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Abstract. Developing effective and efficient negotiation mechanisms for real-world applications such as
e-Business is challenging since negotiations in such a context are characterised by combinatorially complex
negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotia-
tor preferences. Accordingly, practical negotiation systems should be empowered by effective learning
mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This
paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning
mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that
GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which
guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation
systems for real-world applications.
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1. Introduction

Negotiation refers to the process by which group of agents (human or software) commu-
nicate with one another in order to reach a mutually acceptable agreement on resource
allocation (distribution) [30]. Indeed, negotiation is one of the key stages with reference
to the Business-to-Business Transaction (BBT) model [19]. If the negotiation spaces are
large as found in many Business-to-Business (B2B) trading situations where dozens of
issues (i.e., attributes) are involved, even experienced human negotiators will be over-
whelmed. Under such circumstance, sub-optimal rather than optimal deals are often
reached. Consequently the phenomenon of “leaving some money on the table” may
occur [37]. Software agents are encapsulated computer systems situated in some en-
vironments such as the Internet and are capable of flexible, autonomous actions in
that environment to meet their design objectives [21, 48]. The notion of agency can
be applied to build robust architectures for automated negotiation systems within which
a group of software agents communicate and autonomously make negotiation decisions
on behalf of their human users. Recent research in intelligent agent mediated electronic
commerce has highlighted the importance and the benefits of agent-based negotiation
support for e-Business [17, 19]. These negotiation agents can considerably reduce human
negotiation time and identify optimal or near optimal solutions from combinatorially
complex negotiation spaces. This paper focuses on one of our negotiation models, a



Genetic Algorithm (GA) based adaptive negotiation agent model, implemented on our
Web-based negotiation server.

1.1. Requirements of practical negotiation systems

Practical negotiation mechanisms must be computationally efficient. It implies that ne-
gotiation agents should be developed based on the assumption of bounded rather than
perfect rationality [30]. These agents have only limited time and resources to deliberate
negotiation solutions. As indicated by many authors that agents’ knowledge about the
negotiation spaces is very limited in business environments [11, 21]. An agent knows its
own preferences (utility function) but normally does not know the preferences of its oppo-
nents because this information is often kept private by individual business. Accordingly,
negotiation agents should be designed to deal with incomplete and uncertain information
found in most negotiation scenarios. In particular, these agents should be empowered by
effective and efficient learning mechanisms to gradually learn the opponents’ interests
based on their moves in the negotiation processes. Moreover, given the fact that the
preferences of an agent and that of its opponents may change over time because of the
ever changing negotiation environment, effective negotiation mechanisms must be able
to deal with dynamic negotiation scenarios. For example, a negotiation agent should be
able to observe the changing preferences of its opponents and adapt to the opponents’
changing behaviour by initiating the corresponding actions (e.g., conceding more or less in
subsequent rounds). To support various negotiation scenarios of real-world applications,
negotiation agents should be able to act flexibly and mimic a wide spectrum of negotiation
attitudes (e.g., from fully self-interested to fully benevolent) rather than limited by a few
pre-defined negotiation attitudes. Finally, real-world negotiations such as negotiations
in e-Business often involve many issues (e.g., price, quantity, product quality, shipment
time, payment method, etc.), practical negotiation mechanisms must be able to handle
multi-issue negotiations.

1.2. Justifications of the proposed approach

Negotiations in the real-world are often characterised by combinatorially complex ne-
gotiation spaces which involve many issues. In addition, negotiators are bounded by
limited computational resources, time, and information about the negotiation spaces.
Classical negotiation models based on operational research methods [9, 20] or traditional
game-theoretic models [34, 47] need to be further developed to support negotiations in
these realistic situations. GAs have long been taken as heuristic search methods to find
optimal or near optimal solutions from large search spaces [16]. GAs can identify feasible
solutions (e.g., mutually acceptable offers) efficiently without requiring detailed structural
information about the search space as input. In the context of automated negotiations,
our proposed GA is used to drive the heuristic search over a set of potential negotiation
solutions (i.e., agreements). Given a negotiation situation, each negotiation agent will
employ its own GA to conduct the distributed heuristic search in parallel. Therefore,
our proposed GA-based negotiation method is more efficient than other negotiation
methods based on exhaustive search. As a result, our negotiation approach is feasible
for solving large and complex negotiation problem. In addition, the negotiation agents’
searches for the mutually acceptable solution is not conducted in a totally independent
manner. Instead, a co-evolution [7] is actually performed since the intermediate search
result (i.e., a tentative solution) obtained by an agent will be passed to its negotiation



opponents to stimulate their evolution processes. Thereby, a group of negotiation agents
work collaboratively to solve complex negotiation problems.

It has been shown that a GA-based negotiation model can lead to optimal negotiation
outcome as it is generated by a game-theoretic model under certain conditions [13]. In
addition, since GAs are based on the evolution principle of ”natural selection”, they
are effective in modelling dynamic negotiation environments where good negotiation
strategies evolve according to negotiators’ changing preferences. As a matter of fact,
GAs have been successfully applied to develop automated negotiation systems [6, 27, 29]
before. GA-based negotiation approaches fulfil the general requirements of developing
practical negotiation systems in terms of computational efficiency, bounded agent ratio-
nality, and the assumption of limited information about the negotiation spaces. Therefore,
a GA-based adaptive negotiation model is proposed to support negotiations for real-world
applications.

1.3. Contributions of the paper

Although many negotiation models have been reported in the literature [18, 25, 35, 39, 50],
these models have limited use in realistic negotiation environments because they are either
assuming complete knowledge about the negotiation spaces, computationally inefficient,
ignoring the time pressure, ineffective in learning changing negotiation contexts, or deal-
ing with single issue only. This paper illustrates our GA-based adaptive negotiation agents
which address all of the above issues. In particular, three main contributions of the work
reported in this paper are:

1. Reviewing existing learning approaches for automated negotiations, particularly GAs-
based adaptive negotiation mechanisms;

2. Designing and developing GA-based negotiation agents to support real-world appli-
cations such as negotiations for e-Business;

3. Quantitatively evaluating the performance of our GA-based adaptive negotiation
agents.

1.4. Outline of the paper

The rest of the paper is organised as follows. Section 2 highlights the basic concepts with
respect to a generic negotiation framework; Section 3 illustrates a basic negotiation model
which guarantees Pareto optimal; Our GA-based adaptive negotiation mechanism is then
illustrated in Section 4; Section 5 reports our experimental procedures and our empirical
results;Section 6 compares our method with other related negotiation approaches; The
final section highlights possible extensions of current work and concludes with a discussion
of our GA-based adaptive negotiation agents.

2. A Generic Framework for Automated Negotiation

Given its ubiquity and importance in many different contexts, research into negotia-
tion theories and techniques has attracted attention from multiple disciplines such as



Distributed Artificial Intelligence (DAI) [24, 26, 46], Social Psychology [3, 36, 37], Op-
erational Research [9, 20], and Game Theory [34, 47]. Despite the variety of approaches
towards the study of negotiation theory, a negotiation model consists of four main ele-
ments: negotiation protocol, negotiation strategies, negotiation environment, and agent
environment [14, 27, 30].

Negotiation Protocol refers to the set of rules that govern the interactions among
negotiators. The rules specify the types of participants (e.g., the existence of a
negotiation mediator), the valid states (e.g., waiting for bid submission, negotiation
closed), the actions that cause negotiation state changes (e.g., accepting an offer,
quit a negotiation session). For example, English Auction is a well-known protocol
for single issue (e.g., price) negotiation in an ascending open-cry environment.

Negotiation Strategies refer to the decision making apparatus that the agents employ
to act in line with the negotiation protocol, the negotiation environment, and the
agent environment to achieve their objectives. For instance, negotiators should set
stringent goals initially and concede first on issue of lesser importance to achieve
higher payoffs in a competitive environment [3, 37]. A negotiation mechanism refers
to a particular negotiation protocol and the corresponding decision making model
for the formulation of negotiation strategies.

