric increases

NGLI

KP
Initial phase: As KP increases, metric increases

Oscillating phase: As KP increases, metric increases

KD
Initial phase: KD is not the dominating factor

Oscillating phase: KD is not the dominating factor

RB
Initial phase: As RB increases, metric increases

Oscillating phase: As RB increases, metric is minimized (when RB ≤ 1)

Abbreviations: PD, proportional derivative (controller); KP , proportional gain (U/hr per mg/dL);
KD, derivative gain (U/hr per mg/dL); RB , basal insulin rate (U/hr); BGL, blood glucose level;
NGLI, normalized glucose liability index [(mg/dL)2/hr2].

(c), (e), and (f)). The metrics are then further optimized by evaluating incremental

increases in basal insulin rate (RB) (Figure 3.6) according to the same performance

metrics and the optimal PDP parameter setting is KP = 0.05 U/hr per mg/dL,

KD = 0.06 U/hr per mg/dL, RB = 1.0 U/hr.

Table 3.4 shows the performance metrics of the PDP on the virtual population.

When comparing the PDP to the IIP (Table 3.2) there are some notable differences.

With regard to target tracking, in the oscillating phase, the PDP is able to maintain

close to 100% of the BGL readings within the target range. In the initial phase,

when the BGL starts within the target range (70 – 130 mg/dL), the PDP is able to

maintain almost 100% of BGL values in the target range. When the BGL starts >

130 mg/dL, the average in-target percentages are similar between the two algorithms.

When comparing the risk of hypoglycemia between the IIP and the PDP, the PDP

is noted to almost completely eliminate occurrences of BGL < 70 mg/dL in both

53



Table 3.4: Key metrics of simulated BGL controlled by the PD
controller.

Simulated BGL (0 – 5h)

Init BGL Mean BGL STD of BGL NGLI 70 – 1302 > 1302 < 702 Min BGL

(mg/dL) (mg/dL)1 (mg/dL)1 ([mg/dL]2/h2)1 (mg/dL)1

70 85[79,91] 12[8,16] 76[36,163] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 70[70,70]
80 91[87,96] 9[6,12] 34[17,56] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 80[80,80]
90 95[92,99] 6[3,9] 33[8,114] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 89[85,90]
100 99[96,102] 5[1,9] 59[2,252] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 93[84,99]
110 103[97,106] 6[3,12] 121[5,546] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 95[82,103]
120 106[98,111] 8[6,14] 187[16,744] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 96[79,105]
130 109[99,116] 11[8,16] 272[39,905] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 97[77,106]
140 112[100,121] 14[12,17] 343[68,963] 83%[70%,90%] 17%[10%,30%] 0%[0%,0%] 98[81,108]
150 115[102,126] 18[15,20] 496[114,1371] 77%[60%,90%] 23%[10%,40%] 0%[0%,0%] 99[80,110]
160 118[103,131] 21[18,24] 662[166,1760] 76%[60%,90%] 24%[10%,40%] 0%[0%,0%] 99[78,111]
170 121[104,135] 25[22,27] 861[237,2211] 72%[50%,90%] 28%[10%,50%] 0%[0%,0%] 99[77,113]
180 123[105,139] 28[25,31] 1095[312,2796] 70%[50%,80%] 30%[20%,50%] 0%[0%,0%] 99[76,114]
190 126[105,144] 32[28,34] 1356[399,3383] 69%[40%,80%] 31%[20%,60%] 0%[0%,0%] 99[74,116]
200 128[106,148] 35[32,38] 1661[504,4129] 68%[40%,80%] 32%[20%,60%] 0%[0%,0%] 98[72,116]
210 131[106,152] 39[35,41] 1997[629,4874] 67%[40%,80%] 33%[20%,60%] 0%[0%,0%] 98[70,117]
220 133[108,156] 43[38,45] 2353[758,5576] 65%[40%,80%] 34%[20%,60%] 1%[0%,10%] 98[69,118]
230 135[108,160] 46[42,48] 2770[904,6468] 64%[40%,80%] 34%[20%,60%] 2%[0%,10%] 97[67,118]
240 138[109,164] 50[45,52] 3195[1062,7374] 63%[30%,80%] 35%[20%,70%] 2%[0%,10%] 97[65,119]
250 140[110,167] 53[49,56] 3656[1236,8272] 63%[30%,80%] 35%[20%,70%] 2%[0%,10%] 97[64,119]

Simulated BGL (12 – 24h)
70 110[98,116] 3[0,14] 255[0,1603] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[81,116]
80 110[99,116] 3[0,15] 230[0,1571] 100%[96%,100%] 0%[0%,4%] 0%[0%,0%] 106[81,116]
90 110[98,116] 3[0,15] 271[0,1744] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[81,116]
100 110[98,116] 3[0,15] 258[0,1731] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[80,116]
110 110[98,116] 3[0,15] 258[0,1632] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
120 110[98,116] 3[0,15] 271[0,1779] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
130 110[98,116] 3[0,14] 246[0,1526] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
140 110[98,116] 3[0,15] 267[0,1745] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
150 110[99,116] 3[0,14] 212[0,1484] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 107[86,116]
160 110[98,116] 3[0,15] 261[0,1689] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[83,116]
170 110[99,116] 3[0,15] 245[0,1562] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 105[78,116]
180 110[98,116] 3[0,14] 238[0,1450] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[81,116]
190 110[98,116] 3[0,15] 253[0,1600] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[81,116]
200 110[98,116] 3[0,15] 253[0,1613] 100%[96%,100%] 0%[0%,4%] 0%[0%,0%] 106[81,116]
210 110[98,116] 3[0,15] 267[0,1745] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
220 110[98,116] 3[0,15] 257[0,1641] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 105[78,116]
230 110[98,116] 3[0,15] 249[0,1560] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 105[78,116]
240 110[98,116] 3[0,14] 239[0,1467] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
250 110[98,116] 3[0,15] 261[0,1675] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 105[80,115]

All data are presented on a per-trajectory basis. Each row represents a starting BGL value and data
from 10 trajectories (each virtual patient). 1Data represent Mean [Minimum, Maximum]. Target
for PD controller was 100 mg/dL. 2Values represent Mean % [minimum%, maximum%] BGL within
stated range for each trajectory. Abbreviations: BGL, blood glucose level; STD, standard deviation;
NGLI, normalized glucose liability index; Min, minimum BGL. Example: when initial BGL is 70
mg/dL and simulation is run using the PD controller on the 10 virtual patients, the mean value for
the mean BGL of each trajectory (virtual patient) was 85 mg/dL. The virtual patient with the low-
est mean had a mean BGL of 79 mg/dL and the trajectory with the highest mean had a mean of 91
mg/dL. Similar interpretations can be made for the STD BGL, NGLI and Min. Within this same
trajectory, the mean % of BGLs that were within range of 70 – 130 mg/dL was 100%. There were
no trajectories that fell out of this range. Similar interpretations can be made for the > 130 and <
70 mg/dL ranges.

phases, though this comes with a concomitantly greater frequency of BGL values

> 130 mg/dL in the initial phase compared with the IIP. Furthermore, the average

minimum BGL achieved by the PDP is also significantly higher (but within the

target-range), especially for the “extreme” subjects (the min minimum BGL, or

lowest minimal BGL), thus further reducing the chance of hypoglycemia. Finally,

with regards to BGL variability, the PDP achieves significantly lower NGLI than the
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IIP (less than half the variability in both phases for most initial BGLs).

Simulation results clearly demonstrate that the PDP enhances IIP by overcoming

its weaknesses while preserving its strengths. Similar to the IIP, when initial BGL

values are within the target range, the PDP maintains the majority of BGLs within

the target range during the initial phase. However, while both algorithms lead to a

decrease of in-target BGLs when the initial BGL was > 130 mg/dL, the IIP does so

at a cost of significantly increasing the frequency of hypoglycemia (as high as 50%).

No such increase is seen in the PDP.

The NGLI with the IIP is noted to significantly increase in the initial phase as the

initial BGL increases. This is a result of the magnitude and slope of the overshoot-

ing. No such relationship is seen in the oscillating phase since the trajectories have

stabilized. The average NGLI for the IIP in the initial period is 3466 (mg/dL)2/hr2.

This translates into an average BGL change of 58.8 mg/dL per hour. The maximum

NGLI is greater than 21,000 (mg/dL)2/hr2 which equates to a BGL change of more

than 145 mg/dL per hour. The PDP, however, very effectively reduces the variabil-

ity seen with the IIP. In the initial phase, the average NGLI is 1117 (mg/dL)2/hr2,

which corresponds to a BGL change of 33.4 mg/dL per hour (a 43% reduction in

variability). The maximum NGLI with the PDP is 8272 (mg/dL)2/hr2. This is 63%

less than the IIP and equates to a BGL change of 91 mg/dL per hour.

It appears that the risk of hypoglycemia with the IIP is significantly increased

by two primary mechanisms. The first involves the “overshooting” phenomenon

during the initial phase. Indeed, data in Table 3.2 show that when the initial BGL

is high, overshooting causes a significant percent (as high as 20% with a maximum

of 50%) of low BGL readings. The second mechanism of hypoglycemia is by wide

variation during the oscillating phase. In the oscillating phase, when considering out

of target readings, there is a higher rate of hypoglycemia than hyperglycemia (with

the maximum of low BGL percentage being above 40%). Thus, for some subjects,

the risk of hypoglycemia persists even when the control pattern stabilizes.
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Strengths of the IIP during in-silico evaluation include that most BGLs are kept

within the target range during the “oscillating” phase as well as during the “initial”

phase when the starting BGL is within target range. Weaknesses of the protocol

include episodes of severe overshooting and oscillations (sometimes large) in BGL

trajectory. These oscillations appear to be the result of the discrete nature of the

infusion rules in the IIP. That is, because infusion rates are determined by a limited

number of adjustment rules, the insulin bolus amount and infusion rate take jumps

as the BGL changes. As a result, the IIP controller may fail to stabilize an individual

at the “equilibrium” state and, instead, oscillate between different infusion values.

Finally, the IIP (as a result of overshooting and oscillation) is not very effective at

reducing hypoglycemia and BGL variability.

Tuning protocol parameters on the T1DMS model represents a challenging op-

timization problem. As explained before, it is difficult to apply classic linear sys-

tem control theories to the highly complex nonlinear glucose simulation model. Our

strategy in solving this complex non-linear optimization problem is to systematically

characterize the impact of parameters on performance metrics by running numerical

simulations and finding the optimal trade-off configuration (Figures 3.5 and 3.6).

One particular challenge with this is the inter-subject variability. While an insulin

insensitive subject may favor a more aggressive protocol, that same protocol may

cause significant hypoglycemia in subjects who are highly insulin sensitive. We de-

sign the PDP to minimize hypoglycemia over a broad range of glucose trajectories

as the optimal configuration must achieve good performance on the entire target

patient population.

3.3.5 Formal Verification of the New Protocol

In the previous section, we evaluate the IIP and PDP by closed-loop simulation using

the T1DMS together with its virtual subjects. While simulation using high-fidelity

models provides vital insights into the physiological impact of a behavior model,
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there is no formal guarantee that the virtual subject set of the T1DMS covers the

entire Type 1 diabetics population. To this end, formal verification can provide

a new level of safety assurance to clinical practitioners before performing human

clinical trials.3

In this section, we introduce the model of the closed-loop IOGC system as a

case study verification benchmark: the model contains both the FDA-accepted high-

fidelity physiological model and the PDP that we developed as an enhancement to the

IIP. We provide over-approximated value ranges of all model states and parameters.

The ranges of the values are extracted from extensive clinical studies [106, 76, 155,

138, 158]. Then, we implement the benchmark in a recently proposed SMT-based

hybrid system verification tool, dReal/dReach [97]. Last, we present a proof-of-

concept safety verification of the intraoperative glycemic control benchmark over

subspaces of physiological parameters and states.

Problem Formulation

In this section, we define the safety verification problem considered in this work. We

represent the combined PDP and physiological process (defined in the next section)

as a standard hybrid system,

H = 〈X ,Q,Xinit,Xinv,F(P), T 〉 ,

where X represents the continuous states, Q denotes the discrete modes, Xinit ∈ RX
specifies the initial condition space, F(P) captures the flows parameterized by a

vector P ∈ RP , Xinv identifies invariants mapping modes to flows, and T relates the

transitions between modes. A measurable output y = φ(t;Xinit) denotes the glucose

value, with φ(t,Xinit) describing the measurement at time t ∈ [0, tmax]
4, having

3Currently, model-based trials are only approved to replace pre-clinical testing. It is unclear
whether model-based trials will ever be approved to replace clinical (human) testing due to unmod-
eled physiology and comorbidity inherent in all models.

4tmax represents the maximum time the patient is in surgery.
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evolved from initial condition Xinit. We aim to solve the following safety verification

problem:

∀t ∈ [0, tmax] , ∀P ∈ RP , ∀Xinit ∈ RX , y 6∈ Runsafe,

where Runsafe is a region representing unsafe blood glucose levels (i.e., hypoglycemia

and hyperglycemia that are defined clinically [150]).

Modeling the Closed-loop System

The full T1DMS model contains three sub-models (insulin, glucose, and carbohydrate-

ingestion) with 13 states and 32 parameters. The original publications [73, 151] dis-

cuss the details of physiological modeling and our paper [56] summarizes the model

equations from the literature. Since intraoperative patients receive insulin and glu-

cose via intravenous infusion, the two subcutaneous insulin compartment states and

the entire carbohydrate-ingestion sub-system can be neglected, resulting in a 7-state

intraoperative model, as described in the remainder of this subsection.

The intraoperative model contains an insulin sub-model and a glucose sub-model.

The insulin system is a 5-state linear model driven by the insulin input, u(t), written

as

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + u(t) ∗ 102/BW (3.1a)

Ẋ(t) = P2U/ViIp(t)− P2UX(t)− P2U ∗ Ib (3.1b)

İ1(t) = ki/ViIp(t)− kiI1(t) (3.1c)

İd(t) = kiI1(t)− kiId(t) (3.1d)

İl(t) = m2 ∗ Ip(t)− (m1 +m3)Il(t). (3.1e)

The Ip(t) and Il(t) states represent insulin mass in the plasma and liver, re-

spectively. I1(t) and Id(t) represent a delayed insulin transportation process. X(t)

represents an insulin signal in the remote tissue that governs glucose concentration

in the interstitial compartment. The model contains a set of parameters that are
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patient dependent: m1...4 and P2u are rates of insulin mass diffusion among different

compartments, Vi is the insulin distribution volume, and BW is the body weight.

The glucose system has two states and is written as

Ġp(t) =− k1 ∗Gp(t) + k2 ∗Gt(t)− Fsnc +m(t) ∗ 103/BW

+ max (0, kp1 − kp2 ∗Gp(t)− kp3 ∗ Id(t))

− 1−max (0, ke1 ∗ (Gp(t)− ke2))

(3.2a)

Ġt(t) =− (Vm0 + Vmx ∗X(t)) ∗Gt(t)
Km0 +Gt(t)

+ k1 ∗Gp(t)− k2 ∗Gt(t) (3.2b)

where, Gp(t) and Gt(t) represent the glucose concentration in plasma and intersti-

tial fluids, respectively. The Gp(t) derivative (Equation 3.2a) contains two saturation

switches max (0, kp1 − kp2 ∗Gp(t)− kp3 ∗ Id(t)) and

max (0, ke1 ∗ (Gp − ke2)), which represent the endogenous glucose production (EGP)

and renal glucose clearance, respectively. These two max switches yield four discrete

modes in the hybrid system representation of the model, and transitions among the

four modes are governed by saturations of the two max terms. The Gt derivative con-

tains a non-linear term − (Vm0+Vmx∗X(t))∗Gt(t)
Km0+Gt(t)

that represents the remote insulin signal

X(t)’s impact on glucose dynamics. The model contains two population static pa-

rameters ke1 (glomerular filtration rate) and ke2 (renal threshold of glucose). All

other parameters are patient dependent: k1 and k2 are the glucose exchange rates

between the Gp and Gt compartments; kp1 is the extrapolated EGP; kp2 is the liver

glucose effectiveness; kp3 is the insulin action on liver; Vm0, Vmx, and Km0 are model

parameters that govern the insulin action on Gt; Vg is the glucose distribution vol-

ume; m(t) is the intravenous glucose input into the plasma compartment.

The 7-state intraoperative glucose control model is observed through y(t) =

Gp(t)/Vg, corresponding to the plasma glucose measurement (in mg/dL). Most of

the patient-dependent parameters, except for a few such as the body weight, are

not measurable in standard hospital tests. Estimating those parameters on individ-
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Table 3.5: Over-approximated ranges of the T1DMS model states

States Ranges Units
Example

Nominal Value

Ip [0, 30] pmol/kg 5

X ′ [−500, 500] pmol/liter 30

I1 [0, 300] pmol/liter 120

Id [0, 300] pmol/liter 120

Il [0, 30] pmol/kg 3

Gp [0, 1000] mg/kg 200

Gt [0, 1000] mg/kg 150

ual patients involves invasive and costly procedures such as the triple-tracer meal

protocol experiment [22, 74], which is clearly not feasible in surgical settings. The

FDA-accepted T1DMS simulator comes with 10 adult virtual subjects, each of which

is a whole realization of the parameters. Those virtual subjects are extracted from

the same distribution as the 100 FDA-accepted adult virtual subjects for black-box

controller evaluation were.

All the states and parameters in the FDA-accepted model have physiological

meanings, and numerous clinical studies have investigated the ranges of values across

different populations [106, 76, 155, 138, 158]. Table 3.5 lists over-approximated

ranges and the units of the seven states and Table 3.6 lists over-approximated ranges

of the eighteen parameters.

The PDP updates uc(k), ub(k), and m(k) based on y(k) and y(k−1) according to

the rules defined in Table 3.7. As described in Section 3.3.4, the PDP’s parameters

are tuned to minimize the hypoglycemia risk while maximizing quality of glucose

control.

Hybrid System Modeling

We model the 7-state intraoperative physiological model and the PDP as a hybrid

system as illustrated in Figure 3.7. It is standard practice to perform perioperative

monitoring of the patient to ensure the patient is stable enough for surgery [180].
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Table 3.6: Over-approximated ranges of the T1DMS model parameters.

Parameters Ranges Units
Example

Nominal Value

m1 [0.1, 1] min−1 0.2

m2 [0.1, 1] min−1 0.3

m3 [0.1, 1] min−1 0.3

m4 [0.05, 0.5] min−1 0.1

ki [0.001, 0.02] min−1 0.01

P2u [0.01, 0.1] min−1 0.03

Vi [0.02, 0.1] liter/kg 0.06

Ib [0, 300] pmol/liter 100

BW [0, 300] kg 90

k1 [0.02, 0.1] min−1 0.05

k2 [0.05, 0.3] min−1 0.1

kp1 [1, 10] mg/kg/min 5

kp2 [0.0001, 0.01] min−1 0.004

kp3 [0.001, 0.03]
mg/kg/min per

pmol/liter
0.01

Vm0 [1, 10] mg/kg/min 5

Vmx [0.01, 0.15]
mg/kg/min per

pmol/liter
0.05

Km0 [100, 1000] mg/kg 200

Vg [1, 5] dL/kg 2

Table 3.7: The PDP rules

Condition Control Input Update
y(k) ≤ 60 uc(k) = 0, ub(k) = 0,m(k) = 12.5

60 < y(k) < 100 AND
y(k)− y(k − 1) < −30 uc(k) = 0, ub(k) = 0,m(k) = −0.1 ∗ (y(k)− y(k − 1))

100 ≤ y(k) < 300 OR
y(k)− y(k − 1) ≥ −30

uc(k) = max(0, 0.05 ∗ (y(k)− 100) + 0.06 ∗ (y(k)− y(k − 1))) + 1),
ub(k) = 0,m(k) = 0

y(k) ≥ 300 u(k) = 15, ub(k) = 15,m(k) = 0

During the perioperative period (typically at least 30 minutes), if the patient exhibits

extreme glucose variation, the surgery may be postponed until the patient stabilizes.

