4,063 research outputs found

    Planning and Real Time Control of a Minimally Invasive Robotic Surgery System

    Get PDF
    This paper introduces the planning and control software of a teleoperating robotic system for minimally invasive surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom including robot setup planning, force feedback control and nullspace handling with three robotic arms. The planning software is separated into sequentially executed planning and registration procedures. An optimal setup is first planned in virtual reality and then adapted to variations in the operating room. The real time control system is composed of hierarchical layers. The design is flexible and expandable without losing performance. Structure, functionality and implementation of planning and control are described. The robotic system provides the surgeon with an intuitive hand-eye-coordination and force feedback in teleoperation for both hands

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Development of a mechatronic sorting system for removing contaminants from wool

    Get PDF
    Automated visual inspection (AVI) systems have been extended to many fields, such as agriculture and the food, plastic and textile industries. Generally, most visual systems only inspect product defects, and then analyze and grade them due to the lack of any sorting function. This main reason rests with the difficulty of using the image data in real time. However, it is increasingly important to either sort good products from bad or grade products into separate groups usingAVI systems. This article describes the development of a mechatronic sorting system and its integration with a vision system for automatically removing contaminants from wool in real time. The integration is implemented by a personal computer, which continuously processes live images under the Windows 2000 operating system. The developed real-time sorting approach is also applicable to many other AVI systems

    A Mechatronic Perspective on Robotic Arms and End-Effectors

    Get PDF

    Mechatronics for the Design of Inspection Robotic Systems

    Get PDF
    Recent trends show how mobile robots are being widely used in security and inspection tasks. This chapter reports the requirements, characteristics, and development of mobile robotic systems for security and inspection tasks to demonstrate the feasibility of mechatronic solutions for inspection of sites of interest. The development of such systems can be exploited as a modular plug-in kit to be installed on a mobile system, with the aim to be used for inspection and monitoring, introducing high efficiency, quality, and repeatability in the addressed sector. The interoperability of sensors with wireless communication constitutes a smart sensor toolkit and a smart sensor network with powerful functions to be used efficiently for inspection purposes. A tele-operated robot will be taken as case of study; it is controlled by mobile phone and equipped with internal and external sensors, which are efficiently managed by the designed mechatronic control scheme
    • …
    corecore