Negotiation Environment refers to factors that are relevant to problem domain. These
factors include the number of negotiation issues, number of parties, time constraints,
nature of domain (e.g., purely competitive vs. cooperative), etc.

Agent Environment refers to the characteristics of the participants (agents). These
characteristics include an agent’s attitude (e.g., self-interested vs. benevolent), cog-
nitive limitations (e.g., omniscient agent vs. memoryless agent), goal setting, initial
offer magnitude, knowledge and experience (e.g., knowledge about the opponents),
etc.

This paper focuses on our GA-based adaptive negotiation mechanism. In general,
negotiators strive to increase their individual payoffs while ensuring that an agreement is
feasible [27, 39]. In other words, negotiation agents have a common interest to cooperate,
but have conflicting interests over exactly how to cooperate [14]. The main problem that
confronts negotiation agents is to decide how much to concede in order to achieve the
two conflicting goals of maximising its own payoff while ensuring an agreement to be
made as soon as possible. In short, the most prominent issues that must be addressed in
a negotiation mechanism are:

− How to represent negotiators’ preferences and offers;

− How to compute concession and generate an offer;

− How to evaluate an incoming offer;

− How to learn the opponents’ preferences.

Figure 1 depicts a simple negotiation process which involves a buyer and a seller. In
this paper, it is assumed that only a finite set of agents P participates in a negotia-
tion process. The negotiation process can be understood with reference to the simple



offer (o1)

counter-offer (o2)

offer with concession (o3)

counter-offer (o4)

counter-offer (on)

Accept/Quit by either side

UpB: OpB → R – Utility Function (preference)

HCpB – Hard Constraints

Buyer: pB Seller: pS

UpS: OpS → R – Utility Function

HCpS – Hard Constraints

Figure 1. A Simple Negotiation Process

monotonic concession protocol [38]. Negotiation proceeds in a discrete series of rounds.
In each round, each agent puts forward an offer in alternate. If these offers overlap, it
means that an agreement is reached. If the offers do not overlap, negotiation proceeds
to the next round where the agents may make a concession or put forward the same
offers again. If there is no agreement after the deadline is reached, an agent decides to
quit and the negotiation ends with a conflict. With reference to Figure 1, the buyer agent
makes an offer o1 first. Such an offer is driven by her preferences (e.g., the utility function
Uo

pB
). The seller agent pS ∈ P evaluates o1 according to her own preferences Uo

pS
. If the

offer o1 produces a payoff (utility) higher than or equal to the seller’s expected payoff
at this round, the seller will accept the offer; otherwise a counter-offer o2 is proposed
by the seller. Similarly, the buyer agent pB ∈ P will evaluate o2 according to her own
preferences. If o2 is not acceptable, the buyer agent may make a concession based on
her original offer o1 (e.g., raising the price) and generate a counter-offer o3. This process
continues until an offer and a counter-offer overlap, or either side decides to quit.

A negotiation space Neg =< P, A,D,U, T > is a 5-tuple which consists of a finite set
of negotiation parties (agents) P , a set of attributes (i.e., negotiation issues) A understood
by all the parties p ∈ P , a set of attribute domains D for A, and a set of utility functions
U with each function Uo

p ∈ U for an agent p ∈ P . An attribute domain is denoted Dai

where Dai ∈ D and ai ∈ A. An utility function pertaining to an agent p is defined by:
Uo

p : Da1 ×Da2 × . . . ×Dan 7→ R, where R is the set of real numbers. Each agent p has
a deadline tdp ∈ T . It is assumed that information about P,A, D is exchanged among
the negotiation parties during the ontology sharing stage before negotiation actually
takes place. A multi-lateral negotiation situation can be modelled as many one-to-one
bi-lateral negotiations where an agent p maintains a separate negotiation dialog with each
opponent. In a negotiation round, the agent will make an offer to each of its opponent
in turn, and consider the most favourable counter-offer from among the set of incoming
offers according to its own payoff function Uo

p .



3. A Basic Negotiation Model

The basic negotiation model illustrated in this section is based on multi-attribute utility
theory (MAUT) [23] and is first discussed in [2]. It is a variant of the monotonic concession
protocol with Zeuthen strategy [38, 51]. This simple model can guarantee Pareto optimal
if an agreement zone exists in a negotiation space. Therefore, we use it as a baseline
model to evaluate the performance of our GA-based negotiation model.

3.1. Representing offers

An offer −→o =< da1 , da2 , . . . , dan > is a tuple of attribute values (intervals) pertaining
to a finite set of attributes A = {a1, a2, . . . , an}. An offer can also be viewed as a vector
of attribute values in a geometric negotiation space with each dimension representing
a negotiation issue. Each attribute ai takes its value from the corresponding domain
Dai . Generally speaking, a finite set of candidate offers Op acceptable to an agent p (i.e.,
satisfying its hard constraints) is constructed via the Cartesian product Da1×Da2×· · ·×
Dan . As human agents tend to specify their preferences in terms of a range of values,
a more general representation of an offer is a tuple of attribute value intervals such as
−→o i =< 20− 30(K), 1− 2(years), 10− 30(days), 100− 500(units) >.

3.2. Representing negotiation preferences

The valuations of individual attributes and attribute values (intervals) are defined by the
valuation functions UA

p : A 7→ [0, 1] and UDa
p : Da 7→ [0, 1] respectively, whereas UA

p is an
agent p’s valuation function for each attribute a ∈ A, and UDa

p is an agent p’s valuation
function for each attribute value da ∈ Da. In addition, the valuations of attributes are
assumed normalised, that is,

∑
a∈A UA

p (a) = 1. One common way to quantify an agent’s
preference (i.e., the utility function Uo

p ) for an offer o is by a linear aggregation of the
valuations [2, 22, 40]:

Uo
p (o) =

∑
a∈A

UA
p (a)× UDa

p (da)

Non-linear utility function may also be used in ranking offers [6]. For example, if an
agent p’s valuations for the attributes are: UA

p (price) = 0.9 and UA
p (quantity) = 0.1,

and its valuations for the attribute intervals are: UDa
p (20 − 30K) = 0.8 and UDa

p (100 −
200units) = 0.5, then an offer −→o i =< 20 − 30(K), 100 − 200(units) > has utility 0.77
(i.e., Uo

p (oi) = 0.9× 0.8 + 0.1× 0.5 = 0.77) from the agent p’s perspective.

3.3. Computing concessions and generating offers

If an agent’s initial proposal is rejected by its opponent, it needs to propose an alternative
offer with the least utility decrement (i.e., computing a concession). An agent will main-
tain a set O

′
p which contains the offers it has proposed before. In a negotiation round, a

new offer with concession onew can be determined based on the total order ox �p onew,
where ox �p onew denotes that the new offer onew is more preferable than an arbitrary
offer ox ∈ {Op−O

′
p}. The term {Op−O

′
p} represents the difference of the sets Op (the set

of feasible offers pertaining to an agent p) and O
′
p (the set of offers proposed by an agent

p before). The preference relation �p is a total ordering induced by the utility function



Uo
p described in Section 3.2 over a set of offers. In other words, the set of feasible offers

of an agent p are ranked in descending order of utility driven by (�p, {Op−O
′
p}). A new

offer with concession is picked up from the top of the ranking in each negotiation round.

3.4. Evaluating incoming offers

When an incoming offer o is received from an opponent, an agent p first evaluates if o ∈ Op

is true (i.e., the offer satisfying all its hard constraints). To do this, an equivalent offer o'
should be computed. o' represents agent p’s interpretation about the opponent’s proposal
o. Once o' for o is computed, acceptance of the incoming offer o can be determined with
respect to p’s own preference (�p, Op). An offer o' ∈ Op is equivalent to o iff every
attribute interval of o' intersects each corresponding attribute interval of o. Formally,
any two attribute intervals dx, dy intersect if the intersection of the corresponding sets of
points is not empty (i.e., {dx} ∩ {dy} 6= ∅). The acceptance criteria for an incoming offer
o (i.e., the equivalent o') is defined by:

1. If ∀ox∈Op ox �p o', an agent p should accept o since it produces the maximal payoff.

2. If o' ∈ O
′
p is true, an agent p should accept o because o' is one of its previously

proposed offers O
′
p.

