18,980 research outputs found

    Mechanisms for Automated Negotiation in State Oriented Domains

    Full text link
    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents, even though there exists a rational agreement that would achieve all their goals. Finally, we analyze cases where agents have incomplete information on the goals and worth of other agents. First we consider the case where agents' goals are private information, and we analyze what goal declaration strategies the agents might adopt to increase their utility. Then, we consider the situation where the agents' goals (and therefore stand-alone costs) are common knowledge, but the worth they attach to their goals is private information. We introduce two mechanisms, one 'strict', the other 'tolerant', and analyze their affects on the stability and efficiency of negotiation outcomes.Comment: See http://www.jair.org/ for any accompanying file

    Acceptance conditions in automated negotiation

    No full text
    In every negotiation with a deadline, one of the negotiating parties has to accept an offer to avoid a break off. A break off is usually an undesirable outcome for both parties, therefore it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When designing such conditions one is faced with the acceptance dilemma: accepting the current offer may be suboptimal, as better offers may still be presented. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. Motivated by the challenges of bilateral negotiations between automated agents and by the results and insights of the automated negotiating agents competition (ANAC), we classify and compare state-of-the-art generic acceptance conditions. We focus on decoupled acceptance conditions, i.e. conditions that do not depend on the bidding strategy that is used. We performed extensive experiments to compare the performance of acceptance conditions in combination with a broad range of bidding strategies and negotiation domains. Furthermore we propose new acceptance conditions and we demonstrate that they outperform the other conditions that we study. In particular, it is shown that they outperform the standard acceptance condition of comparing the current offer with the offer the agent is ready to send out. We also provide insight in to why some conditions work better than others and investigate correlations between the properties of the negotiation environment and the efficacy of acceptance condition

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practiceā€“aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    • ā€¦
    corecore