To model the perioperative monitoring procedure, we divide the verification time

into two phases: During the initial monitoring phase, if the glucose output y leaves

a control range (e.g., 70 − 130 mg/dL), the system transitions into the “NOT AD-

MIT” mode; if the glucose output y stays within the control range during the entire

monitoring period, then the system transitions into the protocol control phase and
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İp(t) = �(m2 + m4)Ip(t) + m1Il(t) + u ⇤ 100/BW (1a)

Ẋ(t) = P2U/ViIp(t) � P2UX(t) � P2U ⇤ Ib (1b)

İ1(t) = ki/ViIp(t) � kiI1(t) (1c)

İd(t) = kiI1(t) � kiId(t) (1d)

İl(t) = m2 ⇤ Ip(t) � (m1 + m3)Il(t) (1e)

Ġp(t) = � k1 ⇤ Gp(t) + k2 ⇤ Gt(t) � Fsnc + m(t) ⇤ 1000/BW (1f)

Ġt(t) = � (Vm0 + Vmx ⇤ X(t)) ⇤ Gt(t)

Km0 + Gt(t)
+ k1 ⇤ Gp(t) � k2 ⇤ Gt(t) (1g)

ṫ = 1 (1h)

˙tau = 1 (1i)

Ṗ = 0 (1j)

u̇(t) = 0 (1k)

ṁ(t) = 0 (1l)

˙ypre(t) = 0 (1m)

İp(t) = �(m2 + m4)Ip(t) + m1Il(t) + u ⇤ 100/BW (1a)

Ẋ(t) = P2U/ViIp(t) � P2UX(t) � P2U ⇤ Ib (1b)

İ1(t) = ki/ViIp(t) � kiI1(t) (1c)

İd(t) = kiI1(t) � kiId(t) (1d)

İl(t) = m2 ⇤ Ip(t) � (m1 + m3)Il(t) (1e)

Ġp(t) = � k1 ⇤ Gp(t) + k2 ⇤ Gt(t) � Fsnc + m(t) ⇤ 1000/BW

+ (kp1 � kp2 ⇤ Gp(t) � kp3 ⇤ Id(t))
(1f)

Ġt(t) = � (Vm0 + Vmx ⇤ X(t)) ⇤ Gt(t)

Km0 + Gt(t)
+ k1 ⇤ Gp(t) � k2 ⇤ Gt(t) (1g)
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Figure 3.7: A hybrid system representation of the FDA-accepted high-fidelity
physiological model with the PDP.

the PDP starts operating. During the protocol control phase, the system transitions

into the “NOT SAFE” mode if the glucose output y leaves a safe range (e.g., 60−150

mg/dL).

The hybrid system contains seven states: one initial state mode 0; four states

(modes 1 - 4) that represent the system dynamics with four possible combinations of

the two saturation switch terms in Equation 3.2a, which are re-stated in Equation 3.3;
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one “NOT ADMIT” mode and one “NOT SAFE” mode.

max (0, C1), where C1 = kp1 − kp2 ∗Gp − kp3 ∗ Id
max (0, C2), where C2 = ke1 ∗ (Gp − ke2)

(3.3)

The system has 30 continuous states5

X = {Ip, X, I1, Id, Il, Gp, Gt,P, t, tau, ypre, u,m},

where P denotes the 18 model parameters, t is the global verification time, tau is

the local timer variable, ypre(t) is a variable to record the last output sample, u(t)

and m(t) are the insulin and meal inputs.

For simplicity of presentation we denote the four combinations of the two max

terms using T1 to T4, as shown in Equation 3.4.

T1 := (C1 ≤ 0) ∧ (C2 ≤ 0)

T2 := (C1 > 0) ∧ (C2 ≤ 0)

T3 := (C1 > 0) ∧ (C2 > 0)

T4 := (C1 ≤ 0) ∧ (C2 > 0)

(3.4)

Mode 0 is the initial state, in which all states have zero derivatives except t and

tau. The system immediately goes into one of modes 1 - 4. The invariant on mode

0 is INV0 := (tau ≤ 0). Equation 3.5 defines the guards on the transitions out of

mode 0.

∀i ∈ {1, 2, 3, 4}, G[0→ i] := Ti ∧ (tau ≥ 0) (3.5)

Let t ∈ [0, ta] denote the monitoring phase. Let Rna and Runsafe denote the set

of “NOT ADMIT” glucose values and “NOT SAFE” glucose values, respectively.

Equation 3.6 defines the invariants on modes 1 - 4. To model the practical scenario

5To be consistent with the dReach implementation explained next, in the hybrid system model,
we denote all parameters as continuous states with derivatives of zero (i.e., constants).
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that a clinician may not check exactly at the 30 minutes mark, we allow timing

non-determinism by relaxing the conditions on the invariants with a sampling jitter

δ.

∀i ∈ {1, 2, 3, 4}, INVi :=(¬(t ≤ ta ∧ y ∈ Rna)

∧ (¬(t > ta ∧ y ∈ Runsafe)

∧ Ti
∧ (tau ≤ 30 + δ))

(3.6)

The self-transitions on modes 1 - 4 are triggered at the glucose sample times. On

the self-transitions ∀i ∈ {1, 2, 3, 4}, G[i → i], control inputs u and m are updated

according to the PDP, and ypre is updated to the current y. Considering the timing

jitter δ, Equation 3.7 defines the self-transition guards.

∀i ∈ {1, 2, 3, 4}, G[i→ i] := (tau ≥ 30− δ) (3.7)

The transition guards between modes 1 - 4 are governed by conditions T1 - T4

and are defined in Equation 3.8.

∀i, j ∈ {1, 2, 3, 4}, G[i→ j] := Tj (3.8)

In modes 1 - 4, if y ∈ Rna during the monitoring phase, the system transitions

into the “NOT ADMIT” mode 5. Equation 3.9 defines the transition guards between

modes 1 - 4 and the “NOT ADMIT” mode 5.

∀i ∈ {1, 2, 3, 4}, G[i→ 5] := (t ≤ ta ∧ y ∈ Rna) (3.9)

In modes 1 - 4, if y ∈ Runsafe after the monitoring phase, the system transitions

into the “NOT SAFE” mode 6. Equation 3.10 defines the transition guards between
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modes 1 - 4 and the “NOT SAFE” mode 6.

∀i ∈ {1, 2, 3, 4}, G[i→ 6] := (t > ta ∧ y ∈ Runsafe) (3.10)

The “NOT ADMIT” mode 5 and “NOT SAFE” mode 6 are terminating states

with no invariants or transitions out of them. The safety verification question is

specified as follows: For all initial conditions (where the 7 physiological states and

18 parameters are in their ranges), determine if the system can reach the “NOT

SAFE” mode 6.

Verification in dReach

The dReach verification tool [149] utilizes the framework of δ-complete decision pro-

cedures that aims to solve first-order logic formula with arbitrary computable real

functions [98]. The dReach tool can be employed to prove safety properties of hy-

brid systems over finite time by identifying safe and unsafe regions of the state space

and defining a corresponding δ-decision problem. Following [98], we consider the

δ-decision problem

∃Xinit ∧ ∃t ∈ [0, tmax] ∧ ∃y ∈ Runsafes.t.

|Xinit| ≤ δ1 ∧ |y − φ(t;Xinit)| ≤ δ2

(3.11)

where δi is a numerical error bound specified by an arbitrary rational number and

the bounded first-order sentences contain Type 2 computable functions [144].

In this work, we define an unsafe region via limits on the glucose levels observable

in the patient. We seek to show that for the PDP, composed with the physiological

model described by a hybrid system with non-linear ODEs, there does not exist

an initial condition which can lead to the satisfiability of (3.11) within a bounded

time. As a conservative solution, the dReach tool (through δ-weakening) verifies for

all initial conditions and bounded time that either the unsafe region is unreachable
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(UNSAT) or the unsafe region is reachable within a δ error (δ-SAT ).

The dReach implementation of the surgical glucose hybrid system contains 30

state variables: 7 physiological states; 18 parameters; 2 inputs (insulin rate u and

glucose rate m); 1 state to record the last glucose reading; 1 global time state, and 1

local timer state. The dReach source code of this implementation is available online6.

To perform verification, we employ dReach version 2.15.01 on a Linux server

with an Intel(R) Xeon(R) E5-2667 v2 3.30GHz CPU and 64 GB memory, and the

results are provided in Table 3.8. First, we note that dReach is a bounded model

checker, therefore the search depth or Path Length refers to the number of discrete

transitions for which we perform verification. In the results, the Path Length is

the search depth completed by dReach in Time concluding in Result, where DNF

translates to did not finish and x0 and p0 denote the nominal states and parameters

specified in Table 3.5 and Table 3.6, respectively. From the results, we observe that

allowing the parameters and initial state to vary simultaneously over their maximum

over-approximated ranges prevents dReach from reaching a depth of more than 3. In

this scenario, a path length of 3 corresponds to a maximum of one hour of surgery.

The fact that dReach can not exceed the arguably trivial depth of 3 after 30 hours

suggests that verification over the entire over-approximated parameter and initial

condition space is a computationally challenging problem.

To investigate the capabilities of dReach, we allow the initial state to vary over

the full range, but constrain the parameters to equal p0. These results are consistent

with the T1DMS scenario for virtual subjects with unknown initial states. Here we

observe a significant improvement in verification results, with dReach achieving a

depth of 7 in 16.4 hours corresponding to a maximum surgery duration of 3.5 hours.

By constraining the initial variance of the state and parameters to a hypercube

around the nominal virtual subject, we observe that dReach is able to achieve a

depth of 7 in 8.1 hours, corresponding to a maximum surgery duration of 3.5 hours.

6URL:https://github.com/chen333/igc-benchmark
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Table 3.8: Verification results for Rsafe = [60, 180].

Physiological Range Path Time
Result

State Parameter Length (hours)

Full Full 3 30 safe
Full Full 4 DNF -
Full p0 3 0.1 safe
Full p0 4 0.6 safe
Full p0 5 3.1 safe
Full p0 6 8.2 safe
Full p0 7 16.4 safe
Full p0 8 DNF -

x0 ± 0.5 p0 ± 0.5 3 0.1 safe
x0 ± 0.5 p0 ± 0.5 4 0.4 safe
x0 ± 0.5 p0 ± 0.5 5 1.1 safe
x0 ± 0.5 p0 ± 0.5 6 2.9 safe
x0 ± 0.5 p0 ± 0.5 7 8.1 safe
x0 ± 0.5 p0 ± 0.5 8 DNF -

This suggests that dividing the parameter and initial condition space can significantly

improve time-to-verification given sufficient computing resources.

3.3.6 Towards Run-time Safety Monitoring

In the previous section, we formally verify that a protocol is safe despite uncertain

physiological parameters and states that are drawn from continuous sub-regions of

the entire physiologically possible variance ranges. Our work provides a stronger

safety guarantee than previous studies on evaluating insulin protocols using simula-

tions [170, 182, 283, 164, 277, 178], which can only cover finite samples of uncertain

parameters. It is worth noting that within each dReach verification run, the physio-

logical model parameters do not change as time progresses. This assumption is also

commonly adopted by most previous simulation-based studies, i.e., once a virtual

subject is chosen, it does not change over the simulation run. However, such as-

sumption may be violated in reality, especially in surgical glucose control scenarios.

For example, patients can suffer from stress-induced hyperglycemia during surgeries,
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which can lead to elevated infection risk [194, 235, 137]. From a modeling per-

spective, those transient changes in the glucose physiology can manifest as temporal

fluctuations in certain physiological parameters, e.g., insulin sensitivity. Coping with

such short-term changes of physiological parameters in surgical glucose control is an

especially challenging problem considering that most parameters can not be directly

measured, and there currently lacks quantitative clinical understanding on which

parameters may change and how much they may vary.

In this section, we present a run-time safety monitoring technique that leverages

the maximal model to track transient changes in patient’s physiology and predict

safety-critical events by online re-training of a virtual subject set using real-time glu-

cose measurements. Specifically, in this case study, we aim to predict when glucose

levels deviate from a specified region in a near future time window. An implemen-

tation of the proposed methodology is evaluated on retrospective real patient data,

and the results illustrate that our prediction algorithm achieves 96% sensitivity with

an average false alarm rate of 0.5 false alarm per surgery. This technique may com-

plement the verification of protocol-guide control behaviors by providing predictive

warnings of critical events (e.g., hypoglycemia) to the human operators.

Overview of the Methodology

Our framework consists of two major steps. First, we generate a covering set (CS)

that consists of a large number of computational virtual subjects (CVS). We call

the virtual subjects distributed with the T1DM simulator physiological virtual sub-

jects (PVS) because their parameters are derived from experimental physiological

data [188]. We validate that the CS can produce glucose value predictions that

cover a large range of possible values with a certain degree of uniformity. In the

second step, the CS is used in a data-driven adaptive safety monitor that assess

the safety of the control input (insulin dosage) suggested by the normal controller.

Specifically, we train the CS to learn the real patient’s dynamics: we collect a few
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past BGL readings from the patient, simulate all CVS in CS on the maximal model,

and sort the CVS by comparing the predicted BGL trajectories with the real BGL

values. The CS, in which CVS are sorted by prediction errors, are called the trained

CS. We then use the trained CS to predict the range of the next BGL, assuming the

suggested control input is given. An alarm will be raised if the predicted range of

the next BGL overlaps with unsafe BGL region, which implies the suggested con-

trol input is unsafe. We evaluate our methodology by replaying the algorithm on

retrospective glucose data collected from 51 Type 1 diabetic ICU patients, and for

each BGL value y, the algorithm predicts y one check interval ahead and uses the

predicted range to classify y as safe (negatives) or unsafe (positives).

Problem Description

Figure 3.8 shows the overall system architecture. The BGL sensor readings are passed

to both normal controllers (ICU protocol or other control algorithm implemented by

caregivers) and the safety monitor. The normal controller suggests an insulin dosage

based on certain algorithms. The safety monitor (details are explained in subsequent

sections) predicts the range of the next BGL reading, assuming the suggested insulin

dosage is given. If the predicted range is safe, then the suggested dosage is passed

to the actuator (pumps). Otherwise, the safety monitor raises an alarm of possible

unsafe insulin dosage and feed the information back to caregivers for re-assessment.

We consider the same surgical glucose control scenario described in Section 3.3.

Our technique utilize the maximal glucose model which is detailed in Section 3.3.5.

In the rest of this section, we use X to denote the 7-dimensional state vector

X = [Ip, X
′, I1, Id, Il, Gp, Gt], y and u to denote the model output and control input,

respectively, and P to denote the parameter vector (see Table 3.6 for the parameter

meanings and ranges of values). The complete model can be written in an abstract

form Ẋ = f(X,P, u), y = X(6)/Vg. A “virtual subject” is a configuration of P .

The safety property comes from the clinical requirement, i.e., the BGL should
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Figure 3.8: Architecture of Safety Monitor for Surgical Glucose Control.

not drop below a critical limit L (e.g., 80 mg/dL) at any time. This is one of the

most important safety requirements for BGL regulation [70].

The problem we are solving can be formulated as follows: for an individual

patient, at any check point N , given the past sequences of BGL measurements and

insulin rates y1, . . . , yN−1 and u1, . . . , uN−1, current BGL yN , and suggested control

input uN , is uN safe for the patient, that is, is it possible that yN+1 < L if uN is

given?

Safety Monitor Design

In this section we present our safety monitor algorithm. The algorithm consists of

two phases.

1. In Phase A, we generate a set of CVS (called the covering set (CS)) by randomly
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sampling parameter vectors from the bounding hypercube and we show that

the CS gives predictions of BGL that cover a large possible range with certain

degree of uniformity.

2. In Phase B, we use the CS for safety monitoring. At each check point, we let

the CS simulate a patient’s past BGL sequence and compute the prediction

error of each CVS. The CVS in the CS are then ordered by how well their

predictions match the true past BGL. Then we take the suggested control

input and use the sorted CVS to predict the range of the patient’s next BGL.

If the predicted range is unsafe, then an alarm is raised to notify the normal

controller and/or the caregiver; otherwise, the control input is passed to the

actuator.

In the rest of this section, we explain the technical details of the two phases in

our algorithm.

Covering set generation and validation. As mentioned before, one fundamen-

tal challenge of using maximal models in glucose control is that most elements of

the parameter vector cannot be identified given the currently available clinical data.

Here is how we approach the challenge. Suppose the patient is at a certain state

(X0, y0) and has a true parameter vector PT . We know nothing yet about PT except

that PT is bounded in a 20-dimension hypercube HP . But we know that each vector

Px ∈ HP will “drive” the patient Ẋ = f(X,P, u) to a (probably distinct) ending

state (X1x, y1x) after one interval T assuming u0 is given during the interval. The

first question we consider is: if we only know that PT is somewhere in HP , what is

the distribution of {y1x} and which vectors Px will drive y1x to a specific range?

This question has an intuitive interpretation in glucose control: assuming the

patient’s current BGL is at y0 and he/she is given a certain amount of insulin u0,

what is the BGL after a time interval T? In fact, this is the simple procedure that

can be used to roughly estimate a person’s insulin sensitivity level.
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The second question we consider is as follows: Suppose that we can compute the

distribution of {y1x}, assuming a certain starting state (X0, y0), and we can pick a

set of vectors PCS to uniformly “cover” the PCS is called the covering set (CS) and

the vectors in it are computational virtual subjects (CVS), by which we highlight

the fact that the CVS are used to generate a computational coverage and distinguish

them from PVS. The first question is a CS generation problem and the second one

is a CS validation problem.

We cannot use the existing PVS in the T1DM simulator as the CS for our al-

gorithm for two reasons. First, the size of the PVS set is quite limited (300), and

we need a much larger set of virtual subjects to generate a good covering range of

BGL, which is essential for the safety monitor. Second, the PVS were derived from

experimental physiological data such that they can mimic real human patients and

can be used in the T1DM simulator to rule out unsafe or ineffective controllers before

actual clinical trails. The PVS set is not generated for the computational coverage

purpose that we are interested in.

The details of the Phase A are explained as follows.

A.1 CS generation

• A.1.1 Choose an initial condition (X0, y0). The quality of CS will be related

to how (X0, y0) is chosen. A difficulty here is that the model is unobservable,

i.e., for a given y0, there are infinitely many corresponding X0’s. Inspired by

the idea that an “insulin sensitivity test” tries to stabilize the patient’s phys-

iological states before the test starts, we tackle the difficulty in the following

way: the academic version of T1DM Simulator includes 10 PVS that are drawn

in the same way as the FDA-approved PVS population, we run the 10 PVS

on the simulator and obtained the initial states generated by the simulator.

To fully excite the dynamics and explore a large range of {y1x}, we choose a

high initial BGL y0 = 250 mg/dL and let u be the “250 mg/dL BGL” action

item defined in the previously mentioned HUP IIP, which is 10 U/hr infusion
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for T = 30 minutes and 10 U insulin bolus given immediately. We experiment

with 10 PVS’ X0’s established by the T1DM simulator and pick the one that

gives the largest distribution range of {y1x}.

In general hospital ICUs, it is not possible to monitor X0 from real patients.

What we do here is let the T1DM Simulator (together with its PVS) start at

a realistically high BGL, give a real hospital protocol-defined insulin dosage,

and establish the X0, which is the best we can do given the technologies and

data available. The quality of CS will be validated and further evaluated in

the subsequent steps.

• A.1.2 Given the (X0, y0, u0) and T , we randomly sample PCS from the bound-

ing hypercube HP
7, simulate the model on each vector Px ∈ CS, and get the

corresponding y1x after T . We collect a large set (1.5 million in our implementa-

tion) of sample vectors Px so that the distribution of {y1x} covers a sufficiently

large range. The sufficiency can be justified by common clinical knowledge

of how fast human BGL can drop: the BGL decline/rise rate is subject to

physiological limits, e.g., it is written in HUP Glycemic Control Protocol for

Cardiac Surgical Patients that “the average rate of decline should be no more

than 50 mg/dL per hour” (so clearly 50 mg/dL per hour is considered as a high

BGL decline rate that should be avoided). In our algorithm the {y1x} actually

covers a range that is several times larger than ± 50 mg/dL per hour.

• A.1.3 From the large set of randomly sampled {Px} and the corresponding

{y1x}, we select a subset of {Px} to form the CS PCS, such that the corre-

sponding {y1CS} uniformly cover the entire range of {y1x}. The CS is not

constrained by experimental data and can be much larger (in the implementa-

tion we have 10,000 CVS in the CS) than the FDA-approved PVS population

7Due to the lack of accessible clinical knowledge of how the physiological parameters are cor-
related statistically, the sampling process does not assume any prior correlation between different
parameters. One of the current limitations of this work is the lack of statistical guarantee that the
sampled virtual population sufficiently represent all real patients
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(300).