It has been proved that if each participating agent p ∈ P employs their preference
ordering (�p, Op) to compute concessions and uses the offer acceptability criteria de-
scribed above to evaluate incoming offers, Pareto optimal is always found if it exists
in a negotiation space [2]. The advantage of such a basic negotiation model is that
it does not require a pre-defined negotiation threshold nor the information about the
opponents’ utility functions. However, one of the problems of the basic negotiation model
is that it may take a long time to sequentially evaluate all the candidate offers before a
Pareto optimal solution is found. Given a high dimensional multi-issue negotiation space
normally found real-world negotiation situations, this kind of blind sequential search may
not be feasible. Another problem of the basic model is that it assumes the preferences
of the agents remaining unchanged during a negotiation process, and therefore a Pareto
optimal solution can be identified a priori. Nevertheless, agents’ preferences (i.e., the
utility functions) often change over time in real-world business environment. Therefore,
the Pareto optimal solution identified by the model may not even be an acceptable
solution because it is derived based on inaccurate and out-dated information.

4. GA-Based Adaptive Negotiation Agents

Development of our GA-based adaptive negotiation agents is driven by the basic intu-
ition that negotiators tend to maximise their individual payoffs while ensuring that an
agreement is reached [11, 27, 39]. This intuition is taken as the basis to develop the high-
level negotiation strategy of our GA-based adaptive negotiation agents. The advantage
of such an approach is that it does not rely on the detailed assumptions for a particular
kind of negotiation environment, and so it is general enough to deal with a variety of
negotiation situations. On the other hand, low-level negotiation strategy (also called
tactics [31, 32]) is developed according to our proposed genetic algorithm. The low-level
negotiation strategy of an agent determines which offer to be made in each negotiation



round, and such a strategy is adaptive with respect to the opponents’ possibly changing
negotiation behaviour. To make an agent’s low-level negotiation strategy adaptive, an
effective learning mechanism, which can take into account the agent’s own payoff as well as
the opponents’ payoffs (to increase the chance of making an agreement), is required. The
learning mechanisms of our negotiation agents are underpinned by a genetic algorithm.
The proposed GA ensures that negotiation agents conducted their heuristic searches (i.e.,
the negotiation processes) in an effective and efficient manner.

distance

feasible offers

distance

x (price)

y (qty)
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r
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r

cO
r aO
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Figure 2. A Geometric Negotiation Space

To estimate the opponents’ payoffs, an agent needs to learn the preferences of its
opponents through their previous encounters. There are two possible approaches as re-
ported in the literature; one is to learn the opponent’s utility function directly [6, 50],
and the second approach is to estimate an opponent’s preferences indirectly according
to its previous counter-offers [11, 52]. We adopt the latter approach since it is simpler
and computationally tractable. If the first approach is adopted, it is quite difficult, if not
totally impossible, to assign prior probabilities to the set of possible outcomes given that
we are dealing with practical negotiation problems involving many negotiation issues [11].
On the other hand, an offer can be considered as a whole or the individual issues of an
offer can be considered separately when a concession is computed [14]. Our proposed
concession generation mechanism considers an offer as a whole since we believe that this
is a more efficient approach than conceding on an issue by issue basis.

Essentially, each agent is empowered by the proposed GA to evaluate the set of feasible
offers pertaining to its negotiation space. The fittest member according to the fitness
function applied in the GA is chosen from a population (i.e., a subset of the set of
feasible offers Op) to form a negotiation solution in a negotiation round. According
to the basic intuition, an offer is considered fit if it tends to generate maximal payoff
(i.e., close to the maximal offer) and it is also similar to the opponent’s recent counter-



offer. Evaluation of offers can be analysed with respect to a geometric negotiation space
(Figure 2) pertaining to an agent. In Figure 2, offers oa . . . oe are the subset of feasi-
ble offers under consideration. Since an agent knows its own utility function, an offer
omax representing the offer with the maximal payoff can be identified. In addition, an
offer oopponent represents the opponent’s most recent counter-offer. All these offers are
represented by the corresponding offer vectors in the geometric negotiation space. The
distance among the vectors can then be measured based on standard distance function
such as the weighted Euclidean distance [8]. In general, the fitter offers of a population
are those having minimal distances to both −→o max and −→o opponent. In each negotiation
round, the offer vector −→o opponent may change, and so are the offers considered fit by
the agent. In other words, an agent is learning the opponent’s preferences gradually.
According to the evolution principle, the population of feasible offers is dominated by
fit members gradually. Therefore, an agent’s proposal is moved closer to its opponent
in each negotiation round. Finally, the conflict between an agent and its opponent is
resolved and an agreement is reached. Another advantage of the GA-based negotiation
model is that it does not assume that the preferences of the agents remain unchanged.
In fact, the preferences of the agents may change in each negotiation round and these
changes are reflected by the new offer vectors −→o max and −→o opponent. The set of feasible
offers are then evaluated with respect to these new reference vectors (i.e., the agents’ new
preferences).

4.1. Offer encoding

The proposed GA-based negotiation model utilises a population of chromosomes to repre-
sent a set of feasible offers Ofeas

p ⊆ Op for an agent p. Each chromosome consists of a fixed
number of fields. The first field uniquely identifies a chromosome, and the second field is
used to hold the fitness value of the chromosome. The other fields (genes) represent the
attribute values of a candidate offer. Figure 3 depicts the decimal encoding (Genotype)
of some chromosomes and a crossover operation. The genetic operators such as crossover
and mutation are only applied to the genes representing the attribute values of an offer.

4.2. Fitness function

The top t chromosomes (candidate offers) with the highest fitness are selected from a
population to build the solution set S. If the size of S is 1, it means that the fittest
chromosome from a population is chosen as an offer. In general, a stochastic selection
function is applied to the solution set to choose a member as the solution (i.e., the current
offer) in a particular negotiation round. Ideally, a fitness function should reflect the
joint payoff of each candidate offer. Unfortunately, the utility functions of the opponents
are normally not available for E-business applications. Therefore, the proposed fitness
function approximates the ideal function and captures two important issues, an agent’s
own payoff and the opponent’s partial preference (e.g., the most recent counter offer).
With reference to the geometric negotiation space depicted in Figure 2, the fitness of a
chromosome (i.e., an offer o) is defined by:

fitness(o) = α×
Uo

p (o)
Uo

p (omax)
+ (1− α)× (1− dist(−→o ,−→o opponent)

MaxDist(|A|)
) (1)

where omax represents an offer which produces the maximal payoff based on an agent’s
current utility function; −→o opponent is the offer vector representing the most recent counter-
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Figure 3. Encoding Candidate Offers

offer proposed by an opponent. The parameter α ∈ [0, 1] is the trade-off factor to control
the relative importance of optimising one’s own payoff or reaching a deal (e.g., by consid-
ering the opponent’s recent offer). In other words, α is used to model a wide spectrum of
agent attitudes, from fully self-interested (α = 1) to fully benevolent (α = 0). The term
MaxDist(|A|) represents the maximal distance of a geometric negotiation space. It can
be derived from the number of dimensions |A| if each dimension (attribute) is normalised
in the unit interval. In the very first negotiation round, the agents will use MaxDist(|A|)
to replace the actual distance dist(−→o ,−→o opponent) in Eq.(1) since oopponent is unknown at
this stage. This is a conservative estimation and assuming that the agents’ interests are
in total conflict at the beginning. In other words, an offer is evaluated based on an agent’s
own utility function initially. In Eq.(1), we simply use the ratio of the utility generated
by a potential offer o to the maximal utility instead of computing their Mahalanobis
distance because it is easier to compute the ratio given the utility function of an agent.
Nevertheless, it is impossible to compute such a ratio for the opponent because the utility
function of the opponent is unknown.

