135,170 research outputs found

    Developing improved algorithms for detection and analysis of skin cancer

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Malignant melanoma is one of the deadliest forms of skin cancer and number of cases showed rapid increase in Europe, America, and Australia over the last few decades. Australia has one of the highest rates of skin cancer in the world, at nearly four times the rates in Canada, the US and the UK. Cancer treatment costs constitute more 7.2% of health system costs. However, a recovery rate of around 95% can be achieved if melanoma is detected at an early stage. Early diagnosis is obviously dependent upon accurate assessment by a medical practitioner. The variations of diagnosis are sufficiency large and there is a lack of detail of the test methods. This thesis investigates the methods for automated analysis of skin images to develop improved algorithms and to extend the functionality of the existing methods used in various stages of the automated diagnostic system. This in the long run can provide an alternative basis for researchers to experiment new and existing methodologies for skin cancer detection and diagnosis to help the medical practitioners. The objective is to have a detailed investigation for the requirements of automated skin cancer diagnostic systems, improve and develop relevant segmentation, feature selection and classification methods to deal with complex structures present in both dermoscopic/digital images and histopathological images. During the course of this thesis, several algorithms were developed. These algorithms were used in skin cancer diagnosis studies and some of them can also be applied in wider machine learning areas. The most important contributions of this thesis can be summarized as below: - Developing new segmentation algorithms designed specifically for skin cancer images including digital images of lesions and histopathalogical images with attention to their respective properties. The proposed algorithm uses a two-stage approach. Initially coarse segmentation of lesion area is done based on histogram analysis based orientation sensitive fuzzy C Mean clustering algorithm. The result of stage 1 is used for the initialization of a level set based algorithm developed for detecting finer differentiating details. The proposed algorithms achieved true detection rate of around 93% for external skin lesion images and around 88% for histopathological images. - Developing adaptive differential evolution based feature selection and parameter optimization algorithm. The proposed method is aimed to come up with an efficient approach to provide good accuracy for the skin cancer detection, while taking care of number of features and parameter tuning of feature selection and classification algorithm, as they all play important role in the overall analysis phase. The proposed method was also tested on 10 standard datasets for different kind of cancers and results shows improved performance for all the datasets compared to various state-of the art methods. - Proposing a parallelized knowledge based learning model which can make better use of the differentiating features along with increasing the generalization capability of the classification phase using advised support vector machine. Two classification algorithms were also developed for skin cancer data analysis, which can make use of both labelled and unlabelled data for training. First one is based on semi advised support vector machine. While the second one based on Deep Learning approach. The method of integrating the results of these two methods is also proposed. The experimental analysis showed very promising results for the appropriate diagnosis of melanoma. The classification accuracy achieved with the help of proposed algorithms was around 95% for external skin lesion classification and around 92 % for histopathalogical image analysis. Skin cancer dataset used in this thesis is obtained mainly from Sydney Melanoma Diagnostic Centre, Royal Prince Alfred Hospital. While for comparative analysis and benchmarking of the few algorithms some standard online cancer datasets were also used. Obtained result shows a good performance in segmentation and classification and can form the basis of more advanced computer aided diagnostic systems. While in future, the developed algorithms can also be extended for other kind of image analysis applications

    Detection of Abnormality in Endoscopic Images using Endoscopic Technique

    Get PDF
    Medical imaging has been undergoing a revolution in the past decade with the advent of faster, more accurate and less invasive devices. This has driven the need for corresponding software development which in turn has provided a major impetus for new algorithms in signal and image processing. Digital image processing is important for many biomedical applications. The medical images analyzed, used as diagnostic tools and quite often provide insight into the inner working of the process under study. The commonly found abnormalities in endoscopic images are cancer tumors, ulcers, bleeding due to internal injuries, etc. The segmented method is used to segment the tumor, abnormal regions and cancerous growth in the human esophagus. In our proposed work, a method for detecting possible presence of abnormality in the endoscopic images is presented. An algorithm is to develop to perform the segmentation, classification and analysis of medical images, especially the endoscopic images for the identification of commonly occurring abnormalities in it

    Classification of Mammogram Images by Using SVM and KNN

    Get PDF
    Breast cancer is a fairly diverse illness that affects a large percentage of women in the west. A mammogram is an X-ray-based evaluation of a woman's breasts to see if she has cancer. One of the earliest prescreening diagnostic procedures for breast cancer is mammography. It is well known that breast cancer recovery rates are significantly increased by early identification. Mammogram analysis is typically delegated to skilled radiologists at medical facilities. Human mistake, however, is always a possibility. Fatigue of the observer can commonly lead to errors, resulting in intraobserver and interobserver variances. The image quality affects the sensitivity of mammographic screening as well. The goal of developing automated techniques for detection and grading of breast cancer images is to reduce various types of variability and standardize diagnostic procedures. The classification of breast cancer images into benign (tumor increasing, but not harmful) and malignant (cannot be managed, it causes death) classes using a two-way classification algorithm is shown in this study. The two-way classification data mining algorithms are utilized because there are not many abnormal mammograms. The first classification algorithm, k-means, divides a given dataset into a predetermined number of clusters. Support Vector Machine (SVM), a second classification algorithm, is used to identify the optimal classification function to separate members of the two classes in the training dat

    Techniques and software tool for 3D multimodality medical image segmentation

    Get PDF
    The era of noninvasive diagnostic radiology and image-guided radiotherapy has witnessed burgeoning interest in applying different imaging modalities to stage and localize complex diseases such as atherosclerosis or cancer. It has been observed that using complementary information from multimodality images often significantly improves the robustness and accuracy of target volume definitions in radiotherapy treatment of cancer. In this work, we present techniques and an interactive software tool to support this new framework for 3D multimodality medical image segmentation. To demonstrate this methodology, we have designed and developed a dedicated open source software tool for multimodality image analysis MIASYS. The software tool aims to provide a needed solution for 3D image segmentation by integrating automatic algorithms, manual contouring methods, image preprocessing filters, post-processing procedures, user interactive features and evaluation metrics. The presented methods and the accompanying software tool have been successfully evaluated for different radiation therapy and diagnostic radiology applications

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful
    corecore