A.2 CS validation

In Step A.1.3, the CS is selected to uniformly cover {y1x} given the (X0, y0, u0)

picked in Step A.1.1. We can not simply conjecture that CS will generate a uniformly

distributed predictions of yN+1 for any starting state and input tuple (XN , yN , uN).

Therefore we need to validate CS for different tuples (XN , yN , uN) and test the

coverage of predicted {yN+1}. The validation algorithm works as follows:

• A.2.1 First, we generate a set of test cases to validate the CS. Each test case is

a four-value tuple (XN , yN , uN , yN+1). Ideally, such test cases should be from

real clinical data, but as mentioned before, it is impossible to monitor XN

directly from patients. So instead, we run a real hospital protocol (the HUP

IIP) on the T1DM simulator (with its 10 PVS) at different initial conditions,

and we obtain a large set of simulated patient BGL trajectories, which are as

closest to be real as we can get.

• A.2.2 We then test the entire CS on every single test case obtained above.

Specifically, for each test case (XN , yN , uN , yN+1), we simulate the model on

every Px ∈ PCS for one interval, starting from (XN , yN) and using uN as the

control input. At the end of the interval, we get a yx which is the prediction of

the true value yN+1 by a CVS in CS. We then measure the quality of coverage

of all the predictions {yx} by two requirements: 1) {yx} should contain yN+1,

i.e., yN+1 ∈ [min {yx},max {yx}]; 2) {yx} is distributed around yN+1 with a

certain degree of uniformity, which is precisely defined in the next step.

• A.2.3 In Step A.1.3, the CS is selected such that the {y1x} are perfectly uni-

formly distributed. However, due to the non-linear nature of the model, it

should not be expected that the same CS will generate {yx} that have the same

perfect uniform distribution starting from any initial state (XN , yN , uN , yN+1).

In addition, for the safe control purpose, we do not need a perfectly uniform
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distribution. Instead, what we need in the data-driven adaptive safe control

step is that there are enough candidate predictions in {yx} that fill a neigh-

boring region of yN+1. Therefore, for the control purpose, a less than perfect

uniform distribution is good enough.

The uniformity metric we use to test the coverage of {yx} is therefore defined

as follows:

– We first determine the neighboring region of yN+1. Again, the size of the

region depends on the size of the maximum prediction range in the control

step, which is set to 60 mg/dL. So here we look at the [max (yN+1 − 30, 30),

yN+1 + 30] neighboring region. The lower bound saturates at 30 because

BGL < 30 mg/dL is extremely low BGL which happen with very low

probability not only in practice but also in simulation, so we should not

expect a lot of predictions go below 30 mg/dL. In addition, 30 mg/dL is

much lower than our safe limit L = 80 mg/dL, so there is a wide 30− 80

“buffer zone” for the safety monitor to raise an alarm.

– Finally, we test the minimum density of predicted BGL values in {yx} that

fall into the neighboring region. The density is defined as the average

number of values in {yx} that fall into a unit length (1 mg/dL) BGL

interval. The density is computed by a binning algorithm: put the values

in {yx} that are in the neighboring region into small-sized (5 mg/dL) bins

and find the minimum counts bin to calculate the minimum density. If

the “density” is no less than 1 counts per mg/dL, i.e., for every possible

integer BGL readings there are at least one prediction, then the CS passes

the coverage testing on case (XN , yN , uN , yN+1). For extra redundancy,

our algorithm actually achieves minimum density of 8 counts per mg/dL.

Data-driven adaptive safe monitoring. The Phase B is repeated at each check

point. We use the identified and validated CS to predict a patient’s BGL one
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check point ahead, given only the past BGL readings and insulin inputs. This is,

in general, very challenging, especially when using the maximal model. Existing

model-predictive control (MPC) approaches for glucose control either use a simple

linear model to approximate the non-linear dynamics, or require costly parameter

pre-tuning. It has been pointed out that there is a fundamental analytical limitation

of parameter identification on high-dimension unobservable non-linear models; that

is, it is not possible to uniquely identify so many unknown parameters given only

the limited single input and single output data [63].

Instead of trying to directly identify PT , we propose a data-driven technique to

adaptively train CS on past sequence (y, u) (the past sequence gets updated each

step as new measurements and control actions are taken), and then use the trained

CS to predict the range of next BGL reading. The predicted range is then used for

the safety monitoring.

B.1 CS Training: The training set is a sequence of past BGL and control

actions, {(yi, ui), . . . , (yN−1, uN−1), (yN)}. N is the current check point and yN is the

current BGL. The training set contains the latest N − i+ 1 BGL and N − i control

actions (a control action is effective for an interval between two y’s so there is one less

control action than the number of y’s). Initially i = 1. These records are accessible

in ICUs, e.g., at HUP, the BGL readings, control information, and patient-related

information are recorded electronically. The CS is trained as follows:

B.1.1 We simulate the model on the CS, starting from yi. Each Px ∈ PCS will

generate a corresponding simulated trace {yix, . . . , yNx}.
B.1.2 The simulated traces are compared to the true trace {yi, . . . , yN}, and L-2

norm errors are calculated for each trace.

B.1.3 We sort the CS by the non-decreasing order of the prediction errors and

the sorted CS is called the trained CS.

B.2 Range prediction: To predict the range of the next BGL yN+1, we

initialize a list RN+1 as empty.
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B.2.1 We start from the top of the trained CS, retrieve a vector Px, extend the

simulation yix, . . . , yNx by one step (assuming the suggested control input uN is given

at check point N), put the predicted y(N+1)x into RN+1, move onto the next vector

in the trained CS, and repeat the process.

B.2.2 The list RN+1 holds predictions of yN+1 of a top subset of CVS in the

trained CS. The minimum and maximal values of RN+1 are the predicted range for

yN+1.

We repeat filling predictions yx(N+1) into RN+1 until at least one of the following

two conditions becomes true:

• The predicted range exceeds a pre-defined window size. This window size

directly affects the RN+1 and the performance of the prediction algorithm. We

develop a double-zone strategy to determine it.

If min (RN+1) is above some threshold Wb, then the stop condition is

(max (RN+1)−min (RN+1)) > WH ,

where WH is the maximum window size of the “high” zone. If

min (RN+1) < Wb,

then the stop condition is

(max (RN+1)−min (RN+1)) > WL,

where WL is the maximum window size of the “low” zone.

The idea is that when the predicted BGL in RN+1 are relatively high (above

Wb), we allow a larger prediction window. And when some predicted BGL in

RN+1 are in the low zone, we narrow down the prediction window because now
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the predicted BGL are closer to the unsafe region and a narrower window will

help reduce the false positive rate.

• The bottom of the trained CS is reached; i.e., all predictions by the CS have

been put into RN+1).

The predicted range of yN+1 is given by [min (RN+1),max (RN+1)].

B.3 Robust safety monitoring: Using the predicted range

[min (RN+1),max (RN+1)],

if min (TN+1) is less than the pre-defined safety limit L, then it implies the suggested

control input uN can drive yN+1 into the unsafe region, and an alarm is to be raised

and fed back to caregivers. Otherwise, uN is granted to the actuator. This is cur-

rently a YES/NO classification alarm, and one can also use [min (TN+1),max (TN+1)]

to generate a more informative, fuzzy logic type alarm: for example, having different

levels of urgency depending on how much [min (TN+1),max (TN+1)] intersects with

the unsafe region.

B.4 Adaptive training set adjustment: The training sequence grows as

more BGL readings are collected. Sometimes the real BGL trajectory could exhibit

“turns” that cannot be predicted by models.8 An interesting phenomenon is that the

unmodeled dynamics can not only cause prediction errors at the “turns”, but also

affect subsequent predictions after the “turns” even when the patient’s physiological

8In ICU surgical patient data, we have seen some BGL changes that cannot be well explained by
models: for example, when the BGL tends to stabilize around a certain level and insulin infusion
rate does not change for a while, there are sometimes sudden BGL increases, i.e., the patient
appears to be more resistant to insulin for a short period. Anesthesiologists at HUP are interested
in such scenario when we replayed the retrospect BGL data and specifically pointed out a few such
“turns”. Their medical opinions are that there are some other factors, e.g., body temperature and
surgery-induced stress level, that they believe also change patients’ insulin sensitivity, but those
effects are not modeled by even the state-of-the-art maximal models. The doctors think it would
be useful if we can compare the model-predicted BGL with the true BGL in real time and alert
them when such “turns” happen (which can be done with our framework) as they believe these
events could suggest some physiological state changes that they concern.
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states go back to the baseline. This is because in the learning step, the CS is

trained by prediction errors calculated from the entire training set. If there is are

unpredictable “turns” in the set and we keep it for future predictions, then essentially

the CS will always try to learn the “turns” because they dominate the prediction

error.

To cope with such cascading error issue, we dynamically adjust the training

sequence in real time. Whenever a true reading yN+1 lands outside the predicted

range, we remove all past readings before yN and the new training sequence starts

from yN for future predictions (we need to keep yN because we need at least one

interval, i.e., two past readings, for training when predicting yN+2). The rationality is

that a BGL “turn” indicates a possible change the patient’s physiological parameters,

so the safety monitor should also be reset to match such change, instead of keeping

old past readings and still trying to learn the “turns” starting from an old initial

states.

Evaluation

We implement the complete safety monitoring algorithm and evaluate it on de-

identified, retrospective patient glucose data collected from the Hospital of the Uni-

versity of Pennsylvania (with the Institutional Review Board (IRB) approval). In

this section, we first present the results of the implementation and the evaluation

using real patient data. Then we discuss several design trade-offs regarding how to

configure our algorithm according to different clinical requirements and needs.

CS generation and validation. Starting from y0 = 250 mg/dL, u0 = 10 U/hr

infusion plus 10 U insulin bolus and setting the sampling interval T to be 30 minutes,

we explore the distribution of predicted {y1} given randomly sampled CVS P ∈ HP .

We aim at generating 10,000 CVS for the CS, and to fully explore the possible

distribution of {y1}, we sample 1, 500, 000 CVS in HP and the distribution of {y1}
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Figure 3.9: Distribution of 1, 500, 000 simulated y1.

is shown in Figure 3.9.

The distribution covers a large range from 20 mg/dL to as high as 400 mg/dL.

Hospital protocols consider 50 mg/dL per hour a dangerously high BGL decline

rate. The lowest predicted BGL after 30 minutes is 20 mg/dL, which translates into

a 460 mg/dL per hour drop rate, more than 9 times larger than what the protocols

consider dangerous. On the highest end, the highest predicted BGL is around 400

mg/dL, but it is medicine common sense that 10 U/hr is a fairly high insulin dosage,

and it is very unlikely that a patient’s BGL can even increase from 250 mg/dL to

400 mg/dL in 30 minutes under such high insulin rate. Therefore, it is justified that

the simulated {y1} covers a sufficiently large range. From the 1.5 million candidate

CVS, we select 10,000 CVS into the CS such that the {y1} coverage of the CS is

uniformly distributed, as shown in Figure 3.10.

To validate the coverage of {y(N+1)x} produced by the CS given any starting

state, we extract test cases from the simulated BGL trajectories that are obtained

by running the T1DM Simulator simulator together with the HUP IIP protocol

controller at different initial conditions. We simulate the 10 PVS included in the

T1DM simulator starting from 18 different initial BGL (from 70 mg/dL to 240
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Figure 3.10: Distribution of the simulated y1 of the 10,000 CVS chosen by CS.

mg/dL, 10 mg/dL step increase) and obtain 180 simulated BGL trajectories. A

test case is extracted at each 30 minutes check point of a trajectory, and for each

trajectory we extract test cases from the first 24 check points (time 0 to 12 hour),

because after 12 hours the simulated BGL trajectories are oscillating around an

equilibrium (the initial transient response fades away), so the states simply repeat

in a periodic pattern. Therefore we get 4320 (10*18*24) test cases. For each test

case, we calculate the minimum density of CVS in the neighboring window of yN+1.

Figure 3.11 shows the distribution of the minimum density values of CVS in all

test cases. The overall minimum density value in all 4320 test cases is 8.6 counts

per mg/dL, which is greater than the required 1 per mg/dL, i.e., the generated CS

passes all 4320 coverage tests.

Safety monitor evaluation. We use the generated CS to test our safety moni-

tor. For safety and regulatory reasons, we cannot directly test this newly designed

monitor technique on human patients without extensive offline experiments. So we

demonstrate the validity of our design by replaying retrospective patient BGL data

on the safety monitor, which, from a computational perspective, is the same as if
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Figure 3.11: Distribution of minimum density of CVS in 4320 test cases.

the safety monitor is tested in the real clinical environment. The data is collected

from 51 de-identified (to protect privacy) Type 1 diabetic patients that received car-

diac surgery and were controlled by the HUP IIP (so insulin inputs are known). As

defined by the protocol, the BGL data were taken every 30 minutes.

The evaluation algorithm works as follows. We retroactively run the HUP IIP

(as the normal controller) and our safety monitor on the real BGL data. At each

real BGL reading, the safety monitor computes the range of the next BGL reading

given the control input determined by the HUP IIP and predicts whether or not the

next BGL reading will be safe. Then we move on to the next BGL reading, check

the value to verify if the prediction made in the last step is correct, and repeat the

process.

CS training and range prediction. For each patient, we start prediction on y3

(y1 and y2 are used as the initial training set) and move forward until the end of each

data trace. Figure 3.12 illustrates how the adaptive learning algorithm works on a

patient’s data trace (it is case No.1). At each check point, the algorithm predicts

yN+1 one interval ahead by picking those CVS that achieve lowest prediction errors
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(a) N = 3 (b) N = 4

(c) N = 5

Figure 3.12: Prediction snapshots at N = 3, 4, 5 for patient No.1.

(a) N = 4 (b) N = 5

(c) N = 6

Figure 3.13: Illustration of adaptive training set adjustment on case No.2.

on the past sequence (yi, . . . , yN). As shown in Figure 3.12, our algorithm adaptively

tracks the true BGL trend. At N = 3 there are only 2 history readings and 1 interval

in the training set. The training set is so small at that point that it cannot fully
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Table 3.9: Evaluation results on 51 patients’ data (144 prediction points) when
L is set to 100 mg/dL

L = 100
Safe (True) Unsafe (True)

Safe (Predicted) 95 1
UnSafe (Predicted) 24 24

separate the large CS. That is why the predicted values of y3 cluster around the

true y3 but the BGL trajectories are further apart in the future. But the algorithm

only needs to look one step ahead at a time, so future divergences are irrelevant (as

Figure 3.12 shows, the predicted range converges as the algorithm moves forward to

N = 4 and 5).

We test our algorithm on 51 patients’ trajectories, the lengths of which vary

depending on how long the surgeries were. Overall there are 246 BGL readings, 195

BGL intervals, and 144 BGL readings for the algorithm to predict (the first two

readings of each patient are needed for initial training). The performance of the

safety monitoring algorithm can be tuned by setting the threshold L and window

sizes differently. In practice, those parameters should be set according to caregivers’

clinical needs. According to the IIP, clinicians consider BG less than 60 mg/dL as

critical condition and start to take precautions when BG is within the 60−99 mg/dL

region. Therefore, a reasonable setting of alarming threshold L would be 100 mg/dL,

so that caregivers can receive predictive alerts on risky BG trends. Table 3.9 reports

the performance matrices of the algorithm when L is set to 100 mg/dL (the window

size settings are as follows: Wb = 110, WH = 60, and WL = 30). The result shows

a 96% sensitivity (24 out of 25 unsafe events are correctly identified) with less than

0.5 false alarms per operation period on average (24 false alarms on 51 patients and

each patient’s data is collected from one operation period).
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3.4 Summary of this Chapter

In this chapter, we have proposed a model-based framework to analyze and assure

the safety of generic (i.e., non-personalized) user behaviors in medical CPS, which

are typically guided by rule-based protocols. By applying the framework to an

intraoperative glycemic control case study, we have identified limitations of a current

clinical protocol (the IIP) and designed a new protocol (the PDP) to overcome its

weaknesses while preserving its strengths. We formally verified that the new protocol

ensures safety for a virtual population of an FDA-accepted physiological model that

is instantiated with uncertain initial physiological states.

Existing related work in model-based evaluation of protocols has predominantly

relied on Monte Carlo simulation, and the key limitation is that, given the complex-

ities of the physiological models, there is no guarantee the discrete sample set of

unknown parameters/states cover all clinical scenarios. Our work has demonstrated

that it is possible to leverage hybrid system model checking to realize a new level

of safety guarantees in evaluating protocol-driven behaviors: We formally verified

that a protocol ensures safety for a set of virtual subjects that map to continuous

subspaces of uncertain parameters/states, i.e., the protocol is proven robust to un-

certainties. To the best of our knowledge, this is the first work towards formally

verifying an insulin protocol using the most advanced maximal non-linear glucose

physiological model that contains numerous unidentifiable parameters and unobserv-

able states. Our verification results also revealed that allowing all 18 parameters and

7 states of the non-linear physiological model to simultaneously vary within their re-

spective over-approximated ranges poses a computationally challenging problem to

a state-of-the-art hybrid system model checker. Therefore, we have presented this

problem (through our publication [55]) to the hybrid system community as a bench-

mark, which represents a clinically important problem, for evaluating and improving

verification tools.

To cope with the practical challenge that a patient’s physiological parameters
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may exhibit transient fluctuations in reality, we have developed a run-time safety

monitoring technique to adaptively track the physiological changes using the maxi-

mal model and provide caregivers a predictively alarm on critical events. We applied

the technique to the intraoperative glucose control case study and developed a novel

computational virtual subject (CVS) based adaptive technique for robust safety mon-

itoring. Preliminary evaluation results using a clinical dataset shows the proposed

safety monitor achieves high sensitivity with a low false alarm rate.
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Chapter 4

Model-Based Analysis of

Personalized Behaviors

In Chapter 3, we develop a modeling paradigm for generic (i.e., non-personalized)

behaviors that are driven by rule-based protocols, which are common in hospital

care. In this chapter, we consider personalized user behaviors. This type of behaviors

is frequently observed in out-patient care scenarios such as home care and mobile

health, in which case the users can exercise a high degree of discretion in how they

want to use with the medical CPS according to their individual preferences and

habits.

Part of the work described in this chapter has been published in our previous

paper [54].9

The rest of this chapter is organized as follows: Section 4.1 motivates the problem;

Section 4.2 proposes a methodological framework that enables systematic identifi-

cation of behavior variables and instantiating the behavior models by leveraging

domain knowledge and clinical data; Section 4.3 applies the proposed approach to

modeling individualized insulin pump user behaviors; Section 4.4 concludes our work

9The publisher and/or the copyright agreement grant using any portion of the paper in a dis-
sertation.
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in this research thrust.

4.1 Problem Description

In recent years, the healthcare industry has observed a rapidly growing class of

patient-centered medical technology that aims at constantly monitoring and improv-

ing an individual’s health conditions by real-time physiological sensing and ther-

apy delivering [42, 113, 134]. Examples include body area networks [133], mobile

health [167], and chronicle disease management [177]. Those applications are mostly

designed for out-patient use scenarios, where users are usually patients themselves

and may exhibit distinct behaviors in their interaction with the systems. There is a

critical need to quantitatively model personalized user behaviors in this new type of

medical systems [156]. Modeling individual user’s behaviors has at least two major

benefits. First, behavior models represent higher-level knowledge learned from the

raw data, which can help clinicians and patients more efficiently apprehend health

conditions and diagnose potential problems. There is a fundamental gap in the vast

amount of health information available on individual patients and the very limited

per-patient access to healthcare professionals. For example, Type 1 diabetics who

use insulin pumps have their glucose levels measured every five minutes, yet a pa-

tient typically sees a clinician for a short routine visit every few months. It is clearly

infeasible for a clinician to manually sift through the vast amount of raw data points

trying to uncover relevant trends during a half-hour visit. Second, behavior models

are critical to evaluating the safety of new systems that aim at achieving higher

autonomy. Traditional medical devices for out-patient care are relatively low-risk

monitoring devices such as vital sign monitors for home use. Recent ubiquitous

healthcare applications start to include treatment devices, thereby closing the loop

with promoted levels of automation, e.g., the semi-autonomous glucose management

systems for diabetics [66]. Such systems involve potentially life-threatening risks
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Figure 4.1: An architecture of patient-centered healthcare applications.