The distance between two offer vectors dist(−→o x,−→o y) is defined according to the
weighted Euclidean distance [8]:

dist(−→o x,−→o y) =

√√√√√ |A|∑
i=1

wi(dx
i − dy

i )2 (2)

where the weight factor wi = UA
p (ai) is an agent’s valuation for a particular attribute

ai ∈ A. An offer vector −→o x contains an attribute value dx
i along the ith dimension (issue)

in a negotiation space. If an attribute interval instead of a single value is specified for
an offer, the mid-point of an attribute interval is first computed. The mid-point value is
then scaled to the unit interval [0, 1] by linear scaling:



dscaled
i =

di − dmin
i

dmax
i − dmin

i

(3)

where the scaled attribute value dscaled
i will take on values from the unit interval [0, 1].

dmin
i and dmax

i represent the minimal and the maximal values for a domain Dai .
For practical negotiations arising in business contexts, time pressure is often an im-

portant factor for concession generation. When the negotiation deadline is close, an agent
is more likely to concede in order to make a deal. However, different agents may have
different attitudes towards deadlines. An agent may be eager to reach a deal and so it will
concede quickly (Conceder agent). On the other hand, an agent may not give ground easily
during negotiation (Boulware agent) [37]. Therefore, a time pressure function TP is devel-
oped to approximate a wide spectrum of agent attitudes towards time. Our TP function
is similar to the negotiation decision function referred to in the literature [10, 14, 13].

TP (t) = 1− (
min(t, tdp)

tdp
)

1
ep (4)

TP (t) denotes the time pressure given the time t represented by the absolute time or the
number of negotiation rounds; tdp indicates the deadline for an agent p and it is either
expressed as absolute time or the maximum number of rounds allowed. The term ep

denotes the agent p’s eagerness in negotiation [41, 42, 43, 45]. An agent p is Boulware
if 0 < ep < 1 is set; for a conceder agent, ep > 1 is true. If ep = 1 is established, the
agent holds Linear attitude towards the deadline. The values of the TP function are
within the unit interval [0, 1]. When t = 0 is the input, the function returns 1. When the
deadline is due (t = tdp), the time pressure function returns 0. The time pressure factor
is incorporated into our GA-based negotiation model by the enhanced fitness function:

fitness(o) = α× TP (t)×
Uo

p (o)
Uo

p (omax)
+ (1− α× TP (t))× (1− dist(−→o ,−→o opponent)

MaxDist(|A|)
) (5)

The eagerness factor ep can be chosen by the user or else a system default is assumed
before a negotiation process begins. The time pressure function is applicable for α > 0.
For the extreme case (α = 0), an agent is totally benevolent. Under such circumstance,
there is no need to consider time pressure because the agent will give ground completely
at the beginning of a negotiation session.

To consider the opponent’s concession matching behaviour [12, 27] and to make our
negotiation system more robust, the eagerness factor [41, 42, 43, 45] can be adjusted
by our system automatically. The adjustment of the eagerness factor depends on the
opponent’s concession matching behaviour. To support this dynamic concession matching
behaviour, an agent needs to maintain a separate population of chromosomes to adapt
to the concession behaviour of each of its opponent. In general, our GA-based adaptive
negotiation agent tries to mimic its opponent’s concession matching behaviour. If the
opponent did not concede in the past few rounds defined by a time window λ, an agent
would become Boulware too. On the other hand, if the opponent conceded, the agent
would become cooperative and start to concede too. The opponent’s concession rate
CRopp(λ) is measured by:



CRopp(λ) =
Uo

p (ot−1
opponent)−Avgλ+1

i=2 Uo
p (ot−i

opponent)

Uo
p (ot−1

opponent)
(6)

where Uo
p (ot−1

opponent) denotes the payoff of the previous offer (t−1 step ago) received from
the opponent and it is evaluated using agent p’s utility function. Avgλ+1

i=2 Uo
p (ot−i

opponent)
represents the average payoff of the past λ offers received from the opponent. If the
opponent did not concede at all, CRopp(λ) is less than or equal zero; otherwise it is
greater than zero. If CRopp(λ) = 0 is true, ep = eMinBoulware

p will be set. For our
current implementation, eMinBoulware

p = 0.9. The maximum emax
p and the minimum

emin
p eagerness factors are defined to be 50 and 0.02 respectively. If CRopp(λ) is less

than zero (i.e., a very tough opponent), ep = emin
p will be set. If CRopp(λ) is greater

than zero (i.e., the opponent has conceded), our system adjusts the agent p’s eagerness
factor [41, 42, 43, 45] ep by:

ep =

{
(CRopp(λ) + 1)×Adjconceder If ep ≤ emax

p

emax
p otherwise (7)

Adjconceder is the adjustment factor to convert the positive CRopp(λ) values to the
eagerness values.

4.3. The Genetic Algorithm

An agent’s adaptive negotiation strategy is developed based on the following genetic
algorithm:

LET i = 0

CREATE the first population P i which consists of omax and N−1 individuals randomly
selected from the set Op = Da1 ×Da2 × · · · ×Dan;

WHILE (i ≤ MaxE)
P i+1 = Best(P i);
MP = Selection(P i);
DO UNTIL Size(P i+1) = N

I1 = Crossover(MP );
I2 = Mutation(MP );
I3 = Cloning(MP );
P i+1 = P i+1 ∪ I1 ∪ I2 ∪ I3;

END UNTIL
i = i + 1

END WHILE

The initial population P 0 is created by incorporating the member omax that maximises
an agent p’s payoff in the first round, and by randomly selecting the N−1 members from
the candidate set Op, where N is the pre-defined population size. At the beginning of
each evolution cycle, the fitness value of each chromosome is computed based on the
most current negotiation parameters (e.g., an agent’s utility function and the opponent’s
counter-offer). Elitism is incorporated by executing the Best function to copy the e%



fittest chromosomes from the current generation P i to the new generation P i+1. By
executing the Selection function, either Tournament selection [32] or Roulette-wheel
selection can be used to create a mating pool MP .

For tournament selection, a group of k members are selected from a population to
form a tournament. The member with the highest fitness among the selected k members
is placed in the mating pool. This procedure is repeated n times until the mating pool is
full. Roulette-wheel selection is analogous to a roulette wheel where the probability that
a member is chosen is proportional to its fitness. The roulette-wheel selection function
works on the ranks of chromosomes rather than evaluating the fitness values of the
chromosomes directly. The reason is that a ranking reflects the relative performance of
the chromosomes in a population and hence minimises the effect of large disparities in
the fitness values. A ranking pertaining to a population of chromosomes is generated in
descending order of the fitness values. For each chromosome o, the probability of selection
is computed according to:

Pr(oselected) = 1− 1
orank

× (orank − 1) (8)

where orank is the rank of a particular chromosome (i.e., a potential offer). Then, a
random number in the unit interval is generated for each chromosome. If Pr(oselected)
of a chromosome is greater than or equal to the random number, the corresponding
chromosome is selected and put into the mating pool. This process continues until the
mating pool is full.

Standard genetic operators: cloning, crossover, mutation are applied to the mating
pool to create new members according to pre-defined probabilities. These operations
continue until the new generation of size N is created. Two point crossover is used to
exchange the fields (offer values) between two parents to create two new members. An
example of a crossover operation is depicted in Figure 3. Mutation involves randomly
replacing some attribute values encoded on a chromosome by other attribute values
from the corresponding attribute domains (quantity). Figure 4 shows an example of an
attribute domain defined for a buyer agent via the client interface. Therefore, the proposed
mutation operation will not generate offer values which are not acceptable to an agent.
An evolution process is invoked after every x negotiation round, where x is the evolution
frequency defined by the user. The lower the value of x, the more GA-based learning
takes place in a negotiation agent. For example, if x = 1 is true, an agent will apply the
GA to find a tentative offer in each negotiation round. In general, a low value of x leads
to the reduction of negotiation rounds to reach an agreement (if a solution does exist)
because an agent will learn the opponent’s preferences more frequently. There is another
parameter (MaxE) to define the maximum number of evolutions to be performed in a
evolution cycle. An example of genetic parameters is depicted in Figure 5.