(e.g., insulin overdose) and therefore demand new safety analysis techniques that

explicitly consider user behaviors.

We present a generalized architecture, as shown in Figure 4.1, that represents

a wide range of patient-centered healthcare applications, e.g, wearable body sen-

sors [181] and the artificial pancreas [197]. The sensors send physiological measure-

ments to the patient and the Apps. The “Apps” component represents decision

support applications that may run on local and/or remote computing platforms.

The Apps may also serve as an interface to remote healthcare consultation with clin-

icians [134]. If autonomous control is allowed, the Apps may directly send commands

to actuation devices (e.g., infusion pumps). The user monitors physiological mea-

surements from the sensors and receives decision support feedback from the Apps.

The patient impact his/her own physiology through two types of activities: living

activities such as eating and exercise, and treatment activities such as medication

intake. Those two types of activities are represented in Figure 4.1 as two actuation
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channels from behavior to physiology: Living activities directly impact physiology;

Treatment activities need to be actuated by medical devices, which broadly represent

any devices or agents (e.g., medications) that are involved in the treatments.

One unique feature of patient-centered medical applications, compared to other

human-in-the-loop systems such as vehicles and robots, is the direct action channel

from behaviors to the physiology. In other application domains, e.g., automobiles

and robotics, operator behaviors can only change the state of the physical process

(e.g., vehicle dynamics or robot movements) through mechanical or electrical “ac-

tuators”, i.e., the behavior impact is constrained by the design of the actuators.

In medical systems where users are patients themselves, the users can access more

“control surfaces”: In addition to controlling the actuators such as infusion pumps,

users can directly influence their own physiology by behaviors such as eating and

exercising, which are not constrained by actuators. Therefore, it is especially im-

portant to understand the dynamics and impact of behaviors in this type of medical

CPS, because it is impossible to guarantee safety solely by system design without

considering how users would behave.

We consider the behavior modeling problem within the context of patient-centered

healthcare applications, as illustrated in Figure 4.1. The goal is to model how be-

haviors (e.g., the living and treatment activities) are driven by the information that

users receive/perceive (e.g., physiological measurements and clinical advice).

The exact forms of behavior models clearly depend on applications. Our contri-

bution to this problem is two folds. First, we propose a framework to systematically

identify and model relevant behavior factors in applications that share the architec-

ture depicted in Figure 4.1. Second, we apply the modeling framework to a concrete

case study in Section 4.3, and we demonstrate how to instantiate a concrete behavior

model by leveraging both domain knowledge and clinical data.
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Figure 4.2: A methodological framework for analyzing personalized behaviors.

4.2 The Behavior Modeling Framework

We propose a behavior modeling framework, as shown in Figure 4.2, that consists

of several stages. First, we define behaviors as a set of “conditions-actions” pair-

ings. We introduce the “Time-Apps-Physiology triggered Living-Treatment actions”

(TAP-LT) framework to systematically identify relevant behavior variables. Next,

we instantiate the behavior model by incorporating clinical data and domain knowl-

edge. In the last step, we implement the behavior model in modeling tools and

compose it with the physiology & App models for closed-loop analysis. In the rest of

this section, we describe the key components of this framework, and in Section 4.3,

we apply this framework to an insulin pump case study.

4.2.1 Identify Behavior Variables

Engineering psychology researchers decompose the human decision making into sev-

eral key stages including perception, cognition, and response [273]. In the patient-

centered healthcare applications, the user receives information from sensors and
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Apps, and he/she impacts physiology through various activities. We define behav-

iors as a set of condition-action mappings [Conditioni → Actioni], denoting that if

Conditioni is true, the user will take Actioni.

We identify three types of conditions and two types of actions by analyzing

the general architecture in Figure 4.1. Inspired by the concepts of time-triggered

and event-triggered actions, which are widely adopted in many engineering systems

(e.g., real-time scheduling and distributed control) [7], we categorize the triggering

conditions of a user’s actions into time-driven and event-driven conditions. Within

the healthcare application architecture, the event-driven conditions can be further

divided into two types: events generated by the physiology and events generated

by the Apps. Therefore, there are three types of conditions: Time-driven, Apps-

driven, and Physiology-driven conditions (denoted as TAP conditions). On the action

end, there are two types of actions that correspond to the two activity channels,

as discussed previously: Living activities and Treatment activities (denoted as LT

actions).

A user’s actions may be triggered by one or a combination of the three conditions

in the TAP-LT framework. For example, eating regular meals is a time-driven living

activity, and taking medications following Apps’ advice is an Apps-driven treat-

ment activity. A diabetic patient regularly checking blood glucose levels and only

injecting insulin if the glucose level is too high is an example of an action (insulin

injection) triggered by a combination of time-driven conditions (regular checkpoints)

and physiology-driven conditions (high glucose level).

4.2.2 Formulate Behavior Functions

After identifying the relevant behavior condition and action variables, the next step

is to define the functional mapping between conditions and actions. Each condition-

action pair is formulated as 〈h(t, yP , yA) = True → [uL, uT ] = g(t, yP , yA, uL, uT )〉,
where t denotes time, yP denotes physiological information, yA denotes Apps’ feed-
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back, uL and uT denote living and treatment actions, respectively10. As an example,

consider a diabetic patient checking the glucose level (yBG) every 120 minutes, and

if the glucose level is higher than 180 mg/dL, he/she takes an insulin dose uT cal-

culated as (yBG − 180)/20 (the ratio 20 is called insulin sensitivity, a metric for

tuning insulin doses based on yBG). This specific behavior can be formulated as

〈(mod(t, 120) = 0 ∧ yBG > 180) = True→ [uL, uT ] = [0, (yBG − 180)/20]〉.
Formulating the condition and action functions typically requires integrating

qualitative understanding from domain knowledge and quantitative analysis of pa-

tient data. For example, in the glucose control application, from general clinical

knowledge, we know that patients tend to take correction insulin when the glucose

level is high. However, the frequencies of glucose checking and correction may greatly

vary across individuals, and therefore the personalized behavior model needs to be

inferred by analyzing data.

4.2.3 Closed-Loop Safety Analysis

The behavior model, which consists of [Condition → Action] relations, is imple-

mented in modeling tools for closed-loop analysis. Selecting the appropriate model-

ing and analysis tool would depend on how the condition and action functions are

formulated, e.g., whether the model is continuous time or discrete time and whether

the behavior functions are deterministic or probabilistic. In the next section, we

apply the general framework to modeling insulin pump users’ behaviors, and we ex-

press the behavior model in a formalism that allows probabilistic formal verification

of the behaviors’ impact on physiology.

10Here we follow the control system notation convention, in which y represents measurements
and u represents control inputs to the control plant (the physiological process in our case).
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4.3 An Insulin Pump Therapy Case Study

In this section, we apply the behavior modeling framework to an out-patient diabetes

care application. This section is organized as follows: Section 4.3.1 motivates the

problem; Section 4.3.2 summarizes the contributions of this case study; Section 4.3.3

presents the “Eat, Trust, and Correct” (ETC) behavior analysis, which is an appli-

cation of the proposed TAP-LT framework; Section 4.3.4 introduces a data-driven

technique to quantitatively model ETC behaviors; Section 4.3.5 describes probabilis-

tic formal verification of the behavior model using an individualized physiological

model.

4.3.1 Motivation

Diabetes affects approximately 29 million people (or 9.3% of the population) in the

United States and is the seventh leading cause of death [95]. Type 1 diabetics (more

than 1 million in the United States) and some Type 2 diabetics depend on intensive

daily insulin therapy to control their blood glucose level and to avoid numerous seri-

ous long-term complications of hyperglycemia, such as cardiovascular disease, nerve

damage, blindness, and kidney damage. Advanced insulin pump technology pro-

vides continuous subcutaneous insulin infusion (CSII) therapy. It is estimated that

about 400, 000 T1D patients in the United States use insulin pumps [28]. Reviews

of clinical studies suggest that CSII provides improved glycemic control [200, 25].

Current insulin pumps require close supervision from the user in many operational

aspects. The user needs to do a carb count for every meal so that the pump software

can recommend an insulin bolus dose based on the estimated carbohydrate ratio and

insulin sensitivity parameters. The user needs to approve or modify every software-

recommended bolus dose. Due to safety concerns, there is currently no insulin pump

approved to the U.S. market that can deliver boluses automatically without user

acknowledgment.
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A recent official consensus statement by clinical expert committees stresses crit-

ical needs on evidence-based research to better understand the impact of insulin

pumps on diabetic users in various physiological, psychological, and social aspects

(see the AACE/ACE report [103]). Clinical studies on the use of insulin pumps

predominantly focus on evaluating the impact on physiological metrics, such as the

mean glucose value, rate of hypoglycemia, and HbA1c levels [128, 91, 227]. Very few

results exist on understanding the behavioral aspects of how diabetic users interact

with insulin pumps, which are important factors in assessing how much a patient

may benefit from the CSII therapy [103]. For example, the behavioral factors include

the user’s eating patterns, adherence to pump-recommended insulin doses, and the

level of attention to glycemic control.

Recent advances in insulin pump technology demonstrate a clear trend towards a

high level of automation [2]. At the same time, a proven safe and effective fully closed-

loop glycemic control system that requires no user supervision is not likely to be

available in the near future [197]. The emerging smart insulin pumps [285] introduce

new challenging engineering concerns: For example, how much the user will trust

the automation features, whether he/she will eat more carbohydrates while believing

the pump’s safety features can “handle it”, and whether he/she may become less

attentive to glucose monitoring. One of our previous papers discusses the potential

hazards associated with the shared human-software control in a multi-mode artificial

pancreas system [222].

4.3.2 Contributions

We develop a novel data-driven technique to instantiate the TAP-LT based behav-

ior model in the insulin pump application. The instantiated ETC model enables

analyzing common behavior patterns within the patient population. For effective

clustering, we design a technique to reduce the dimensionality of the model to a

compact representation that retains most of the information based on a key observa-
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Figure 4.3: The CSII system architecture.

tion about the model. We validate the dimension reduction and clustering method

by cross validation. The ETC model reveals new quantifiable behavior patterns in

clinical data, which enable personalized clinical diagnosis and patient education, as

confirmed by medical expert review of the results. Formal verification of the be-

havior model demonstrates that switching behaviors may improve individual clinical

outcomes. The verification results provide quantitative evidence of how diabetic

patients may achieve better glycemic control by behavior changes.

4.3.3 “Eat, Trust, and Correct” (ETC) Behavior Model

In this section, we introduce an “Eat, Trust, and Correct” (ETC) modeling frame-

work to analyze the behavior patterns of T1D insulin pump users. Figure 4.3 il-

lustrates an overview of the CSII system. In this system, the user and patient are

the same person. The Continuous Glucose Monitoring (CGM) sensor periodically

transmits a subcutaneous glucose measurement to the pump and the CGM readings

can also be seen by the user. When the user eats, he/she inputs the meal information
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into the pump Bolus Wizard® (BWZ) software11, which is a bolus advisory feature

that calculates a recommended insulin bolus dose. The user needs to approve or

modify every BWZ-recommended bolus. The user can also initiate correction in-

sulin boluses at any time. In current insulin pumps, the BWZ cannot deliver insulin

without the user’s approval.

By applying the TAP-LT framework to analyzing the CSII system, we iden-

tify that the user exercises control authority through three channels: 1) eating, a

living activity that represents the user’s internal interaction with his/her own phys-

iology; 2) approving or modifying BWZ-recommended boluses, which is an App-

triggered treatment activity; 3) taking correction insulin boluses, which is a time-

and physiology-triggered treatment activity. Based on this observation, we propose

the ETC behavior modeling framework that includes the three key components of

the user’s behaviors in the CSII system:

• Eat: How often a patient eats throughout a day and what the meal carb count

distributions are at different times of the day;

• Trust: The likelihood of a patient following the BWZ recommended bolus

doses, and if not, how much dosage he/she adjusts;

• Correct: How often a patient takes correction boluses and what the dose

distributions are at different times of the day.

In this study, we aim at modeling quantifiable behavioral metrics from available

clinical data. The ETC behavior model represents the statistical trends in observ-

able user activities of the insulin pump application. We use the terms Eat, Trust,

and Correct as concise references to the three behavioral aspects in the case study.

11All patients in this study use the Medtronic systems, in which the bolus recommendation
software is called Bolus Wizard (BWZ). In this section, we use “BWZ” to generally refer to the
bolus advisory feature. The methods and findings are certainly not specific to any particular
manufacturer’s products.
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Although the modeling technique is applicable to other MCPS systems, the mean-

ing of the ETC model is specific to its application context. For example, the Trust

component of the ETC model captures a pattern in the data that indicates user

adherence to software recommendations, but the model is not intended to describe

users’ inherent psychological trust level of an MCPS system in general.

We collect the CSII system data from 68 T1D patients during their clinical visits

to the diabetes center in the University of Pennsylvania Health System (with IRB

approval). The patients all use insulin pumps augmented with a CGM sensor. The

average time range of a patient’s data is 35 days. A national registry of T1D patients

receiving care in diabetes centers, of which Penn is a participating center, indicates

that 60% of adult patients use insulin pumps, and 15% use CGM sensors [23]. So

from the 932 patients with T1D seen at the University of Pennsylvania in the past

year, 84 would be expected to use both an insulin pump and a CGM sensor. Thus,

the 68 patients included in this study represent the majority of patients expected to

be utilizing this sensor-augmented CSII technology in the management of their T1D

at the University of Pennsylvania Health System.12

Thirteen of the 68 patients have data that are from different continuous time

periods (we call a continuous period a “segment” in the rest of this section). For

each of those patients, the data segments are typically separated by several months.

Other patients have one data segment each. All together there are 92 data segments

from the 68 patients, with an average segment duration of 26 days. Since there is

no reason to assume the same patient’s behavior does not change from one segment

to another, we use the segment (referred to as “patient-segment” in the rest of this

section) as the unit entity when analyzing behaviors. 13

The dataset includes two parts: 5-minute sampled CGM measurements and in-

sulin pump data. The insulin pump data contains two sections: insulin delivery logs

12We had to exclude some patients from the dataset because of missing data, i.e., for those
patients, there are not enough CGM measurements, and insulin pump records that overlap in time.

13In the behavior analysis, we actually identify a few patients whose behaviors change between
segments.
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and BWZ data. The insulin delivery logs record the insulin basal rate at points of

change, the user selected insulin bolus doses, and the pump delivered insulin bo-

lus doses. The insulin basal rate is a low continuous infusion rate and it changes

at several pre-scheduled times of the day. The insulin boluses consist of mealtime

boluses and non-mealtime boluses, which we call correction boluses. All data are

time-stamped to the precision of second.

The BWZ calculates recommended bolus doses based on three pieces of informa-

tion: (1) the meal bolus dose that is calculated from the carbohydrate input and

the estimated patient-specific carbohydrate ratio, which represents the insulin dose

needed for each unit carbohydrate input; (2) the correction bolus dose that is cal-

culated from the difference between the current glucose level and the target glucose

level (e.g., 100 mg/dL), and the estimated patient-specific insulin sensitivity, which

represents the insulin dose needed for lowering a unit glucose value; (3) the active

insulin on board, which is an estimated amount of residual insulin in the physiologi-

cal system. The BWZ data section includes the following data fields: user-reported

carb counts, estimated correction bolus doses, estimated meal bolus doses, estimated

active insulin on board, the target glucose levels, carbohydrates ratios, insulin sensi-

tivity values, and BWZ-recommended bolus doses. Next, we present the key findings

of analyzing the ETC behavioral metrics from the CSII clinical dataset.

“Eat” Behavior Analysis

The BWZ data contains patient-reported meal carb counts and mealtimes. For

each patient, we aggregate the meal data of each patient-segment and calculate the

per-segment distribution of the carb count at different times of the day. We then

feed all patient-segments’ meal distribution data into clustering algorithm to identify

common patterns within the population (technical details of the clustering method

are explained in Section 4.3.4). Each cluster contains a subset of the patient-segments

with similar meal distribution patterns. We identify three Eat clusters from the CSII
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(a) Cluster E1 (b) Cluster E2

(c) Cluster E3

Figure 4.4: Aggregated mean daily meal intake distributions of all patient-
segments in three Eat clusters. E1 shows three prominent peak mealtimes with
a low likelihood of carb intake between regular meals. E2 shows regular peak
mealtimes with an elevated likelihood of carb intake between regular meals.
E3 shows no regular peak mealtimes, and carb intake spread throughout a day.

dataset. Figure 4.4 illustrates the aggregated average daily meal intake statistics of

the patient-segments within each cluster.

To calculate meal frequency over the data collection time interval, we round each

mealtime to the nearest whole hour time. In Figure 4.4, the red solid line (mapped

to the right Y-axis) is a connected-dot line of meal frequencies at 25 hour times (0-24

Hours): For example, a meal frequency of 0.4 at time 8 AM in Figure 4.4(a) means

for those patients in cluster E1, on average 40% of the days a patient would eat a

meal around 8 AM. The corresponding point on the blue dashed line (mapped to

the left Y-axis) is the mean carb count per meal over all the meals around 8 AM of
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all the patients within cluster E1.

Figure 4.4 shows three distinct daily meal intake patterns, denoted as clusters

E1, E2, and E3. The E1 cluster shown in Figure 4.4(a) represents patients who

consistently eat three regular meals (peak frequency times are breakfast around 8

AM, lunch around 1 PM, and dinner around 7 PM) with some morning and afternoon

snacks around 10 AM and 4 PM, respectively. The E1 patients rarely eat in the late

night or early morning. The E2 cluster shown in Figure 4.4(b) represents patients

who eat three regular meals with more morning and afternoon snacks than the E1

patients. The E2 patients also have higher average per-meal carb intake than those

in E1. The E3 cluster shown in Figure 4.4(c) represents patients who tend to eat

throughout the day with no prominent frequency peaks and have lower carb intake

per-meal when compared to the E1 and E2 patients. The number of patient-segments

(out of all 92) that fall into the three Eat clusters are 28, 30, and 34, respectively.

“Trust” Behavior Analysis

The BWZ feature recommends a bolus dose each time the user activates it. In

the CSII dataset, we iterate through the records of user-selected insulin boluses

and compare the BWZ-recommended doses with the corresponding user selected

doses. For each patient-segment, we aggregate all pairs of [BWZ-recommended dose,

user-selected dose] and calculate the probabilities of the patient following, increas-

ing, or decreasing the BWZ-recommended doses, as well as the magnitudes of dose

adjustments. We then feed all patient-segments’ BWZ-adherence profiles, each of

which consists of the three probabilities, into a clustering algorithm and identify

four clusters, each of which represents a group of patient-segments with similar

BWZ-adherence patterns.

Figure 4.5 shows the aggregated box plots of the differences between the BWZ-

recommended dose and corresponding user-selected doses in each Trust cluster. The

clusters are denoted as clusters T1, T2, T3, and T4. The T1 cluster represents

101



Figure 4.5: Box plots of the differences between user-selected and BWZ-
recommended boluses of all patient-segments in four Trust clusters. The three
probabilities shown for each cluster are the aggregated probabilities of pa-
tients increasing (pHigh), decreasing (pLow), or following (pFollow) the BWZ-
recommended boluses. T1 shows a high probability of patients following the
BWZ-recommended doses. T2 shows a high probability of patients increasing
the BWZ-recommended doses. T3 shows a moderate probability of patients
increasing BWZ-recommended doses. T4 shows a moderate probability of pa-
tients decreasing BWZ-recommended doses.

patients who strongly prefer following BWZ-recommended doses and only occasion-

ally make adjustments. Note that in the box plot, samples are heavily condensed

around the means because in most occasions the differences are close to zero. The

T2 cluster represents patients who most of the times prefer higher doses than the

BWZ-recommended values with significant dose increases. The T3 cluster repre-

sents patients who mostly follow the BWZ-recommended doses and sometimes make

moderate adjustments, most of which are increasing the BWZ-recommended doses.

The T4 cluster represents patients who mostly follow the BWZ-recommended doses
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and sometimes make moderate adjustments, most of which are decreasing the BWZ-

recommended doses. The number of patient-segments (out of all 92) that fall into

the four Trust clusters are 53, 6, 25, and 8, respectively, suggesting that most pa-

tients either mostly strictly follow the BWZ-recommendations or make moderate

incremental adjustments.

The T3 and T4 represent patients who tend to adjust BWZ-recommended doses in

opposite directions. The clustering algorithm does not find a “negative image” to T2,

which would represent patients who frequently make aggressive decreasing adjust-

ments to the BWZ-recommended doses. This indicates that the BWZ-recommended

dose calculation is tuned to be conservative for most diabetic patients, which makes

sense from a safety standpoint: Insulin overdose can cause life-threatening hypo-

glycemia [15], and therefore, the BWZ software must be tuned to be safe for most

patients. This also explains why few patients are in the T2 or T4 clusters: Given

that BWZ is tuned to be conservative, most patients should not need to frequently

decrease the doses (T4), and on the other hand, most patients should not need to

over aggressively increase the dose either (T2).

“Correct” Behavior Analysis

Unlike mealtime boluses, which are associated with a patient’s routine daily meal

patterns, both the frequency and the doses of correction boluses highly depend on

personal preferences and the patient’s willingness as well as availability to manage

blood glucose. From the CSII dataset, we calculate the aggregated distribution of

correction bolus frequencies and doses over the whole hour times of a day (similar to

how we treat the meal information, we round the bolus times to the nearest whole

hour times). We feed the correction bolus frequencies and dose distributions into

a clustering algorithm and identify three clusters of representative correction bolus

patterns, denoted as clusters C1, C2, and C3.

Figure 4.6 shows the mean dose and frequency distributions of all the patients in
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(a) Cluster C1 (b) Cluster C2

(c) Cluster C3

Figure 4.6: Correction bolus mean dose and frequency distributions of all
patients in the four Correct clusters. C1 shows rare correction bolus use. C2
shows frequent correction bolus use with moderate doses. C3 shows occasional
correction bolus use with three frequency peaks in a day.

each correction bolus cluster. Similar to Figure 4.4, the frequencies (red solid lines

in Figure 4.6) represent aggregated daily frequencies: For example, 0.1 at 7 AM. in

Figure 4.6(a) means for all patient-segments within cluster C1, on average 10% of

the days a patient would take a correction bolus around 7 AM. The dashed dot blue

line in the same figure represents the corresponding mean dose distribution over all

the patients in the cluster.

The C1 cluster shown in Figure 4.6(a) represents patients who rarely take cor-

rection boluses. The C2 cluster shown in Figure 4.6(b) represents patients who

frequently take correction boluses during the daytime with moderate doses. There

are two notable dose peaks in the midnight to early morning period, indicating that
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these patients sometimes take a large bolus during that time interval. The C3 cluster

shown in Figure 4.6(c) represents patients who occasionally take correction boluses

with three peak frequency times around 9 AM, 4 PM, and 10 PM. The number of

patient-segments (out of all 92) that fall into the three Correct clusters are 55, 17,

and 20, respectively, suggesting that most patients do not frequently take correction

boluses. In all three clusters, the bolus doses are mostly in the low-mid range (0-

5U). This is consistent with common clinical guidelines of diabetes self-management:

Large boluses at non-mealtimes are usually not recommended as they may cause life-

threatening hypoglycemia.

Summary and Remarks of the ETC Behavior Analysis

The CSII dataset includes T1D patients who visit the clinic during the data collection

period starting in May 2014. We include a patient’s data as long as the time ranges

of the insulin data and CGM data at least partially overlap, because we need time-

matched insulin and glucose data to individualize the physiological model for closed-

loop evaluation, which is presented later in Section 4.3.5. We do not have any other

patient screening criteria for data inclusion. The current CSII dataset includes T1D

patients whose ages range from 23 to 79 and body weights range from 50 kg to 175

kg. As noted before, the set of patients represents the majority of T1D patients at

the study site who use both insulin pumps and CGM sensors.

The three Eat clusters, four Trust clusters, and three Correct clusters generate 36

possible ETC combinatorial types. Table 4.1 lists the frequencies of the ETC types

observed in the CSII dataset (the remaining ETC types not presented in the table

are never observed on any of the patient-segment in the CSII dataset). The most

frequent Trust and Correct combination is T1C1 (42% of patient-segments are this

subtype), indicating that a significant portion of patients rarely make adjustments

to the BWZ recommended doses and rarely take correction boluses. The T3 subtype

is less common than T1 but still represents 27% of patient-segments. The T2 and T4
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Table 4.1: Frequencies of ETC types in the CSII dataset.

ETC Type Frequencies (of 92 patient-segments)
E1T1C1 17
E3T1C1 11
E2T1C1 11
E3T3C3 6
E2T3C1 6
E2T1C2 4
E1T3C1 4
E3T4C1 3
E3T1C3 3
E3T1C2 3
E2T3C2 3
E3T4C3 2
E3T4C2 2
E3T3C1 2
E2T2C2 2
E1T3C3 2
E1T1C3 2
E3T2C3 1
E3T2C2 1
E2T4C3 1
E2T3C3 1
E2T2C1 1
E2T1C3 1
E1T3C2 1
E1T2C3 1
E1T1C2 1

106



Figure 4.7: An overview of the user behavior.

subtypes represent uncommon subtypes, but they represent very distinct patterns

than T1 and T3, and a number of patients do exhibit those Trust patterns. C2 and

C3 are less common subtypes but do cover 41% of the patient-segments. Each of

the three Eat subtypes covers about one-third of the patient-segments, indicating

diverse and almost evenly distributed eating habits within the patient population.

The ETC model captures the most important user activities that directly impact

the glucose control outcomes. In early 2015, we present the ETC data analytics

results to a diabetes research group led by Dr. Michael Rickels, who is the director

of Translational Research Program in Institute for Diabetes, Obesity & Metabolism

at the University of Pennsylvania School of Medicine. The clinicians think that the

ETC data mining approach extracts new information that is highly clinically relevant

but is not part of the current vendor pump data analytics software outputs, which

only include overall statistics such as the means and variances of CGM values. The

clinicians believe that the ETC metrics provide important insights for caregivers to

better understand how each patient’s personalized glucose-related behavior impacts

his/her glucose levels, which would ultimately promote the efficacy of treatment and

improve clinical outcomes.
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4.3.4 Data-Driven Behavior Modeling

The goal of modeling personalized behaviors is two-folds: (1) Discern clinically rele-

vant insights about user behaviors from the vast amount of raw time-series data and

represent the findings in a concise form such that the caregivers can easily appre-

hend; (2) Analyze how changing behaviors may impact the physiology and provide

actionable feedback to the users. Achieving these goals requires developing a quanti-

tative behavior model that is clinically meaningful and at the same time suitable for

closed-loop analysis to provide actionable feedback to human caregivers and users.

This is a difficult research problem with several major challenges. First, con-

strained by practical limitations, the raw time-series behavioral information obtained

from MCPS is typically noisy, sporadic, and limited in sampling duration & fre-

quency. It was only in recent years that systems such as sensor-enhanced wearable

pumps grow more popular, and the downloadable user activity logs become avail-

able. There currently lacks established techniques of representing and extracting

behavioral features from this new type of clinical data. Second, the data-driven

models must enable intuitive clinical interpretations at a certain level, such that the

caregivers and patients can get actionable feedback from the model-based analysis.

Third, there is a notable representation gap between the behavior information, which

is currently in the raw sporadic time-series form, and the input format that most

closed-loop analysis techniques require, which is well-defined math functions.

In this section, we present a methodology to address the afore-mentioned chal-

lenges and apply it to modeling the ETC user behaviors in the case study. We

propose a technique to extract personalized probabilistic behavior features from the

raw time-series data and analyze common patterns of the behavior features using a

clustering technique. The behavior model representations have intuitive clinical in-

terpretations. In addition, the behavior models can be integrated with physiological

models in the closed-loop analysis that offers user feedback on how they may change

behaviors to improve clinical outcomes.
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Figure 4.7 illustrates the operational workflow in the use of the CSII system. At

non-mealtime, the patient interacts with the system by requesting correction boluses.

At mealtimes, the patient inputs the carb count and take meal-time boluses with

the assistance of the BWZ feature. By applying the TAP-LT framework, we identify

three main user behavior factors, “Eat, Trust and Correct”. In the rest of this

section, we describe our approach of building the ETC model from raw data and

using it in closed-loop verification.

Quantitative Modeling of ETC Behaviors

In this section, we describe a personalized probabilistic representation to model each

of the three behavior factors.

The meal carbohydrate intake and correction bolus usage both depend on the

time of the day. To model the Eat behavior, we partition the time of the day into

NE intervals TE1 . . . TENE
, where ∪NE

i=1T
E
i = [0, 24] (hours). We partition the possible

value range of a carb count into ME intervals SE1 . . . S
E
ME

, where ∪ME
i=1S

E
i = R+.

Similarly, to model the Correct behavior, we partition the time of the day into NC

intervals and partition the possible value range of a bolus dose into MC intervals.

Let XE denote the “Eat” matrix of dimension NE by ME and let XC denote

the “Correct” matrix of dimension NC by MC . An element xij in XE represents the

probability of the patient eating a meal with the carb count in the interval SEj within

the time interval TEi . Similarly, an element xij in XC represents the probability

of the patient taking a correction bolus with dose in the interval SCj within the

time interval TCi . Clearly, for each row, we have ∀i∑j xij = 1. We estimate the

probability matrices XE and XC for each patient-segment from the CSII dataset.

The Trust behavior indicates a patient’s BWZ-adherence level. We aggregate

all the [BWZ recommended dose, user selected dose] pairs of each patient and esti-

mate the probabilities of the patient increasing, following, or decreasing the BWZ-

recommended doses: Those three probabilities are denoted as PH , PF and PL, re-
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spectively. Let DT denote the probability distribution DT = 〈PL, PF , PH〉.
The complete ETC behavior model is a tuple ETCk = 〈XE, XC , DT 〉, where

k is the index of the patient data segment from which the model parameters are

estimated. The ETC model is a compact quantitative representation that extracts

the critical behavior metrics from the raw time-series data. The model parameters

(i.e., the probability values) have clear practical meanings that facilitate clinical

diagnosis and patient education. In current practice, when a Type 1 diabetic patient

comes to the clinic for a routine visit, it is impossible for clinicians to manually go

through a downloaded insulin pump log, which typical contains thousands of data

points, and identify the trends in the raw data14. As a result, clinicians currently

rely on a limited number of gross statistics such as overall mean and deviations

of glucose readings to diagnose and make recommendations. Those statistics do

not reveal temporal trend information of user behaviors, which the clinicians are

interested in but lack methods and tools to extract from the data. The ETC model

provides a means of analyzing and summarizing the key behavioral information in

the raw time-series data.

Clustering of ETC Behavior Models

The previous section describes the ETC model that represents personalized proba-

bilistic behavior traits. In this section, we aim at uncovering population-level com-

mon behavioral patterns from the patient-level ETC models. More specifically, we

propose a learning technique that identifies clusters of patients who share similar be-

havioral traits. Population-level behavior classification provides practitioners with

deep insights into the different behavioral types within a population and their dis-

tinct impacts on the clinical outcomes. Classifying patient behaviors also benefits

patient education and diabetic community peer support, which provides vital op-

14As an example, in our study, an insulin pump log that is downloaded by clinicians during a
routine visit typically contains several weeks of data. The CGM is sampled every five minutes,
which translates into more than 2000 data points per week.
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portunities for diabetes patients to share their own experiences in optimizing daily

glucose-related behaviors to achieve better glycemic control.

To goal of clustering is to identify common patterns within the set of ETCk tuples

estimated on the CSII dataset. Note that ETCk contains NE × (ME − 1) + NC ×
(MC − 1) + 2 free dimensions, which can quickly out-grow the size of the dataset (92

data segments in our study). Clustering high-dimensional data introduces a number

of computational and theoretical challenges, as noted in extensive machine learning

research [152], for example, the dimensions become hard to think of and visualize,

computational intractability (the well-known “curse of dimensionality” issue), and

the relative distance between samples converges as dimensions grow. Numerous

machine learning techniques exist on tackling this challenge [3]. In the CSII dataset,

not only that the number of free variables can become far greater than the sample

size, the clinical meanings of the variables are highly heterogeneous and the three

elements in ETCk are estimated from disjointed subsets of the dataset. Therefore,

we decompose the clustering problem into three sub-problems, i.e., clustering each

of XE, XC , and DT independently. The ETC clusters would consist of combinations

of the sub-clusters.

Dimension reduction of the Eat and Correct models. The “Eat” and “Cor-

rect” matrices XE and XC are each defined by two partitions: the time partitions

and magnitude partitions. To tackle the dimensionality challenge, we design a two-

step clustering technique. In the first step, we reduce the column dimensionality by

transforming each row of XE and XC into a low-dimension representation that still

retains most of the underlying information. In the second step, we conduct clustering

analysis using the transformed compact representations of XE and XC .

The first step of our approach is based on a key observation about the charac-

teristics of the XE and XC matrices. Each row in XE or XC is a distribution of

input (either carb or insulin) magnitudes at a certain time interval. Although a
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row contains ME or MC discrete probabilities (ME − 1 or MC − 1 are free variables

as probabilities sum up to one), the fundamental feature of the whole underlying

“distribution” may be characterized by fewer variables. For example, for a Gaussian

distribution, regardless of the number of discrete partition intervals, the distribution

can be characterized by two Gaussian parameters, i.e., the mean and deviation. This

insight offers an opportunity to substantially reduce each row of the XE and XC ma-

trices to a low-dimension representation which retains most of the information of the

original row distribution.

To test whether the dimension-reduction insight can work on the estimated ETC

model, we conduct principal component analysis (PCA) [132, 278] on the rows of

each XE and XC matrices estimated from the 92 patient-segments given different

configurations of ME and MC . Figure 4.8 shows the percentages of the total variances

in the row data that are explained by the first two and three principal components in

the PCA analysis, given different configurations of ME and MC . We can see that the

first three principal components can explain more than 90% of total data variances

in most MC settings and can explain more than 80% of total data variances in most

ME settings. Intuitively, the PCA analysis results indicate that the information in

each row distribution of the XE and XC matrices can be mostly captured using only

two or three principal components after the PCA transformation.

We conduct PCA transformation on each row and reduce each 1-by-ME or 1-by-

MC probability distribution to a 1-by-2 or 1-by-3 tuple that contains the transformed

PCA coefficients of the first two or three principal components. As a result, the

choices of ME and MC no longer affect the dimensionality of the transformed PCA

representation, i.e., setting ME and MC differently will not increase the complexity

of the subsequent clustering. Therefore, choosing ME and MC mostly involves trade-

offs that stem from practical implications of the behavior model. On one hand, the

partitions must distinguish meal carb counts and bolus doses at reasonable granulari-

ties so that caregivers can get clinically meaningful feedback from the model analysis,
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(a) PCA Analysis of the Eat ME Settings

(b) PCA Analysis of the Correct MC Settings

Figure 4.8: PCA analysis results of different ME and MC settings. The figures
show the percentages of the total variance in the rows in XE or XC that are
explained by the first 2 and 3 principal components.

e.g., how patients may benefit from changing their eating and correction patterns.

On the other hand, too fine-grained partitions cause data sparseness, which dimin-

ishes the power of PCA transformation. The intuition is that when the partition is

overly fine-grained, the discrete probabilistic distribution becomes a sparse vector

that no longer resembles a concentrated distribution shape, and thus the percentage
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of variance explained by the first two or three principal components would decrease,

as shown by the decreasing trend in Figure 4.8.

Partition configurations of the Eat and Correct models. Clinicians may set

ME and MC within a reasonable range considering the context of the insulin pump

application. For example, statistical analysis of the CSII dataset reveals that the carb

intake per meal generally falls within 0 to 200 grams (most carb counts are under 100

grams). This is consistent with the general clinical recommendation that the daily

total carb intake for an average adult should not exceed 300 grams, and significant

reduction may be considered for Type 1 diabetics. The Eat matrix XE divides the

entire possible carb range into ME intervals, and clinicians can choose ME to achieve

a particular level of granularity. For instance, ME = 4 would characterize the carb

intake with 4 intervals, which crudely distinguish low, medium, and high carb intake

per meal. Increasing ME enables more fine-grained distinction between different

meal intake distributions. But note that the ETC model analysis would eventually

be used to generate actionable feedback that is going to be implemented by humans,

and therefore too fine-grained distributions not only causes data sparseness problem

but are also not necessary or meaningful. Similarly, for the Correct matrix XC ,

clinicians may set the number of intervals MC considering the practical context:

Most insulin bolus doses are within 0 to 15 Units, and patients mostly set the dose

with a minimal increment (e.g., 0.5 Units). Overall, setting ME and MC between

4 and 10 appear to be a reasonable range considering the technical and practical

trade-offs.

The same principles also apply to determining the number of time intervals in

a day NE and NC . Since most eating and correction activities happen between 6

AM to 11 PM (excluding typical bedtime), there are a limited number of reasonable

choices for determining how to partition the time of a day. For example, setting NE

and NC to 3 means dividing the time intervals into morning, afternoon, and evening,
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which offers a reasonable time-granularity for caregivers to interpret and use the ETC

analysis results. On the other end, setting NE and NC to 6 would further distinguish

six time intervals in a day, e.g., breakfast, morning snacks, lunch, afternoon snacks,

dinner, and evening snacks. Dividing the time into even finer intervals would not

only cause data sparseness problem but also make the ETC modeling results difficult

to interpret.

Clustering analysis of the Eat and Correct models. After the first step, each

row in XE or XC matrix is transformed into a tuple y1, . . . , yn which represents the

PCA coefficients of the first n principal components. We then stack the tuples of

different rows by the time interval order and transform the XE or XC into a vector

of length n ∗ NE or n ∗ NC (recall that NE and NC are the numbers of intervals,

i.e., numbers of rows in the matrices). The transformed XE and XC , denoted as

X ′E = [y11, . . . , y1n, . . . , yNE1, . . . , yNEn] and X ′C = [y11, . . . , y1n, . . . , yNC1, . . . , yNCn].

To cluster the Eat and Correct components, we run the k-means clustering algo-

rithm [107] on the transformed X ′E and X ′C models. To determine the best number

of clusters, we perform 10-fold cross validation [146] and measure the average total

sum of squared distances to the centroids (i.e., the cost function) generated by k-

means with different cluster settings. Figures 4.9(a) and 4.9(b) show how the cost

function outputs over different numbers of Eat and Correct clusters. The curves

exhibit a typical scree-plot pattern [252]: The cost value quickly decreases initially

as the number of clusters increases, and the clustering algorithm fits the data better

and better; then the cost value levels off past a certain turning point, indicating that

over-fitting starts to happen. The turning point in the plot typically indicates a good

number of cluster setting, as validated in other machine learning research [252]. For

both Eat and Correct models, Figure 4.9 shows a clear turning point at 3 clusters.

To further validate the choices of number of Eat and Correct clusters, we conduct

leave-one-out cross validation (LOOCV) [146, 140] with different numbers of clus-
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(a) Cross Validation of the Eat Model

(b) Cross Validation of the Correct Model

Figure 4.9: Cross-validation results with different numbers of Eat and Correct
clusters.

ters. By running LOOCV, we further test whether the clustering algorithm (given a

particular number of clusters setting) is robust in the sense that leaving one sample

out of the training set should not cause the clustering results to significantly vary.

A cluster setting fails to pass the LOOCV if the clustering results fundamentally

change over different runs, e.g., the centroids shift significantly, and/or a non-trivial
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Figure 4.10: Cross-validation results with different numbers of Trust clusters.

portion of samples switch cluster identifications when a different single sample is

being held out. The LOOCV results indicate that for both Eat and Correct models,

the 3-cluster setting passes the LOOCV test, whereas 4 or more clusters would fail

the LOOCV. This result is consistent with the 10-fold cross validation analysis: As

the number of clusters increases past the turning point and starts to over-fit the

data, some clusters will be increasingly more sensitive to holding one sample out.

Therefore, we identify 3 Eat clusters and 3 Correct clusters. The statistics and clini-

cal interpretations of the three Eat and Correct clusters are presented and discussed

in Section 4.3.3 (see Figures 4.4 and 4.6).