As the proposed adaptive negotiation mechanism allows an agent to change its valu-
ation functions (i.e., preferences) during a negotiation process, it is possible for an agent
to propose the same offer twice in different negotiation rounds. To avoid an endless loop,
a maximum number of negotiation rounds (i.e., a deadline) is specified by the user. If the
deadline is due or an agreement is reached, the negotiation process will be terminated.
Basically an agent’s concession generation mechanism is underpinned by the above genetic
algorithm because the GA determines which offer to be proposed in the current round.
After an offer is determined by the GA, the agent’s decision for an incoming counter-offer
can also be developed easily. If the incoming counter-offer produces a payoff greater than



Figure 4. A Buyer Client Interface

Figure 5. An Example of Genetic Parameters

or equal to that of the current proposal, a rational agent should accept the incoming
offer; otherwise the incoming counter-offer should be rejected. Our negotiation agents
do not explicitly adjust the aspiration level as proposed by [44]. In this context, the
aspiration level means the gap (i.e., the difference of two utilities) between the current
proposal and the incoming offer [44]. Under tight constraints such as short deadline
and tough opponent, our proposed concession mechanism (e.g., the fitness function) will
automatically lower the agent’s expectation and consider a moderate offer (in terms of
perceived payoff) as the current solution. In other words, the aspiration level is lowered.



5. The Experiments

The negotiation spaces Neg of our experiments were characterized by bilateral negotia-
tions between a buyer agent pB and a seller agent pS . Each negotiation profile consists of
5 attributes with each attribute domain containing 5 discrete values represented by the
natural numbers Da = {1, 2, . . . , 5}. The valuation of an attribute or a discrete attribute
value was in the interval of (0, 1]. For each negotiation case, an agreement zone always
exists since the difference between a buyer and a seller only lies on their valuations
against the same set of negotiation issues (e.g., attributes and attribute values). For each
agent, the size of the candidate offer set Op is 3, 125. 5 negotiation groups with each
group containing 10 cases were constructed. For each negotiation case in a group, the
negotiation profile (e.g., the preferences) of a buyer was randomly created according to
the configuration mentioned before (i.e., 5 attributes with each attribute containing a
value dai ∈ Dai). A buyer’s profile was then copied to create a seller’s profile, and then
the seller’s profile was modified with various levels of preferential difference introduced
(e.g., modifying the valuations of some attribute values).

For the first simulation group, each negotiation case contained identical buyer/seller
preferences (i.e., the same weights for the attributes and the same valuations against the
same set of attribute values). This group was used as a control group and the other groups
were the experimental groups. Each negotiation case in the second group contained 20%
preferential difference between a buyer and a seller (e.g., one valuation of an attribute
value is different). Each case in the succeeding group was injected a 20% increment of
preferential difference. The genetic parameters were: population size = 200, mating pool
size = 150, size of solution set = 1, elitism factor = 10%, tournament size = 3, cloning rate
= 0.2, crossover rate = 0.6, mutation rate = 0.05, Number of evolutions per cycle = 3,
and evolution frequency = 1 (i.e., one evolution cycle per negotiation round). Tournament
selection was used for the experiments reported in this paper. The negotiation trade-off
factor α = 0.5 and the negotiation deadline = 100 (rounds) were set for both the buyer
and the seller. One hundred rounds were seen as a moderate deadline given the large
negotiation space. For each simulation run, an agent (either the buyer or the seller) was
randomly chosen to initiate the negotiation process. The basic performance measures
were joint-payoff (JP ), success rate (SR), fairness ratio (FR), and negotiation round
(RD). Joint-payoff is the sum of the utilities generated from the agreement as computed
according to the buyer and the seller’s utility functions respectively. If an agreement was
not reached after the deadline was due, zero utility was assumed for each agent. Success
rate is the percentage of cases with agreements made over the the number of negotiation
cases. The fairness ratio represents the degree of equity in the negotiation and is computed
by taking the ratio of the seller’s individual payoff to the buyer’s individual payoff [27].

Experiment 1
The purpose of the first experiment was to study the general performance of the GA-

based adaptive negotiation agents when compared with the baseline negotiation model
(Section 3) which guarantees Pareto optimal. The main hypothesis was that the perfor-
mance of the GA-based negotiation agents should be better than that of the baseline
negotiation system under realistic negotiation conditions (e.g., limited negotiation time).
The first simulation run involved negotiation agents developed according to the baseline
negotiation model. The second simulation run involved GA-based adaptive negotiation
agents. For the GA-based negotiation agents, both the buyer agent and the seller agent



were Boulware agents with eagerness factor ep = 0.5. In other words, the interactions
of these agents are symmetry. In this experiment, the fitness function Eq.(5) was used.
However, the eagerness factor ep = 0.5 remained the same throughout the experiment.
The concession matching mechanism Eq.(6) was not activated in the GA-based nego-
tiation agents. In other words, the agents were adaptive to each other’s moves and the
negotiation deadline, but they were not responsive to the opponent’s concession matching
behaviour. All the simulation runs (each case in the 5 negotiation groups) were performed
on our negotiation server with the configuration of a single Pentium III 800 MHz CPU and
256MB main memory. Both the GA-based negotiation agents and the baseline negotiation
system dealt with exactly the same set of negotiation cases. The following measures were
used to evaluate the relative performance of the GA-based adaptive negotiation agents
against the baseline negotiation system:.

∆utility =
JPGA − JPbaseline

JPbaseline
× 100%

∆rate =
SRGA − SRbaseline

SRbaseline
× 100%

∆round =
RDGA −RDbaseline

RDbaseline
× 100%

For the baseline negotiation system, the joint-utility (JPbaseline) represents the sum of
the buyer’s payoff and the seller’s payoff obtained at Pareto optimal point. However, it
should be noted that the maximal joint utility of a negotiation session may not necessarily
obtained at the Pareto optimal point. SRbaseline is the average success rate achieved by
the baseline negotiation mechanism depicted in Section 3. If the agents can reach an
agreement before the deadline (i.e., 100 negotiation rounds), the negotiation session is
considered successful. RDbaseline refers to the average number of negotiation rounds con-
sumed by the baseline negotiation mechanism. Table I summarizes the average ∆utility,
∆rate, and ∆round for each negotiation group. A positive ∆utility indicates that the GA-
based negotiation agents are more effective than the baseline negotiation system, and a
positive ∆rate shows that the GA-based negotiation agents are more efficient because
they can finish negotiations on or before deadline. However, a negative ∆round indicates
that the GA-based adaptive negotiation agents can finish the negotiation processes in
fewer number of negotiation rounds. If an agreement can be reached, the actual number
of negotiation rounds consumed by the agents is recorded. If an agreement cannot be
reached before the deadline, 100 rounds will be consumed by that particular negotiation
session.