Clustering analysis of the Trust model. To cluster the Trust component DT ,

we run the k-means clustering algorithm [107] on the 92 “Trust” probability distri-

butions DT ’s. Similar to how we cluster the Eat and Correct models, we perform

10-fold cross validation to determine the number of Trust clusters, and we further
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Table 4.2: Four output centroids returned by the k-means algorithm running
over 92 patient-segments’ Trust probability distributions DT .

Centroid ID PH PF PL
1 0.09 0.90 0.01
2 0.49 0.49 0.02
3 0.23 0.74 0.03
4 0.06 0.74 0.20

Table 4.3: Statistics of the per-patient differences between the CSII glucose
measurements and the model-simulated glucose values. BG denotes the blood
glucose level.

Metric Value
Mean Difference of Per-Patient Mean BG 15 mg/dL

Mean Difference of Per-Patient BG > 180 Percentage 5%
Mean Difference of Per-Patient BG < 70 Percentage 1%

Mean Difference of Per-Patient BG in [70,180] Percentage 6%

validate the result using LOOCV. Figure 4.10 shows how the cost function outputs

over numbers of clusters, and it shows a clear turning point at 4 clusters. The

LOOCV results show that the 4 cluster setting passes the LOOCV test, whereas 5

or more clusters would fail the LOOCV, which is consistent with the 10-fold cross

validation analysis. Therefore, we identify 4 Trust clusters. Table 4.2 reports the

four centroids. The four centroids correspond to the four Trust types T1 - T4 pre-

sented in Figure 4.5, respectively. The statistics and clinical interpretations of the

four Trust clusters are presented and discussed in Section 4.3.3 (see Figures 4.5).

4.3.5 Probabilistic Verification of Behavior Models

An Individualized Physiological Model

We use a commonly accepted first-principle compartmental physiological model pro-

posed in [27] and refer to it as the Bergman model. The Bergman model is a

first-order differential equation that describes the interaction between the plasma

insulin level and glucose level. To model the real-life scenario where a patient
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Table 4.4: Comparison of population-wide glucose statistics of the CSII
dataset and the model-simulated glucose data given the same insulin & meal
inputs. BG denotes the blood glucose level. All BG outcomes are in the unit
of mg/dL.

CSII
Dataset BG

Model
Simulated BG

Mean of BG 161 155
Standard Deviation of BG 66 62

BG > 180 32% 28%
BG < 70 3% 3%

eats and takes subcutaneous insulin, the Bergman model can be augmented with

a second-order meal pathway that relates ingested carbohydrates to plasma glucose

appearance [99], and a second-order subcutaneous insulin pathway that relates sub-

cutaneous insulin inputs to plasma insulin appearance [145, 212]. The details of

the complete fifth-order augmented Bergman model are summarized in Chapter 5

Section 5.4.4. The model contains several physiological parameters that are patient

specific: For example, the insulin sensitivity and basal glucose production rate. We

tune the augmented Bergman model parameters within the value ranges reported in

the original Bergman article [27], which include the glucose distribution rate, insulin

sensitivity, meal glucose rate of appearance, and basal glucose production rate. For

the other model parameters in the meal and insulin pathways, we use the nominal

parameter values reported in the bio-medical research literature [212, 99].

For each patient in the CSII dataset, we feed the recorded insulin and carbohy-

drate inputs to the augmented Bergman model and compare the model-simulated

glucose values with the CGM measurements in the CSII dataset. For each patient,

we identify the model parameters on which the simulation best reproduces the key

glucose outcome measures of the real data, which is a commonly accepted method of

validating physiological models [182, 277]. Table 4.4 presents the key glucose statis-

tics of the CSII measurement data and the simulated glucose outputs generated by

the individualized Bergman model. The model is able to reproduce the key clinical
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statistics, such as the mean and standard deviation of BG. We also compare the low

and high glucose percentages, using the commonly accepted hypoglycemia threshold

70 mg/dL and hyperglycemia threshold 180 mg/dL [272]. Those are percentages

of the glucose readings that are lower than 70 mg/dL and higher than 180 mg/dL,

respectively. They are important clinical metrics of evaluating the risk of hypo-

glycemia and hyperglycemia, and are critical indicators of the quality of glycemic

control. Table 4.4 shows that the individualized physiological model is able to repro-

duce the key glucose metrics in the CSII dataset. Table 4.3 presents the per-patient

differences of the statistics of the model-simulated glucose values and the real glucose

measurements in the CSII dataset. It shows that the model is able to reproduce the

key glucose statistics not only at the population level but also at the individual level.

We use the individually parameterized augmented Bergman model in the in silico

closed-loop evaluation.

Closed-Loop Analysis

To demonstrate the utility of the proposed ETC modeling framework, we perform in

silico experiments to examine the effects of patient behavior changes on the glycemic

control outcomes. We model the closed-loop system by integrating the ETC behavior

model, the individualized physiological model, and a model of the BWZ. We use the

PRISM probabilistic model checker [157] to evaluate the hypoglycemia and hyper-

glycemia rates of different instantiations of the system model: Each instantiation is a

pairing of a user behavior model and an individualized physiological model. PRISM

is an open-source tool for formal modeling and analysis of systems that exhibit prob-

abilistic behaviors. It can express and analyze several types of probabilistic models,

such as discrete-time Markov chains, continuous-time Markov chains, and Markov

decision processes. We encode the patient ETC behavior model as a discrete-time

Markov chain, using probabilities derived from the CSII dataset. We use Matlab to

generate finite traces from the simulation of the individualized augmented Bergman
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Table 4.5: The effect of behavior (ETC types) change on the hypoglycemia
and hyperglycemia rates for a patient with a high baseline hypoglycemia rate

ETC Type
Hypoglycemia

Rate (%)
Hyperglycemia

Rate (%)
Actual type E3T2C1 6.93 8.43

Change
E subtype

E1T2C1 6.20 12.78
E2T2C1 5.99 13.72

Change
T subtype

E3T1C1 0.02 10.33
E3T3C1 0.04 10.09
E3T4C1 0.02 11.05

Change
C subtype

E3T2C2 7.04 6.30
E3T2C3 6.95 7.93

Change
multi-subtypes

E2T1C1 0.04 16.46
E2T2C1 5.99 13.72
E3T1C3 0.10 9.76
E2T1C3 0.08 15.42

model and encode them in PRISM. Then, we use PRISM to exhaustively check ev-

ery possible execution trace of the closed-loop system and compute the expected

hypoglycemia and hyperglycemia rates.

Given a patient’s individualized physiological model, we pair it with his/her ac-

tual ETC type model or any other ETC types from the 36 possible combinations. We

run the probabilistic model checking to evaluate the expected control outcomes of

different pairings. The in silico experimental results (e.g., those reported in Table 4.5

and Table 4.6) identify the behavior changes that might help a particular patient

improve the glucose control outcomes, i.e., reducing the hypoglycemia and/or hyper-

glycemia rate. The analysis results can benefit T1D patient education and diabetic

peer support activities [110], in which groups of diabetic patients communicate and

try to learn from each other’s glycemic control experiences.

We evaluate the glucose control outcomes using the hypoglycemia and hyper-

glycemia rates. Here, we highlight the experimental results by showing the impact

of ETC type changes on the hypoglycemia and hyperglycemia rates for two sample

patients.
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Table 4.6: The effect of behavior (ETC type) change on the hypoglycemia and
hyperglycemia rates for a patient with a high baseline hyperglycemia rate

ETC Type
Hypoglycemia

Rate (%)
Hyperglycemia

Rate (%)
Actual type E1T1C1 0 43.92

Change
E subtype

E2T1C1 0 44.38
E3T1C1 0 41.62

Change
T subtype

E1T2C1 0 39.13
E1T3C1 0 43.46
E1T4C1 0 45.31

Change
C subtype

E1T1C2 0 41.59
E1T1C3 0 43.47

Change
multi-subtypes

E1T2C2 0 37.22
E3T2C1 0 35.45
E3T1C2 0 38.01
E3T2C2 0 32.56

Table 4.5 presents the results for a patient with a high baseline hypoglycemia rate

(6.93%) given his/her actual behavior type E3T2C1. As illustrated in Table 4.5, by

only changing the E subtype, the hypoglycemia rate drops slightly. By changing

the T subtype, the patient’s hypoglycemia rate significantly decreases. The patient

has a high likelihood of increasing the BWZ-recommended doses (the actual subtype

is T2). The results in Table 4.5 suggest that if the patient follows the BWZ dose

(T1) or even gives smaller doses (T4), the expected hypoglycemia rate would drop

to around 0.02%, which would be a beneficial outcome. One fundamental challenge

in glycemic control is that reducing the correction doses can mitigate hypoglycemia,

but at the same time, it would also put the patient at a higher risk of hyperglycemia:

For example, if the patient behaves as E3T1C1, then the expected hyperglycemia

rate would be around 10.33%, which is slightly higher than the value of 8.43% with

the actual type E3T2C1. Optimizing the insulin dose always comes down to balanc-

ing the risk of hypoglycemia and hyperglycemia. Hypoglycemia is a more critical

short-term safety concern: Extreme hypoglycemia is life-threatening. Furthermore,

the current population baseline hyperglycemia rate among Type 1 diabetics is in

122



the high range of 20% to 40% [272]. Therefore, significantly reducing hypoglycemia

at the cost of slightly increasing hyperglycemia is justifiably beneficial to the pa-

tient. The results also show that changing the C subtype would not reduce the

hypoglycemia rate for this patient. These experiment results could inform patient

education: For example, clinicians may consider suggesting this patient to follow the

BWZ-recommended doses more often, rather than frequently selecting higher doses.

Table 4.6 presents the results for another patient with a high baseline hyper-

glycemia rate (43.92%) in the experiments. The patient’s actual behavior type is

E1T1C1 and does not experience hypoglycemia. Based on the results, to reduce

the hyperglycemia rate, the patient may consider reducing carbohydrate intake. For

example, by changing the E subtype from E1 to E3, the expected hyperglycemia rate

drops to around 41.62%. The treatment outcomes would be further improved if the

patient increases BWZ-recommended doses (T2) or takes more correction boluses

(C2), as highlighted in Figure 4.6. The optimal treatment outcomes can be achieved

if the patient changes behavior in all three components of the ETC types: The ex-

pected hyperglycemia rate drops to 32.56% if the patient acts as type E3T2C2, which

would be a significant improvement compared to the patient’s baseline hyperglycemia

rate.

The ETC model does not impose a major computational challenge on the proba-

bilistic verification. Even given a fine-grained ETC model setting (NE and NC set to

6; ME and MC set to 8), the PRISM model checker running on an Intel(R) Xeon(R)

CPU E5-2667 v2 @ 3.30GHz processor takes about 30 minutes to build the model

(with about 120, 000 states and 200, 000 transitions) and then about 1 minute to

perform the verification.

123



4.4 Summary of this Chapter

In this chapter, we designed a modeling methodology to analyze highly personal-

ized user behaviors that are commonly observed in out-patient MCPS applications.

We proposed the TAP-LT framework to systematic identify user behavior variables

based on the analysis of a generalized architecture of patient-centered healthcare

applications.

We applied the TAP-LT framework to an insulin pump case study and proposed

an ETC probabilistic model that extracts the key behavioral trend information in the

raw time-series clinical data. We developed a novel data-driven method to individ-

ualize the ETC model using clinical data and analyze common behavioral patterns

at the population level. The proposed method includes a technique to reduce the

model dimensionality for effective clustering analysis. We validated the ETC behav-

ior model clusters by cross validation. The ETC model reveals novel quantifiable

insights into the behavioral trends that can be used for personalized diagnosis. We

demonstrated that the ETC model can be composed with an individualized phys-

iological model in probabilistic verification, which enables in-silico analysis of how

switching behavior patterns may improve clinical outcomes for certain patients. Such

results can benefit patient education and patient peer-support.
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Chapter 5

Validate Unreliable Behavior

Information

In many human-in-the-loop systems, such as semi-autonomous driving [248] and

user-supervised artificial pancreas [222], the automation agent monitors user behav-

iors at runtime so that it can adapt to critical behavioral events. The challenge is

that the behavior measurements provided to the automation agent can sometimes be

unreliable due to practical limitations, in which case incorrect behavior information

may mislead the automation agent into taking improper actions that compromise

safety. For example, some driver-assistance systems use computer vision techniques

to infer whether the driver is distracted [248], which have inherent misdetection

rates, and if the system incorrectly believes that a driver is distracted, it may engage

emergency vehicle handling unnecessarily and cause “automation surprises” to the

driver [122]. In artificial pancreas systems, if the user announces a meal to the bolus

advisory feature and delays actual eating, it may trick the software into deliver-

ing insulin prematurely, which may cause life-threatening hypoglycemia. Therefore,

it is critical to validate behavior information. The problem of validating behavior

information in medical CPS is particularly challenging because physiological pro-

cesses may contain non-linearities and patient-specific unobservable parameters (as
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discussed before in Section 3.2.2), which implies that a behavioral event may trigger

distinct physiological responses in different patients.

In this chapter, we propose a behavior event validation method that is designed

to achieve a consistent detection performance despite parametric variances across

individuals.

Part of the work described in this chapter has been presented in our previous

paper [56].15 Some of the new results may appear in our future publication [270].

The rest of this chapter is organized as follows: Section 5.1 formulates the be-

havior event validation problem; Section 5.2 introduces the parameter-invariant test

in the medical system context; Section 5.3 presents a novel sequential decision fil-

tering technique that exploits the temporal dynamics of the physiological process to

achieve robust event detection; Section 5.4 applies the validation method to a meal

detection case study. Evaluations using both an in-silico population and a clinical

dataset validate that with the sequential decision filtering, the proposed detector

outperforms three other existing meal detectors and achieves the lowest variances in

all major performance metrics (without any individual tuning) despite inter-subject

physiological variances; Section 5.5 concludes this chapter.

5.1 Problem Description

Using the control system notation convention, we represent the physiological process

as a difference equation

x(k + 1) = f(x(k),u(k),p(k)),y(k) = g(x(k),θ(k)), (5.1)

where x(k + 1) is a vector of states at time step k + 1, u(k) is a vector of inputs,

p(k) is a vector of patient-specific model parameters, and y(k) represent the vector

of measurements. Furthermore, let us assume u(k) consists of two parts u(k) =

15Copyright retained by the authors.
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[uα(k), uβ(k)], where uα represents the inputs that the automation agent can reliably

measure and uβ represents the unreliable inputs that need to be validated. For

example, uα may be treatment activities that are recorded by medical devices, and

uβ may be living activities that are patient self reported.

From the automation agent’s perspective, at time step k, the information that is

reliably available includes y(0) . . .y(k) and uα(0) . . .uα(k), where index 0 represents

the start time. The automation agent needs to validate the input uβ(j) at some past

time step j (j < k). The input uβ to be validated must be at a past time step j

instead of current step k because the current input uβ(k) has not yet taken effects

through the physiological process, i.e., the past measurements y(0) . . .y(k) do not

carry any information on the current input uβ(k). This is a fundamental property

of “causal systems” [33], i.e., an output depends only on past inputs. Physiological

systems, like many other physical processes, are causal in the standard control system

formulation as presented here [191].

To simplify the presentation of the parameter-invariant test, without loss of gen-

erality, we assume the system model is formulated in a manner such that uβ is in

a binary function form, i.e., ∀k,uβ(k) ∈ {0, 1}. In some applications, the behav-

ior validation questions are already binary decision problems such as “whether the

driver is distracted” or “whether the patient started eating”. We define the value

to be validated is a “non-trivial” event represented by uβ(j) = 1. Furthermore, we

assume that if uβ(j) = 1, then ∀i ∈ w,uβ(i) = 0, where w represents a time interval

that is adjacent to j and its size is a design parameter: We choose the window w

to be smaller than the minimum separation between two non-trivial events (which

depends on the application context) such that it is reasonable to assume that within

the window w, at most one non-trivial event can happen, e.g., a patient can only

start eating one meal within 30 minutes.

Using the notations introduced above, the behavior information validation prob-

lem is formulated as the following decision problem: Given a physiological pro-
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cess in Equation 5.1 with possibly unknown, patient-specific parameters p, the past

measurements y(0) . . .y(k) and past reliable inputs uα(0) . . .uα(k), decide whether

uβ(j) = 1 at some past time step j.

5.2 Parameter-Invariant Test

In this section, we introduce the parameter invariant (PAIN) test, which is designed

to achieve a constant false alarm rate (CFAR) despite inter-patient parameter vari-

ances. The fundamental idea of the PAIN test is to utilize a physiological model

and trends in past measurements to capture the effects of unknown nuisance param-

eters, and then to establish invariance to the nuisance parameters by projecting the

measurements onto a space which is unaffected by the unknown parameters, math-

ematically known as a null space projection. The benefit of the PAIN test is that

the projected measurements will be the same, regardless of the patient’s unknown

parameters, allowing the design of powerful detectors that achieves population-level

consistency. The PAIN test has been successfully applied to various engineering ap-

plications with unknown parameters [267, 269, 268] and has recently been extended

to medical monitor design [56, 123, 236, 271].

Next, we formally describe the PAIN test. We start with a linear model of

the physiological process. It is worth noting that although real physiological pro-

cesses may contain some forms of non-linearities, linear modeling is still a very useful

technique and has been successfully applied to many physiological modeling prob-

lems [62]. The fundamental trade-off is that non-linear systems, although can be

more “realistic” in theory, are much more difficult to identify and analyze [242].

Following standard control theory techniques [213], a time-domain linear model can

be transformed into a z-domain representation and then written in a discrete time

matrix form y = Fθ + Gυ + σn, in which y represents the outputs, the matrix

F represents the process model, θ represents lumped physiological parameters and
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parameters that correspond to reliable input uα, G is a matrix that contains infor-

mation on input uβ, υ represent inputs parameters that correspond to input uβ, and

σn is a zero-mean Gaussian noise.

The core of the PAIN test is a bi-directional hypothesis test. At each time step,

to test the reported event uβ(j) = 1, we divide the exclusive event window w (as

described in Section 5.1) into two regions d0 and d1 such that j ∈ d0. Our null

hypothesis is that uβ(j) = 1 and ∀i ∈ w ∧ i 6= j,uβ(i) = 0, i.e., the non-trivial

event indeed happens in the d0 window. The event hypothesis is that uβ(j) = 0 and

uβ(j′) = 1, where j′ ∈ d1, i.e., the non-trivial event actually happens in d1 instead

of d0.

Then we formulate the input matrix G according to the two hypotheses that map

to a non-trivial event happening in time window d0 or d1. We write

Hk,i = [Fk,Gi], i ∈ {0, 1}

and Hk,i spans the measurement subspace affected by the combined effect of param-

eters corresponding to the physiological dynamics, the reliable inputs uα, and the

hypothesized input uβ within the di time window. The physiological process model

is then rewritten as yk = Hk,iθ
′ + σn, where θ′ contains the lumped physiologi-

cal parameters θ and input parameters υ. To be invariant to the unknown model

parameters, we eliminate the effects of parameters θ′ by projecting y onto the null

space of Hk,i. Mathematically, the null space of an arbitrary matrix X is [117]

〈X〉⊥ = {v|Xv = 0}

and has an orthonormal basis transposed, X⊥, satisfying [117]

X⊥ ∈ {V|∀v ∈ 〈X〉⊥,∃x,V⊥x = v ∧VV⊥ = I}
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where, V⊥ denotes the transpose of matrix V [117]. The following employs the above

notation to present the test statistics. We introduce intermediate variables

rk,0 = H⊥k,0y,Uk,0 = H⊥k,0G1

rk,1 = H⊥k,1y,Uk,1 = H⊥k,1G0

where rk,0 and Uk,0 denote the projection of the measurements and projected effect

of uβ happening in d1 onto the null space of Hk,0, respectively (and vice-versa for

rk,1 and Uk,1). In words, rk,0 and Uk,0 denote the measurements and the effects of

the non-trivial event in d1 which cannot be explained by physiological parameters θ,

reliable inputs uα, and the non-trivial event occurring within d0. Consequently, to

quantify whether the projected measurements and projected effects are significantly

aligned [244], we write test statisticsti(yk) for i ∈ {0, 1}, as

ti(yk) =
r⊥k,i(I− (U⊥k,i)

T (U⊥k,i))rk,i

r⊥k,i(U
⊥
k,i)

T (U⊥k,i)rk,i

The form of t0(yk) is commonly referred to as an F-ratio in the signal processing

and statistics literature [244], and has the useful feature that its value is invariant

to the noise level of σ as well as the lumped physiological parameters θ′. In the

context of this work, for t0(yk), the numerator denotes the magnitude of the pro-

jected measurements aligned with the projected non-trivial event effects of d1 (i.e.,

in the space of Hk,1), while the denominator represents the energy of the projected

measurements which cannot be explained exclusively by non-trivial event effects of

d1, i.e., not in the space of Hk,1. Thus, large/small values of t0(yk) implies that a

non-trivial event within d1 is likely/unlikely. Similarly, large/small values of t1(yk)

implies that a non-trivial event within d0 is likely/unlikely. Comparing t0(yk) to a

threshold η0, selected to achieve a specified probability of false alarm, generates a

decision. Similarly, t1(yk) is generated by first projecting the measurements onto

130



Table 5.1: Score accumulation rules for S(k).

t0(yk) > η0 t0(yk) ≤ η0

t1(yk) > η1

Event in d0 or d1
(+t1(yk) to each j ∈ d0)
(+t0(yk) to each j ∈ d1)

Event in d0
(+2t1(yk) to each j ∈ d0)

t1(yk) ≤ η1
Event in d1

(+2t0(yk) to each j ∈ d1)
No Meal

(Do no change S(j))

the null space of Hk,1, then generating an F-statistic using Hk,0 and comparing to a

threshold η1.

5.3 Sequential Decision Filtering

The aforementioned parameter invariant test generates a decision at each time step.

At run-time, our detector runs in a sliding window fashion, with the relative positions

of the windows fixed once the detector parameters are chosen. As the detector

approaches a true event (the ground truth events are unknown to the detector), it

will first pass through the d0 window and then the d1 window. Therefore, the event

will accumulate a few d0 decisions and then some d1 decisions as the detector windows

slide through. To leverage the structured sequential rise and fall of the statistics, we

design an algorithm that generates a cumulative decision score based on the statistics

ti(yk) for i ∈ {0, 1}. The statistics have the useful property that an increasingly

positive t0(yk) implies a rising likelihood that an event has occurred in the window

d1 (and vice versa). Thus, the algorithm generates an S-score, S(k) , for each time

step k (assuming k is initialized to zero) and accumulates S-scores according to

the rules in Table 5.1, where a larger S-score indicates a higher confidence in the

occurrence of an event.

At every step, when the detector claims an event occurs in window d0, we add

2t1(yk) to S(j) for each time step j in the d0 window; similarly, if the detector claims

an event occurs in d1, we add 2t0(yk) to S(j) for each time step in the d1 window.
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If it is likely that an event was in both windows, then we add t1(yk) to S(j) for

each time step in the d0 window and similarly, we add t0(yk) to S(j) of each time

step in the d1. Note that we drop the factor of 2 in the increments when both tests

reject the null hypothesis, thus weakening the confidence of an event happening in

any individual window. If both tests accept the null hypothesis, then neither d0

nor d1 is likely to contain a meal event; thus, no score accumulation occurs. In the

end, peaks in the S-score curve indicate likely occurrences of non-trivial events. The

thresholds (e.g., the height and width of a peak) that are used to define a positive

event detection are tunable design parameters.

5.4 A Meal Detection Case Study

In this section, we apply the behavior information validation technique to the meal

detection problem in diabetes care. This section is organized as follows: Section 5.4.1

motivates the problem; Section 5.4.2 summarizes the contributions of this case study;

Section 5.4.3 states the problem formulation; Section 5.4.4 reviews glucose/insulin

physiological modeling; Section 5.4.5 describes the PAIN meal detector design; Sec-

tion 5.4.6 evaluates the meal detector and compares it to three existing detectors in

evaluations using both an in-silico population and a clinical dataset.

5.4.1 Motivation

Type 1 diabetics depend on everyday insulin infusion or injection to maintain their

glucose level within the acceptable range where too much insulin can cause life-

threatening hypoglycemia, and too little insulin can cause nerve-damaging hyper-

glycemia [15]. Meal carbohydrates is a major disturbance factor to one’s blood

glucose level, and therefore every Type 1 diabetic faces a life-long control challenge:

He/she has to carefully titrate insulin doses for every meal so that post-meal hyper-

glycemia is effectively controlled without risking hypoglycemia.
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In recent years, Continuous Glucose Monitoring (CGM) technology has become

more popular, which drives a whole new class of medical CPS, most notably the

artificial pancreas (AP), that aims to facilitate glucose management for Type 1

diabetics. At the AP system’s core are a CGM sensor, a wearable insulin pump for

insulin infusion and boluses, and software that controls insulin titration [66]. Reliably

predicting meals is difficult in real-life situations, thus all AP systems depend on

certain kinds of meal declaration/detection mechanisms. Meal detection is a safety

critical problem, where an incorrectly identified meal may trigger the system to either

deliver too much insulin unnecessarily or deliver too little insulin, both of which have

harmful (if not deadly) consequences.

Currently, Type 1 diabetics who use CGM sensors and wearable insulin pumps

manually input the time and estimated carb count of each meal into the pump

software, which then calculates a suggested insulin dose. Unfortunately, self-reported

meal information is inherently unreliable [77]. Thus, more dependable meal detection

methods are necessary to ensure patient safety. We propose a novel meal detection

method that leverages a linear model of glucose and insulin responses that is inspired

by a first-principle minimal physiological model [27].

5.4.2 Contributions

By applying the parameter-invariant test and sequential decision filtering technique,

we develop a novel meal detection algorithm that is invariant to individual physiolog-

ical parameters, i.e., it achieves a consistent detection performance across a patient

population without needing individual tuning. We compare our meal detector with

three other existing meal detectors [77, 109, 168] in evaluations using both an in-silico

population and a clinical dataset. The in-silico and clinical evaluation results validate

the unique strength of the PAIN detector: It consistently achieves the lowest variance

(highest inter-subject consistency) in all major performance measures, including the

false alarm rate, detection rate, and detection delay. In addition, the PAIN detector
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achieves the shortest detection delay in the in-silico trial (detection delay cannot be

analyzed in the clinical evaluation due to the lack of ground truth meal times) and

better detection performance (measured by sensitivity vs. specificity) than the other

three detectors across all operating points in the clinical evaluation.

5.4.3 Problem Statement

All AP systems need accurate estimates of the meal carbohydrate disturbances. To

estimate the meal carbohydrate disturbances requires an accurate (and timely) esti-

mate of when meals occur. Thus, the following summarizes our problem statement:

We address the meal detection problem, where given recent glucose level measure-

ments and insulin inputs, design a run-time monitor that accurately and quickly

detects the onset of carbohydrates ingestion.

5.4.4 Glucose/Insulin Metabolism Models

First-principle models of glucose physiology broadly fall into two categories: maximal

models and minimal models [63]. Maximal models use fine-grain compartmental sub-

models to describe the dynamics of glucose and insulin. These models are mostly used

for simulation purposes, since controller design for non-linear models with unknown

parameters is difficult. On the other hand, the minimal models use only a few

coarse-grain compartments to model the physiology, and they have a relatively simple

structure that is convenient for linearization and control design [99]. This section

reviews existing glucose physiological models, including an FDA-accepted maximal

model, which will later be used in in-silico evaluations, and a minimal model, which

inspires the process modeling in designing our PAIN detector.
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A Maximal Model

A maximal model that describes the glucose-insulin responses with meals has been

proposed [187, 74], based on which the UVa/Padova Type 1 Diabetes Mellitus

Metabolic Simulator (T1DMS) has been developed [151]. This model is an FDA-

accepted substitute for animal testing in pre-clinical trials when evaluating certain

control algorithms [75]. It consists of a set of continuous-time differential equations

with 13 state variables and 32 physiological parameters. The model includes three

sub-systems: the insulin subsystem, the meal glucose absorption, and the glucose

kinetics. Due to space constraints, this section only sketches the model equations

with brief explanations of the state variables. Table 3.6 lists the physiological mean-

ings of some of the model parameters. Extensive details of the model, including the

modeling rationale and meanings of the variables & parameters, can be found in a

series of publications [187, 74, 151, 75].

The insulin sub-system describes the transportation of insulin from the subcu-

taneous injection site to other compartments of the body such as the liver, plasma,

and tissues. This subsystem has seven state variables which evolve according to the

follow equations [187, 74]:

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t)

+ ka2S2(t)
(5.2a)

Ẋ(t) = P2U/ViIp(t)− P2UX(t)− P2U ∗ Ib (5.2b)

İ1(t) = ki/ViIp(t)− kiI1(t) (5.2c)

İd(t) = kiI1(t)− kiId(t) (5.2d)

İl(t) = m2 ∗ Ip(t)− (m1 +m3)Il(t) (5.2e)

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t) (5.2f)

Ṡ2(t) = kdS1(t)− ka2S2(t). (5.2g)
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In the above equations, Ip represents the mass of plasma insulin. X(t) is a remote

insulin signal that also appears in the glucose kinetics. I1 and Id represent a delayed

insulin signal that governs the endogenous glucose production. Il represents the

liver insulin. S1 and S2 represent a two-compartment subcutaneous insulin process.

u(t) is the subcutaneous insulin injection/infusion input (wearable insulin pumps

for Type 1 diabetics inject insulin into the subcutaneous tissue). Details about the

parameters can be found in the maximal modeling literature [187, 74, 151].

The meal absorption sub-system models how meal carbohydrates pass the stom-

ach, intestine and finally becomes glucose appearing in the plasma [74]. The stomach

is represented by two compartments: one for the solid phase and the other for the

liquid phase. The dynamics are modeled by the following equations [74]:

Qsto(t) = Qsto1(t) +Qsto2(t) (5.3a)

Q̇sto1(t) = −kgriQsto1(t) +m(t) (5.3b)

Q̇sto2(t) = −kempt(Qsto)Qsto2(t) + kgriQsto1(t) (5.3c)

Q̇int(t) = −kabsQint(t) + kempt(Qsto)Qsto2(t) (5.3d)

kempt(Qsto) = kmin + (kmax − kmin)/2

×

 tanh(α ∗ (Qsto − b ∗D))

− tanh(β ∗ (Qsto − d ∗D)) + 2

. (5.3e)

α = 5/(2 ∗D ∗ (1− b)), β = 5/(2 ∗D ∗ d) (5.3f)

Qsto is the amount of glucose in the stomach. Qsto1 and Qsto2 represent glucose

in the solid phase and liquid phase, respectively. Qint is the amount of glucose

in the intestine. kempt(Qsto) is a non-linear function that represents the rate of

carbohydrates emptying from the stomach. D is the total amount of ingested glucose

in the last meal. m(t) is the input of meal carbohydrates.

The insulin and absorbed meal glucose interact through the glucose kinetics,
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which is modeled by three state variables. The equations are given as follows [74]:

Ra(t) = f ∗ kabs ∗Qint/BW (5.4a)

Ġp(t) =− k1 ∗Gp(t) + k2 ∗Gt(t)

+ max (0, kp1 − kp2 ∗Gp − kp3 ∗ Id(t))

− Fsnc −max (0, ke1 ∗ (Gp(t)− ke2)) +Ra(t)

(5.4b)

Ġt(t) =− (Vm0 + Vmx ∗X(t)) ∗Gt(t)

Km0 +Gt(t)

+ k1 ∗Gp(t)− k2 ∗Gt(t)

(5.4c)

Ġm(t) =− ksc ∗Gm(t) + ksc/Vg ∗Gp(t). (5.4d)

Gp represents the plasma glucose concentration. Gt represents glucose in the rapidly

equilibrating tissue. Gm represents the subcutaneous glucose. Note that the insulin

action on glucose is modeled by X(t) and Id(t) appearing in the Ġp(t) and Ġt(t)

equations, and the meal glucose rate of appearance Ra(t) is calculated from the meal

sub-system state Qint.

The maximal model of the T1DMS consists of all the 13 differential equations

presented above. The insulin sub-system is a linear model. The meal sub-system

contains a non-linear parameter kempt(Qsto). The glucose kinetics sub-system has

several non-linear terms, such as the max operators and state product X(t)Gt(t).

Most of the model parameters, as listed in Table 3.6, are not identifiable. Because

of the non-linearity and unknown parameters, it is very difficult to directly use the

maximal model in control design. Instead, the model is used primarily for simulation

purposes. The FDA accepted 300 virtual subjects, each of which is a realization of

model parameters sampled from a joint distribution. The parameter distribution was

drawn from clinical data obtained from individuals who underwent a triple tracer

meal protocol in lab experiments [74].
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Minimal Models

Minimal models represent another class of first-principle glucose-insulin models. The

basic idea is to lump together compartments to describe the dominating dynamics

of the glucose-related physiology using a minimal number of compartments. One of

the most commonly accepted minimal models is described in [27], and referred to

as the Bergman model. The Bergman model uses a single lumped compartment to

model insulin and another lumped compartment to model glucose in plasma. In-

sulin governs the changes of glucose levels either directly or through another remote

compartment. Under this compartmentalization scheme, at most three state vari-

ables are needed to describe the glucose-insulin physiology: plasma glucose, plasma

insulin, and insulin in the remote compartment. Seven minimal models are proposed

in [27], from the simple insulin-independent models (models No. 1 to 3), to the more

elaborated forms (models No. 4 to 7). Not all the models use all of the three states.

The Bergman model No. 4, whose equations are given as follows, has a linear form

and explicitly describes insulin-dependent glucose uptake,

Ġ(t) = p1G(t) + p2 ∗ I(t) + p3, (5.5a)

where G(t) and I(t) represent plasma glucose and insulin, respectively, and p1, p2,

and p3 are model parameters.

While the Bergman model describes the plasma glucose-insulin dynamics, a sec-

ond order, two-compartment meal pathway model is presented in [99]:

ġ(t) = − 1

tG
g(t) +

AG
tG
DG(t) (5.6a)

ṁ(t) = − 1

tG
m(t) +

1

tG
g(t), (5.6b)

where g(t) represents glucose in the first compartment and m(t) represents the

plasma glucose appearance, which is an input to the Bergman model. DG(t) is
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the meal carbohydrate input. AG is the carbohydrate bioavailability and tG is the

time of maximum glucose rate of appearance.

Lastly, the insulin pathway from subcutaneous tissue to plasma can be modeled

by the following second order process [212, 145].

ẋ(t) = −kax(t) + u(t− τ) (5.7a)

İ(t) = −keI(t) +
ka
Vd
x(t), (5.7b)

where x(t) and I(t) are insulin in the subcutaneous compartment and plasma, re-

spectively, ka and ke are rate parameters, Vd is the insulin volume, and u(t − τ)

represents the insulin input with a time delay τ .

Combining equations 5.5a, 5.6a, 5.6b, 5.7a and 5.7b results in a fifth-order linear

model that describes the glucose-insulin kinetics given meal carbohydrate inputs and

subcutaneous insulin inputs. This linear model will be used in the PAIN detector

design.

5.4.5 Meal Event Detector

In this section, we introduce the PAIN meal detector design. The remainder of this

section details the bi-directional parameter-invariant test and the sequential decision

filtering technique, respectively.

Parameter-Invariant Test

The design of PAIN detectors utilizing parameter invariant statistics originates from

statistical signal processing [244]. Our primary goal lies in designing a detector (or

monitor) that has consistent detection performance on a large population of Type

1 diabetics given a wide range of meal and insulin inputs. Because many of the

patient-specific physiological parameters (e.g., those in the maximal models) cannot

be identified, the detector is designed to be invariant to model parameters. Also, meal
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Figure 5.1: A meal detection example of the PAIN detector.

carb counts are manually reported by users in current Type 1 diabetes management

systems, which can be unreliable for a variety of reasons, e.g., the patient may forget

to report or miscount the meal portion. Therefore, the detector is also designed to

be invariant to the exact magnitude of meal inputs. Insulin bolus times and doses

are used by our detector since those are pump logged information.

We start with the linear minimal model in equations 5.5a, 5.6a, 5.6b, 5.7a and

5.7b. Following standard control theory techniques [213], the state-space linear

model can be transformed into a z-domain representation and then written in a

discrete time matrix form y = Fθ + Gυ + σn, in which y represents the outputs,

F represents the process model, θ represents model parameters, G represents input

response, υ represents inputs, and σn are zero-mean Gaussian noises.

The PAIN detector runs in a sliding window fashion. It has a few critical time

windows which are illustrated in Figure 5.1. At each time step, the detector is given

a vector of T past measurements y ∈ RT and insulin bolus inputs within the time

window wt. To be invariant to the unknown model parameters, the PAIN detector
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first eliminates the effects of parameters θ by projecting y onto the null space of F

so that the term Fθ becomes zero.

The core of the detector is a bi-directional meal hypothesis test. The detector

first hypothesizes that a meal happened wd steps back from the current time (meals

are treated as impulses in the detector model). wd is a detector parameter that

stays constant at run-time once it is chosen. The null hypothesis H0 states that a

meal indeed happened in a time window around next to the hypothesized meal time

(the H0 window in Figure 5.1). The event hypothesis H1 states that a meal actually

happened in an even earlier time window (the H1 window in Figure 5.1). The sizes

of H0 and H1 windows are design parameters to be chosen. The input response

matrices G0 and G1 represent the hypothesized meal time windows of H0 and H1,

respectively. When testing H0 in the direction of H1, the detector eliminates the

effect of H0 input by projecting G1 onto the null space of G0. It then calculates a

statistic t0(y) as a ratio, where the numerator represents the remaining energy in the

glucose measurements explained by signal under H1 and the denominator represents

the energy that is not explained by H1. Then the detector tests H1 in the direction

of H0 and calculates t1(y) in exactly the same way but in the opposite direction.

The statistic t0(y) assumes H0 is true and tests H1. The statistic t1(y) assumes

H1 is true and tests H0. To guarantee a minimum level of performance, the detector

rejects H0 when t0(y) > η0, where η0 is related the probability of false alarms.

And similarly, the detector rejects H1 when t1(y) > η1, where η1 is related to the

probability of missed detection.

The detector makes a meal detection decision at each time step based on the

bi-directional hypothesis tests. When H1 is rejected and H0 is not, it claims a meal

happened in the H0 zone. When H0 is rejected and H1 is not, it claims a meal

happened in the H1 zone. When both are not rejected, it means there is not enough

power in the signal to make a decision. When both are rejected, it means there are

residual energy in the measurements that are explained by both hypotheses’ signals.
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Figure 5.1 demonstrates how the PAIN detector works on simulated scenarios

generated by the FDA-accepted maximal model. The CGM measurements are sam-

pled at one-minute time steps. The true meal happens around time 21 (the pink

upper triangle in the figure). As the H0 window approaches the true meal event (the

detector never knows when a meal actually happened and runs hypothesis tests at

every step), the statistic t1(y) (testing H1 in the direction of H0; the red dashed line

in the figure) starts rising and becomes separated from t0(y). This indicates that H1

is rejected and the detector claims H0. Then as the detector moves further ahead,

the true meal enters the H1 window, and t0(y) starts rising and t1(y) starts falling,

indicating that H0 is rejected, and the detector claims H1.

Sequential Decision Filtering

To apply the sequential decision filtering technique, we create a counting bin per

each time step and register the S-score (as described in Section 5.3) under it, which

represents the number of “meal hits”. Table 5.1 presents the credit adding rules,

which are also highlighted in Figure 5.1.

A peak in the S-score signal means that the detector makes a number of decisions

at different time steps that all point to the same meal time, indicating a likely

positive hit of a meal. On the other hand, if a bin only receives one or two counts

(a typical width of H0 and H1 windows is 5 sample steps), it means the detector

did not generate consistent decisions as the bin passed through the H0 and H1

windows, indicating a possibility of false positive. The sequential decision filtering

technique mitigates such potential false positives, thereby improving the detection

performance.