An overall results of ∆utility = 10.3%, ∆rate = 15.8% and ∆round = −18.2% were
obtained and the original hypothesis was confirmed. On average the baseline model
consumed 96.5 negotiation rounds (RDbaseline = 96.5) to deal with the various ne-
gotiation sessions, and the GA-based negotiation agents took 78.9 negotiation rounds
(RDGA = 78.9) to complete the negotiation sessions. The proposed negotiation method
ensures that “as little money is left on the table as possible”. Since the proposed GA-based
negotiation agents can observe their opponents’ preferences and continuously learn this
information via the opponents’ counter-offers, the search for a mutually acceptable offer
becomes faster. Moreover, as the GA-based negotiation agents were responsive to time



pressure, most of the agreements could be reached on or before the deadline. On the other
hand, the basic negotiation system failed to develop some negotiation solutions given
limited negotiation time. Although the basic negotiation system can guarantee Pareto
optimal solutions, it is less useful for practical negotiations because it is not responsive
to the changing negotiation contexts. For the control negotiation group (group 1), both
systems could successfully identify all the negotiation solutions given exactly the same
preferences of the negotiators. In fact, both systems could identify the solution in the first
round for each case in the first negotiation group. In general, the performance gap between
these two negotiation systems becomes larger if the preferential differences between the
buyer and the seller are bigger. The reason is that the GA-based negotiation agents
are equipped with effective learning mechanisms to learn and adapt to the opponents’
preferences even though the preferential differences between the parties are big. Therefore,
GA-based negotiation agents perform better in these more realistic and more challenging
negotiation sessions. The improvement in terms of the average number of negotiation
rounds to complete a negotiation session achieved by the GA-based adaptive negotiation
agents indicates that these agents are more efficient than those agents developed based
on the basic negotiation model. Except for the first negotiation group where both kinds
of agents complete every negotiation session after the first round, the GA-based agents
generally complete a negotiation session faster when compared to their non-adaptive
counterparts.

Table I. Comparative negotiation performance GA vs.
Baseline

Group Preferential ∆utility ∆rate ∆round
Difference

1 0% 0.0% 0.0% 0.0%

2 20% −1.6% 0.0% −36.5%

3 40% 9.8% 11.1% −31.8%

4 60% 17.2% 25.0% −15.5%

5 80% 26.1% 42.8% −7.1%

Average 10.3% 15.8% −18.2%

Experiment 2
The purpose of the second experiment was to examine the capabilities of the GA-based

adaptive negotiation agents in dealing with dynamic negotiation environments (e.g., the
preferences of an agent and its opponent will change during a negotiation process). The
main hypothesis was that the GA-based negotiation agents would be responsive to the
changing negotiation preferences, and so should demonstrate a bigger performance boost
when compared with the baseline negotiation system which cannot take into account
any changing negotiation preferences. The same set of negotiation cases and the same
agent parameters used in experiment one were adopted in this experiment. The fitness
function Eq.(5) was still used in the GA-based negotiation agents. The only difference
between experiment 1 and experiment 2 was that a random preferential change (e.g., the
valuation of an attribute or attribute value) was injected to both the buyer and the seller



at the end of every five negotiation rounds if an agreement had not been established in
that round. Similar to experiment 1, the interactions between the buyer and the seller
were symmetry since both of them demonstrated changing negotiation preferences with
the same frequency. With reference to our client interface (Figure 4), a breakpoint was
set to 5 (i.e., a negotiation process continues for 5 rounds and then stops) and then the
valuation values were modified. Both the GA-based negotiation agents and the baseline
system were exposed to the same set of negotiation cases with preferential changes. For
the baseline model, it cannot take into account any changing preferences, and so the
negotiation processes were not affected. However, when the payoff of a buyer or a seller
was computed at the end of a negotiation process, the most up-to-date utility function
(due to the changing preferences of a negotiator) was used to compute an agent’s payoff.

Table II summarizes the average ∆utility and ∆rate for each negotiation group. An
overall results of ∆utility = 31.6% and ∆rate = 15.8% were obtained and our second
hypothesis was confirmed. Apart from the control group (group 1), the performance of the
GA-based adaptive negotiation agents was much better than that of the baseline system.
For the control group, both systems could successfully finish all the negotiations in round
one before any preferential changes were introduced. Therefore, the results of group one
was the same as that obtained in experiment one. It was obvious that the baseline system
could not find the right solutions for most of the cases of the remaining groups. On the
other hand, the GA-based negotiation agents were still performing well because they
could adapt to the preferential changes and were able to reach agreements before the
deadline for all the cases. Overall, this experiment shows that the GA-based adaptive
negotiation mechanism is quite effective under dynamic negotiation environment.

Table II. Comparative Negotiation Perfor-
mance in Dynamic Environment

Group Preferential ∆utility ∆rate
Difference

1 0% 0.0% 0.0%

2 20% 21.6% 0.0%

3 40% 32.8% 11.1%

4 60% 42.3% 25.0%

5 80% 61.5% 42.8%

Average 31.6% 15.8%

Experiment 3
The purpose of the third experiment was to examine the concession matching mecha-

nisms of the GA-based negotiation agents. This experiment only involved the GA-based
adaptive negotiation agents. The control group was the adaptive agents without the con-
cession matching mechanisms Eq.(6) activated, while the experimental group consisted of
agents with the concession matching mechanisms activated. The parameter λ = 3 was set
when the agents used the concession matching tactics. Ten negotiation cases from group 4
which were used in experiment one and two were adopted in this experiment. To simulate
different encounters such as Boulware-to-Boulware, Boulware-to-Conceder, Conceder-to-



Boulware, and Conceder-to-Conceder, the buyer agent and the seller agent took the
respective roles in turn. As a whole, it was a 9 × 2 × 10 factorial design which involved
180 simulation runs since there were 9 types of encounters, 2 kinds of agents (concession
matching mechanisms activated or not), and 10 negotiation cases. For a Boulware agent,
the eagerness factor [41, 42, 43, 45] ep = 0.5 was set. For a Conceder agent, the eagerness
factor was ep = 5 and the Linear agent had ep = 1. In this experiment, the average fairness
ratio was used to evaluate the performance of our concession matching mechanism. The
fairness ratio represents the degree of equity in the negotiation and is computed by
taking the ratio of the seller’s individual payoff to the buyer’s individual payoff [27]. All
the genetic parameters and agent parameters were the same as the previous experiments
except for those we mentioned above. Our hypothesis in this experiment was that the
negotiation agents with the concession matching mechanisms activated should produce
more robust results, that is, the fairness ratios should be higher in all kinds of encounters.
The relative performance of the agents with concession matching tactics was measured
using the following metric:

∆Fair =
FRCMT − FRNCMT

FRNCMT
× 100%

where FRCMT denotes the average Fairness Ratio for agents with Concession Matching
Tactics employed, and FRNCMT represents the average Fairness Ratio for agents without
Concession Matching Tactics employed.

Table III depicts the average ∆Fair for the 9 encounters. A positive ∆Fair indicates
that a fairer result was achieved. As can be seen, a better result (in terms of a higher
fairness ratio) was produced when our concession matching mechanisms were applied
to negotiations, and so our third hypothesis was confirmed. The reason was that the
agents tried to mimic and adapt to each other during negotiation. Consequently, a fairer
outcome was produced. For example, when a Boulware agent negotiated with a Conceder
agent, the Boulware agent learned to be less Boulware. Meanwhile, the Conceder agent
learned to be tougher (i.e., less conceding). Therefore, their concession making behaviour
converged gradually and the resources were more evenly distributed. If both agents were
of the same type, their positions remained the same, but the tougher Boulware became
less Boulware while the tender Boulware became tougher. As a result, their concession
behaviour also converged.