The S-score accumulation rules are highlighted in Figure 5.1: each colored region

corresponds to the rule in Table 5.1 that applies in that region. In a typical positive

meal detection scenario, one should first see the green region (corresponding to the

d0 window) approaches the meal event, followed by the yellow region as the meal
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event transitions from d0 to d1, and finally see the red region, after which a peak in

the S(t) curve emerges, indicating that the detector makes a series of decisions at

sequential time steps that all point to the same meal time region where the S(t) peak

emerges. The magnitude of S(t) corresponds to our confidence in a meal occurring at

time t. To trigger an alarm (indicating a meal has occurred), we utilize two design

parameters, a threshold S0 and a minimum width Sw; a peak is characterized by

at least Sw consecutive S(j)s that are above S0. At each time step, the detector

raises a meal alarm if a new S(t) peak emerges. The parameters S0 and Sw can be

tuned to achieve different detection performance: smaller S0 and Sw result in higher

sensitivity but more false alarms. We note that there is a few steps delay between the

actual meal time and the S(t) peak, as shown in Figure 1. This delay phenomenon

is consistently observed in the in silico studies and is related to the physiological

fact that there is a delay from the onset of eating to when the CGM reading starts

changing: in the maximal model, meal carbohydrates have to pass several digestion

compartments before affecting the plasma glucose.

5.4.6 Evaluation

We evaluate the PAIN meal detector using both an in-silico diabetes database and a

clinical Type 1 diabetes dataset that is collected at the Hospital of the University of

Pennsylvania. We compare the performance of our detector with three other existing

meal detectors [77, 109, 168].

In-Silico Diabetic Database

We compare our PAIN detector with three existing meal detectors: the Dassau et

al.s detector [77], Harvey et al.s detector [109], and Lee and Bequettes detector [168].

We evaluate the detectors in an in-silico clinical trial using the academic version of

the FDA-accepted T1DMS simulator [151], which utilizes the maximal model. A

“virtual subject” in the T1DMS simulator is a realization of the 32 physiological
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Figure 5.2: ROC curves of the four detectors in the in-silico evaluation.

parameters. The academic version of the T1DMS simulator contains 30 virtual

subjects that are sampled from the same parameter distribution of the FDA-accepted

population [75, 74].

The simulation configuration mimics the daily glucose management scenario of

a T1D patient. Each virtual subject is fed three meals a day with randomized carb

counts. The patient may check their glucose level at several checkpoints throughout

the day and take correctional boluses if glucose levels are high. The bolus doses are

calculated based on personalized diabetes profile parameters, e.g., insulin sensitivity

parameters, which are included as part of the virtual subject specifications.
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Table 5.2: Operating points of the four detectors in the in-silico evaluation.

False Alarms per Day
Detection Rates

PAIN Lee Harvey Dassau

1.0 96% 97% 96% 96%

1.5 99% 99% 98% 98%

In-Silico Evaluation

We run the PAIN detector, Lee and Bequette’s detector, Harvey et al.’s detector, and

the Dassau et al.’s detector on the same continuous glucose measurements (CGM),

which contain simulator-generated CGM noises, from the 30 virtual subjects in a

30-day in silico trial. Each of the four meal detectors has a set of configurable pa-

rameters, e.g., the decision score threshold of the PAIN detector and RoC thresholds

of the RoC-based detectors. We systematically explore the combinations of each

detectors parameters and get its best detection performance. A receiver operating

characteristic (ROC) curve represents the detection rate and false alarm rate of a

detector under different configurations.

Figure 5.2 shows the ROC curves of the four detectors. Table 5.2 lists two

operating points of the four detectors. The operating points are chosen to compare

the relative detection performance (sensitivity) of each detector for a chosen false

alarm rate (specificity). In the figures and tables, the four detectors are abbreviated

as “PAIN”, “Lee”, “Harvey”, and “Dassau”, respectively. The four detectors have

very similar population-level detection performance in terms of the overall false alarm

rates and detection rates.

The unique strength of the PAIN detector is that it is designed to achieve high

inter-subject consistency regardless of physiological variances, whereas other RoC-

based detectors may suffer from higher performance variances, especially on the

outlier patients, due to the inherent limitation that threshold-based detection cannot

account for real-time physiological variances. Figure 5.3 presents the inter-subject

distributions of three key performance metrics in meal detection: The false alarm
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Figure 5.3: Box plots of the inter-subject performance distributions of the
four detectors in the in-silico trial.

Table 5.3: Key performance metrics and their inter-subject variances of the
four detectors in the in-silico evaluation.

Metric
Mean ± Standard Deviation

PAIN Lee Harvey Dassau

False Alarm per Day 1.1± 0.4 1.2± 0.5 1.1± 0.65 1.1± 0.7

Detection Rate 97%± 3% 98%± 4% 97%± 7% 96%± 9%

Detection Delay (min) 27± 5% 29± 7% 32± 10 32± 11

rate, detection rate, and detection delay from the onset of a meal. The most notable

feature in Figure 5.3 is that the PAIN detector has the lowest performance variance

across all metrics with no outliers, whereas all other three detectors’ suffer from

significant performance degradation on certain outlier cases.

The in-silico evaluation validates the unique power of PAIN detection: The de-

tector maintains a consistent performance over a physiologically heterogeneous pop-

ulation without any individual-level tuning. Table 5.3 lists the quantitative metrics

that correspond to Figure 5.3. For a fair comparison, the operating points of all four

detectors are set to achieve about 1 false alarm per day. The PAIN detector has the

lowest variances of false alarm rate, detection rate, and detection delay. Also, the

PAIN detector has the shortest detection delay among all four detectors.
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Figure 5.4: ROC curves of the four detectors in the evaluation using a clinical
dataset.

Evaluation Using a Clinical Dataset

To further validate and compare the performance of the PAIN detector and the three

other existing detectors, we evaluate them using a clinical dataset collected in the

University of Pennsylvania Health System (with IRB approval). The clinical dataset

includes five-minute CGM readings from 61 Type 1 Diabetes patients who use both

CGM sensors and insulin pumps for daily diabetes management (mean ± standard

deviation of age: 45.7 ± 15.3 years; mean ± standard deviation of body weight: 79.2

± 21.9 kilograms; average duration of monitoring 17 days). The national registry

of Type 1 diabetes patients receiving care in diabetes centers, of which Penn is a

participating center, indicates that 60% of adults use insulin pumps, and 15% use

CGM, and so from the 932 patients with Type 1 diabetes seen at the University of
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Table 5.4: Operating points of the four detectors in the evaluation using a
clinical dataset.

False Alarms per Day
Detection Rates

PAIN Lee Harvey Dassau

2.5 92% 84% 86% 82%

3.0 95% 92% 91% 88%

Pennsylvania in the past year, 84 would be expected to use both an insulin pump and

CGM. Thus, the 61 patients included represent the majority of patients expected

to be utilizing sensor-enhanced pump technology in the management of their type 1

diabetes at the University of Pennsylvania.

Each patient counts the carbohydrates in the meal and then inputs that infor-

mation into their insulin pump. The insulin pump will then provide a suggested

meal bolus which the patient can accept or override. Since patient reporting of meal

time (i.e., the time when the patient inputs the information into the pump) is error

prone, we follow the commonly-accepted meal accounting rule [109] and consider any

meal alarm within two hours of the reported meal event to be a correct detection

(and a false alarm otherwise). In the event that a meal detector alarms within 30

minutes of a correction bolus (i.e., non-meal bolus), we omit this alarm from our

false alarm (specificity) analysis since it corresponds to a “meal-like” critical event

that the patient responded to by taking an insulin bolus, which indicates that an

alarm could be useful.

We run the PAIN detector, Lee and Bequette’s detector, Harvey et al.’s detector,

and the Dassau et al.’s detector on the same glucose measurements from the 61

subjects. Figure 5.4 shows the ROC curves of the four detectors. Table 5.4 lists two

operating points of the four detectors. The operating points are chosen to compare

the relative detection performance (sensitivity) of each detector for a chosen false

alarm rate (specificity). Figure 5.4 shows that for all false alarm rates (specificities),

the PAIN detector has superior performance (higher sensitivities). Note that when a

detection rate is in the high region (e.g., > 85%), a seemingly moderate improvement
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Figure 5.5: Box plots of the inter-subject performance distributions of the
four detectors in the evaluation using a clinical dataset.

in detection rate may indicate a significant reduction in missed detections (e.g., a

detector that achieves 95% detection reduces missed detections by 50% compared

to another detector with 90% detection). We note that the evaluation results of the

Harvey detector are comparable to those reported in the original publication [109].

Figure 5.5 compares the performance variability, in terms of false alarm and

detection rates, of each meal detector on different patients in the dataset. We do

not include detection delays in this comparison because, unlike in the in-silico trial,

we do not have the ground truth meal times from the clinical dataset (patient-

reported meal times are approximate and can be error-prone). These results provide

a measure of the consistency of detection performance at the individual level, i.e.,

whether a detector can perform particularly bad on any subject. The duration of
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Table 5.5: Key performance metrics and their inter-subject variances of the
four detectors in the evaluation using a clinical dataset.

Metric
Mean ± Standard Deviation

PAIN Lee Harvey Dassau

False Alarm per Day 2.4± 0.8 2.4± 1.2 2.4± 1.3 2.4± 1.5

Detection Rate 91%± 7% 82%± 14% 84%± 15% 80%± 15%

glucose monitoring varies across patients in the dataset. Eight patients are excluded

from the individual-level analysis because their data contains fewer than 10 reported

meals. Over the remaining 53 patients, the PAIN detector detects at least 70% of all

reported meals and never has a false alarm rate greater than 4.4 false alarms per day.

In sharp contrast to the PAIN detector, all other three detectors miss significantly

more meals (both on average and worst-case), and have false alarm rates with higher

variances and higher worst-case values. Table 5.5 lists the quantitative metrics that

correspond to Figure 5.5. For a fair comparison, the operating points of all four

detectors are set to achieve about 2.5 false alarms per day. The results show that

the PAIN detector achieves the lowest variances in both false alarm rate and detection

rate. In addition, the PAIN detector has the highest detection rate (sensitivity).

Discussion

The evaluation using the clinical dataset shows that the PAIN detector significantly

improves the detection performance when compared with the other three detec-

tors. For example, compared to the Harvey detector, the PAIN detector reduces

the number of missed detections by 40% without increasing the false alarm rate in

the evaluation. The population-level performance distribution results validate the

unique strength of the PAIN detector: It is designed to be “invariant” to differ-

ences in patients physiological parameters and thereby achieves the lowest variance

of all performance measures over a real patient population. This unique feature of

the PAIN detector is critical to the glucose control applications: A meal detector

that frequently misses true meal events on some subjects could result in severe post-
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prandial hyperglycemia and possibly subsequent hypoglycemia “overshoots” of large

insulin boluses (to correct the high glucose level). Due to the high inter-subject

physiological variance of the diabetic population, one of the most critical technical

challenges and a prominent regulatory concern is validating that a glucose control

system is reasonably safe for every patient within the target population. With its

unique feature of high inter-subject consistency, the PAIN detector can complement

other research efforts that focus on achieving high control performance (but poten-

tially with high inter-patient variances).

In theory, the performance of the RoC-based detectors may be further improved

by carefully tuning the detector parameters for each individual patient. However,

such tuning process may require frequent clinic visits and lab tests (which is not

practically feasible for most patients) because patients physiological characteristics

change over time. Moreover, even with parameter tuning, the RoC-based meal de-

tectors have their fundamental limitation because the post-meal glucose rise rate de-

pends on many other varying factors such as the nutrition composition of meals [279]

and insulin-on-board [88], which can not be mitigated by simply tuning the threshold

parameters. In contrast, the evaluation results demonstrate that the PAIN detector

is able to achieve low-variance performance without any individual-level parameter

tuning.

In terms of false alarm rates and detection rates (the ROC curve), we observe

that the four detectors have similar ROC performance in the in-silico evaluation,

however, in the evaluation using the real patients’ data, the PAIN detector has

superior performance to other three detectors with a notable margin across all oper-

ating points. Note that the clinical dataset that is used for evaluation represents how

Type 1 diabetic patients manage glucose in daily use scenarios with various real-life

disturbance factors that are not modeled in the T1DMS simulator, such as physical

exercises, stress levels, other medications, and intra-patient physiological variances.

All those factors can impact glucose physiology and cause glucose level fluctuations
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that appear to be “meal-like” events from a detector’s perspective. In the in-silico

database, the glucose changes are simulated by a mathematical model in which in-

sulin and meals are the only driving forces. Therefore, the compound physiological

variances of the clinical dataset (considering all the real-life disturbances) can be

greater than the simulated in-silico database. Additionally, the glucose readings in

the clinical dataset are measured by real CGM devices, and the T1DMS simulator

uses an auto-regressive CGM noise model, which may not represent all the sensor

artifacts. This explains why all detectors exhibit a performance degradation when

being evaluated on the real patient data. Comparing the in-silico and clinical evalu-

ation results, the other three existing detectors take much greater performance hits

than the PAIN detector. This further validates the unique advantage of the PAIN

detector: It is more resilient to real-life physiological disturbances than other existing

detectors.

5.5 Summary of this Chapter

In this chapter, we have proposed a methodology to validate safety-critical behavior

events in MCPS that may be error prone for practical reasons, e.g., user report er-

rors. The core of the method consists of an application of the parameter invariant

(PAIN) detection theory enhanced by a novel sequential decision filtering technique.

The unique advantage of the proposed method is that its detection performance is in-

variant to uncertain physiological parameters, thereby achieving a high performance

consistency despite inter-patient physiological variances.

We applied the proposed validation method to a meal detection case study and

designed a PAIN meal detector. We compared the PAIN detector with three other ex-

isting meal detectors in both an in-silico trial and evaluation using a clinical dataset.

The evaluations validate the unique strength of the PAIN detector: Compared to

the three existing detectors, the PAIN detector not only achieves the best detection
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performance (measured by the false alarm rate, detection rate, and detection delay)

but also has the lowest performance variance (highest consistency) in all performance

measures. The evaluation results indicate that the PAIN method is a promising tech-

nology in achieving consistent detection performance despite significant inter- and

intra-subject physiological variances, which is one of the most critical technical and

regulatory challenges for the artificial pancreas (AP) research.
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Chapter 6

Conclusion

6.1 Summary of this Dissertation

In this dissertation, we have developed methodologies for modeling different types of

user behaviors in MCPS and using the behavior models for system analysis. Chap-

ters 3 , 4, and 5 present three research thrusts, respectively:

• In the first research thrust (Chapter 3), we have designed a model-based anal-

ysis framework for evaluating generic (non-personalized) behaviors that are

typically driven by rule-based protocols. By applying the method to an intra-

operative glycemic control case study, we identified limitations of a current

clinical protocol, designed an enhancement, and formally verified that the new

protocol is robustly safe for a virtual population of an FDA-accepted physiolog-

ical model that is instantiated to continuous ranges of uncertain physiological

states and parameters. To cope with the practical challenge that a patients

physiological parameters may exhibit transient fluctuations in real surgical sce-

narios, we have developed a run-time safety monitoring technique to adaptively

track the real-time physiological responses using the maximal model and gen-

erate predictive alarms on critical events. Evaluation using a clinical dataset

shows that the proposed prediction algorithm achieves a high sensitivity with
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a low average false alarm rate.

• In the second research thrust (Chapter 4), we proposed a TAP-LT framework

to systematically model personalized behaviors that are commonly observed in

patient-centered healthcare applications. We applied the TAP-LT framework

to an insulin pump case study and proposed an ETC probabilistic model that

extracts personalized behavioral trend information from the clinical data. We

developed a novel data-driven method to individualize the ETC model and

a clustering technique to analyze population-level behavioral patterns in the

presence of the model dimensionality challenge. We demonstrated that the

personalized model not only reveals new clinically relevant behavioral trends

but also enables closed-loop verification that provides quantitative insights

into how certain users may achieve better physiological outcomes by switching

behavioral pattern.

• In the third research thrust (Chapter 5), we have proposed a methodology to

validate safety-critical information in MCPS that is potentially unreliable. The

proposed method is designed to be invariant to uncertain variances in individ-

ual physiological parameters, thereby achieving high inter-subject consistency

of detection performance. We applied the method to a meal detection case

study and compared the novel PAIN meal detector with three major exist-

ing meal detectors. Both in-silico and clinical evaluations validate that the

PAIN detector’s performance has the lowest population-level variances and is

superior to all existing detectors.

6.2 Future Research Opportunities

The emerging trend of “ubiquitous healthcare” is driving rapidly advancing inno-

vations in the healthcare industry that aim at continuously monitoring a person’s

health status and providing real-time feedback to improve the quality of life in var-
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ious types of living scenarios. Those applications interact with users at multiple

physiological, behavioral, and psychological levels. The increasingly complex inter-

action between the user and technology presents numerous engineering challenges

and research opportunities. This dissertation focuses on developing model-based

techniques to represent, analyze, and validate different types of behavioral factors

in MCPS. There are plenty of future research opportunities in each of the three

research thrusts described in this dissertation and in achieving possible synergy be-

tween them. In the rest of this section, we discuss several research directions both

within and across the three research thrusts.

Thrust 1: Model-Based Analysis of Generic Behaviors

In the case study presented in Section 3.3, after being initially evaluated by sim-

ulation, the new protocol successful passes the formal verification over the virtual

population in dReach. In general, the protocol design and verification could be an

iterative process in which counter examples identified in the verification may guide

protocol revision. Future research may further explore how to systematically and

automatically improve the control protocol design using counterexamples.

The formal verification results in Section 3.3.5 suggests that allowing all physi-

ological parameters and states of the non-linear maximal model to simultaneously

vary within the full over-approximated ranges presents a computationally challenging

problem for a state-of-the-art hybrid system model checker. The proposed closed-

loop system serves as a benchmark to motivate future research in improving hybrid

system verification tools.

The maximal physiological model has been predominantly used for proof-of-

concept, simulation-based evaluation of controllers [63]. The data-driven safety mon-

itoring technique presented in Section 3.3.6 provides novel insights into the possibility

of using the maximal model and its virtual subject set for run-time prediction and

control. In this dissertation, we evaluated the technique using a retrospective clinical
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dataset and showed that the algorithm achieves high sensitivity with a low average

false alarm rate. A major future research opportunity lies in providing bounded

performance guarantees that the sampled high-dimensional virtual subject set is

sufficient to ensure safety.

Thrust 2: Model-Based Analysis of Personalized Behaviors

In Section 4.3, we have instantiated the TAP-LT framework as an ETC model in

the case study. There are several interesting research directions in extending the

scope of the behavior model. First, the ETC model can be expanded to represent

time-varying behaviors. Analyzing and validating time-varying behaviors would re-

quire an extended clinical dataset that includes several long-term data segments on

each patient. Second, the individualized ETC model information can be associated

with other contextual information to generate more clinical insights: For example,

whether a patient’s Eat, Trust, and Correct behaviors are correlated with his/her

past experience with the technology and other personal living habits. Third, the

ETC model can serve as a virtual patient testbed for evaluating different artificial

pancreas designs, especially those that supports user-adaptive multi-level automa-

tion [222].

Thrust 3: Validate Unreliable Behavior Information

In Chapter 5, we applied the proposed validation technique to the meal detection case

study, in which we focused on detecting the presence of critical events. In many user-

supervised medical applications, the first and foremost challenge is to detect critical

events so that humans can take actions accordingly. As the healthcare applications

start to adopt higher automation, a useful extension of the proposed method is to

also estimate the quantitative magnitude of the events, e.g., meal carb amount, which

would enable precise automatic control.
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Potential Synergy Between Different Thrusts

The validation technique proposed in the third thrust has been validated in in-silico

and retrospective clinical trials. An interesting research problem is to integrate the

validation technique into a formal verification framework that is similar to the one

described in the first thrust and establish bounded detection performance guarantees.

In the meal detection case study context, this could mean formally verifying that the

PAIN detector, which hypothesizes a linearized physiological model, can guarantee

bounded detection performance over a virtual population of the non-linear maximal

model. Such result can provide important novel insights into the role of minimal

and maximal models in control design. Solving this problem would probably require

substantial new theoretical research to transform the mathematical formulation of

the validation algorithm into a form that can be ported into the verification tools.

Another synergistic research opportunity lies in combining aspects of all three

thrusts. The behavior modeling technique proposed in the second thrust enables

categorizing patients into different behavioral types. An interesting research prob-

lem is to utilize the patient’s behavior information to fine-tune the data-driven safety

monitoring technique described in the first thrust and the validation technique de-

veloped in the third thrust. Given the wide ranges of physiological and behavioral

variances in the general patient population, it is very challenging (if possible at all)

to develop a one-size-fits-all estimation, prediction, and control scheme. The indi-

vidualized behavior modeling provides an opportunity to design safety controllers

and validation techniques that are adaptive to different groups of patients.
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