Table III. The Effect of Learning Concession
Matching Behaviour

Agent Trait Boulware Conceder Linear

Boulware 1.3% 9.5% 3.3%

Conceder 10.4% 0.9% 1.5%

Linear 3.1% 1.8% 0.6%

Experiment 4
The purpose of the fourth experiment was to examine the interactions among different

kinds of agent attitudes (e.g., self-interested to benevolent). In addition, we would like
to evaluate if our adaptive negotiation mechanism Eq.(5) could improve the negotiation



outcome under extreme agent attitudes. Our hypothesis was that the adaptive negotiation
mechanism which could take into account approaching deadline would lead to higher suc-
cess rate in extreme encounters such as fully self-interested attitude to fully self-interested
attitude. From the literature, it has been indicated that fully self-interested agents do
not necessarily achieve good negotiation outcomes (e.g., the Prisoner’s Dilemma) [37, 47].
Through our simulated negotiations, it is interesting to see if certain agent attitudes would
generally lead to better outcome under realistic conditions (e.g., limited information, time
pressure). Ten negotiation cases in group 4 which were used in experiment one and two
were employed in this experiment. For the first series of simulation runs, the fitness
function Eq.(1) was employed so that the agents’ attitudes were fixed in each negotiation
session. For the second series of simulation runs, the fitness function Eq.(5) was employed
so that the agents’ attitudes were adjusted with respect to the time pressure. Basically, it
was a 5×5×2×10 factorial design. There were 5 buyer attitudes (α = 0.2, . . . , α = 1.0),
5 seller attitudes, and for each interaction, there were 10 negotiation cases. This exper-
imental setting was repeated twice, one for non-adaptive agents, and the another for
agents that were responsive to time pressure.

Joint-payoff (JP ) and success rate (SR) were used to measure the agents’ performance
with respect to various agent attitudes. For this experiment, if an agreement could not
be reached before the deadline (100 rounds), the case was ignored in computing the
average joint-payoff since we would like to clearly examine if a particular interaction of
agent attitudes promoted joint-payoff. The genetic parameters were the same as those
used in the previous experiments, but the trade-off factor varied in the range of [0.2, 1].
For each pair of agent attitude such as αbuyer = 0.2 and αseller = 0.2, the 10 negotiation
cases were executed to obtain the average joint-payoff and the average success rate within
100 negotiation rounds. Figure 6.a and Figure 6.b show the average joint-payoff and the
average success rate for various interactions of agent attitudes when the agents were not
responsive to time pressure. In addition, Figure 6.c and Figure 6.d show the average
joint-payoff and the average success rate for the same set of interactions while the agents
were responsive to time pressure.

By comparing Figure 6.a and Figure 6.b, it should not be difficult to find that the aver-
age joint-payoff was the lowest when both agents were benevolent (αbuyer = αseller = 0.2).
However, the average success rate was the highest at this point. On the other hand, when
both agents were fully self-interested (αbuyer = αseller = 1), the average joint-utility was
the highest although the average success rate was the lowest (average success rate =
0.1). So, our experiment confirmed the findings reported in the literature. Even though
there is a temptation for agents to be fully self-interested (e.g., achieving a high payoff
as shown in our simulation), they may in fact be worse off since most of these encounters
cannot lead to agreements. From Figure 6.c and Figure 6.d, it also confirms that our
proposed GA-based adaptive negotiation mechanism, which can take into account the
time pressure, leads to better outcome in terms of success rate. The average success rates
were substantially improved under various encounters while the joint-payoffs remained
more or less the same when compared with the results produced by the agents which
were not responsive to time pressure (Figure 6.a and Figure 6.b). Therefore, the fourth
hypothesis is supported based on this experiment. In fact, not only the outcomes of
the extreme encounters was improved by employing the proposed adaptive negotiation
mechanism that takes into account of time pressure Eq.(5) but also the outcomes of most
of the agent encounters.
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Figure 6. The Interactions of Agent Attitudes

Experiment 5
The purpose of the fifth experiment was to explore multi-lateral negotiation situations

which consists of two buyer agents (B1, B2) and two seller agents (S1, S2). These agents
negotiated over some virtual services or products described by five attributes (i.e., |A| =
5) with each attribute domain containing 5 discrete values as described before. Each
negotiation case in this experiment was defined in terms of the valuation functions UA

p

and UDa
p for each agent p participating in the negotiation process. Each buyer (seller)

participating in a negotiation process was assumed to have a product to buy (sell). Similar
to the previous experiments, an agreement zone always exists in a negotiation case.

A synchronised alternate-offering protocol was used in this experiment. At the be-
ginning of every negotiation round, each agent would execute its genetic algorithm to
generate an offer for that round. At the message exchange phase, each agent sent the
offer messages to each of its opponents (e.g., S1 → B1, S1 → B2) according to a pre-
defined order. After the message exchange phase in each negotiation round, the simulation
controller would randomly serialise the offer evaluation processes in a particular sequence



(e.g., < B2, B1, S1, S2 >). Then, each agent selected the best incoming offer (evaluated
according to its private utility function) as the opponent offer oopponent in a negotiation
round. If there was a tie, an opponent would be selected randomly. As a result, each agent
can determine if the oopponent should be accepted or not with reference to its proposal
in the current round. If an agreement was made between a pair, they would be removed
from the negotiation table, and the remaining two agents would continue their negotiation
until either an agreement was made or the deadline was due.

Table IV. Comparative Performance (GA) vs. (Baseline) in Mul-
tilateral Negotiations

(GA) (Baseline)

Agent Average Average Average Average

Payoff Time (rounds) Payoff Time (rounds)

B1 0.62 67.9 0.18 96.2

B2 0.59 67.6 0.19 95.8

S1 0.47 67.9 0.13 95.9

S2 0.48 68.1 0.11 96.1

Ten negotiation cases were developed according to various valuation functions UA
p

and UDa
p assigned to the four agents. The payoff obtained by each agent from every

negotiation process was recorded. If no agreement was made after the deadline, the payoff
obtained by an agent was zero. The average payoff obtained by each agent and the average
negotiation time (in rounds) consumed over the ten negotiation cases are depicted under
the (GA) columns in Table IV. The negotiation trade-off factors α = 0.8 and α = 0.5 were
applied to the buyer agents and the seller agents respectively. In addition, the eagerness
factor [41, 42, 43, 45] ep = 1 was employed by each agent.

The same set of negotiation cases was assigned to the agents developed based on the
basic negotiation mechanism defined in Section 3. The results of these agents are listed
under the (Basic) columns in Table IV. From Table IV, it is obvious that the GA-based
adaptive negotiation agents again out-perform the negotiation agents which guarantee
Pareto optimal in terms of both average payoff (effectiveness) and average negotiation
time (efficiency). One of main reasons is that the the non-learning agents cannot find
negotiation solutions (i.e., agreements) in many cases under a tough deadline of 100
negotiation rounds. On the contrary, even though the (GA) agents cannot guarantee
Pareto optimal in general, they are sensitive to negotiation deadlines and are adaptive
with respect to their opponents’ negotiation behaviour. Therefore, agreements can be
made in most of the negotiation cases.

6. Related work

Many researchers in automated negotiation [14, 25, 49] have stressed the necessity and im-
portance of developing adaptive negotiation mechanisms which allow negotiation agents



to learn their opponents’ preferences and concession making behaviour in dynamic nego-
tiation environments. However, existing learning approaches for automated negotiation
such as Bayesian learning [5, 50] and Case-Based Reasoning (CBR) [46, 52] are still
primitive in terms of what can be learned (e.g., price only) and their sensitivity to the
changing negotiation contexts. Recently, there have been several proposals and implemen-
tations which employ genetic algorithms to empower negotiation agents with learning and
adaptation capabilities [1, 6, 15, 27, 28, 39].

Naive Bayesian classifier has been proposed to develop the learning mechanisms of
negotiation agents in multiagent systems [5]. It is argued that learning capabilities of
autonomous agents are essential since agents may not be willing to share their preferences
and the communication costs of exchanging full preferences among the agents could be
high. Negotiation is treated as a process in which the agents refine their joint agreement
set from the initial set of all feasible agreements to a single final agreement. Basically,
such a refinement process is modelled as hill-climbing search in an agreement tree. The
root node of the agreement tree contains all feasible agreements and all the leaf nodes are
singleton sets. The set of all children of an intermediate node is a partition of that node.
Negotiation is a coordinated search through the tree to find a leaf (agreement) acceptable
by all the agents. The search involves two stages, asynchronous refinement and collective
refinement. In the asynchronous refinement stage, an agent tries to maximise the social
welfare (global utility) based on its own refinement bias function (i.e., a utility function).
If all agents propose exactly the same refinement (i.e., agreement set), the particular
refinement will be adopted as the solution at the collective refinement stage; otherwise
the agents exchange their preferences and attempt to find an alternative refinement to
maximise the group’s payoff at the collective refinement stage. This process may involve
a back-tracking to a node at a higher level if all the nodes below the current level do not
lead to a joint agreement.

As can be seen, the main issue lies on the refinement bias function used by an agent
at the asynchronous refinement stage. A refinement bias function (i.e., a utility function)
can be expressed by: Ua

group(o) = Ua(o)+
∑

b∈{A−a} Ub(o), where Ugroup(o) is an agent a’s
perception of the joint payoff for an offer o, and Ua(o) is agent a’s own utility function.∑

b∈{A−a} Ub(o) represents agent a’s view of the joint payoff perceived by other agents and
A is the set of agents participating in negotiation. In the extreme case, an agent may adopt
the ignorance approach such that Ua

group(o) = |A|×Ua(o) is computed. In other words, the
agent only used its own utility function Ua(o) to replace other agents’ utility functions.
However, this approach may lead to much conflict at the collective refinement stage.
An agent can learn others’ preferences based on their previous negotiation history. In

particular, the Naive Bayesian classifier Pr(ci|x) =
∏

j
Pr(ej |ci)Pr(ci)

Pr(x , where ci represents
the discretised utility value (i.e., a class) and ej is one of the features of the object (i.e.,
offer) x. In other words, given an offer x, the probability of it generating a payoff ci for
an agent is approximated by the prior probabilities (e.g., Pr(ej |ci) and Pr(ci)) which
could be obtained from the past negotiation history. The expected payoff of an offer
as perceived by an agent b is: U exp

b (o) =
∑

i Pr(ci|o) × ci, where ci is the mean of the
discretised utility ci. Through simulated experiments, it was found that the agents with
learning mechanisms underpinned by the Naive Bayesian classifier performed better than
those agents without the capabilities of learning others preferences in terms of reduced
solution cost (i.e., higher joint payoff) and reduced number of messages exchanged during
the negotiation process. Nevertheless, one important issue which was not explained clearly



in the paper [5] is how the prior probability Pr(ej |ci is obtained. The prior probability
Pr(ej |ci implies that the opponents need to disclose their preference (utility) values for
some negotiation issues during the previous negotiation process. Such a requirement may
contradict the original assumption of the negotiation process in that agents tend to keep
their preference information private.

It has been argued that the challenge of research in negotiation is to develop models
that can track the shifting tactics of negotiators [27]. Accordingly, a genetic algorithm
based negotiation mechanism is developed to model the dynamic concession matching
behaviour arising in bi-lateral negotiation situations [27]. The set of feasible offers of a
negotiation agent is represented by a population of chromosomes. The fitness of each
chromosome (i.e., a feasible offer) is measured by the fitness function: fitness(o) =
Pself − λ× Popponent, which is derived based on Social Judgement Theory [4]. Pself and
Popponent represent the payoffs of an agent and its opponent respectively. The parameter
λ ∈ {1,−1} indicates if a negotiation agent is situated in a competitive or a cooper-
ative situation. The parameter λ is established according to the opponent’s concession
matching behaviour in previous negotiation rounds. For example, if the opponent does
not concede at all in previous rounds, it indicates that an agent is faced with a highly
competitive situation and so λ should be set to 1 to penalise the opponent. Based on
the standard genetic operators such as selection, crossover, and mutation, a population
of chromosomes evolves over time. After a pre-defined number of evolutions, the fittest
chromosome from the current generation is chosen as a tentative solution (i.e., a counter-
offer). If an agent receives an incoming offer that is perceived to yield a higher payoff
than that of its opponent, it will accept the offer. The main drawback of this negotiation
model is that it requires the knowledge about the opponent’s utility function to compute
Popponent and to evaluate an incoming (counter-)offer. The system is not equipped with
a learning mechanism to learn the opponent’s preferences; it is assumed that an agent
and its opponent have the same utility function. The GA-based multi-agent multi-issue
negotiation mechanism proposed in this paper does not rely on the assumption of the
opponents’ negotiation preferences. Moreover, the proposed negotiation mechanism is
adaptive in the sense that negotiators’ changing preferences and negotiation behaviour
are taken into account by the proposed GA.

An agent-based multi-issue negotiation model has been developed based on a genetic
algorithm [6]. Essentially, this negotiation model is mainly based on Krovi’s work [27]
and focuses on learning an opponent’s concession matching behaviour. However, the main
difference between these systems lies on the computation of the λ parameter. Choi et.
al.’s negotiation mechanism [6] seems to demonstrate a large departure from the Social
Judgment Theory. Though a learning mechanism based on stochastic approximation is
proposed to learn the opponent’s negotiation preferences, the given formulas do not show
clearly how the weight of a negotiation issue is derived. To strike for a better balance
between exploitation-oriented and exploration-oriented genetic search, adaptive mutation
operator is proposed.

Rubenstein-Montano and Malaga have also reported a GA-based negotiation mech-
anism for searching optimal solutions for multiparty multi-objective negotiations [39].
Basically, a negotiation problem is treated as a multi-objective optimisation problem.
Apart from the standard genetic operators such as selection, crossover, and mutation,
the GA is enhanced with a new operator called trade. The trade operator simulates a
concession making mechanism which is often used in negotiation systems. A chromosome
is used to represent a payoff matrix (e.g., each column represents a negotiation party



and each row represents a negotiation issue in the matrix). The negotiation performance
of the GA enhanced by the trade operator is compared to other approaches such as a
similar GA without the trade operator, a nonlinear programming method, a hill-climber,
and a random searcher. Their experimental results show that the GA with the trade
operator performs better than the other approaches in terms of maximising the joint
payoffs in distributive negotiation scenarios involving four issues. However, the main
problem of this particular GA-based negotiation mechanism is that the preferences (i.e.,
the utility functions) of all the negotiation parties are assumed available to a central
negotiation mechanism. Moreover, the preferences of the negotiation parties are assumed
unchanged during a negotiation process. Because of these assumptions, such a negotia-
tion mechanism seems to have very limited use in real-world negotiation environments
such as e-Business where a negotiator’s preferences are often kept private. Our proposed
negotiation mechanism does not assume complete knowledge about a negotiation space.
Instead, the GA-based adaptive negotiation mechanism can observe and gradually learn
the opponents’ negotiation preferences.

Genetic algorithm has also been applied to learn effective rules to support the nego-
tiation processes [33]. A chromosome represents a negotiation (classification) rule rather
than an offer. Each classification rule has the pattern < p, s >:< p

′
, s

′
>, where p and s

represent the purchaser’s current offer and the seller’s current offer respectively, and p
′

and s
′
are the subsequent offer of the purchaser and the subsequent counter-offer of the

seller. The fitness of a chromosome (a rule) is measured in terms of how many times the
rule has contributed to reach an agreement. If a rule is fired and subsequently it leads to
an agreement, one unit of fitness is added to the rule. Standard genetic operators such
as roulette wheel selection, crossover, mutation are used to evolve populations. In order
for the system to determine if an agreement is possible, each negotiator’s preferences
including the reservation values of the negotiation attributes are assumed known or
hypothesised. Therefore, this approach also suffers from the same problem as that of
the other methods which assume complete information about negotiation spaces.

Instead of using the evolutionary approach to develop an agent’s concession generation
mechanism, a GA has been used to learn optimal negotiation tactics given a particular
negotiation situation (e.g., a predefined amount of negotiation time) [32]. The negotia-
tion tactics such as time-dependent tactics, resource-dependent tactics, and behaviour-
dependent tactics are examined. A negotiation agent and its tactics, in particular, the
various parameters associated with these tactics, are represented by a chromosome. To
compute the fitness of a chromosome, an agent needs to negotiate with each partner in a
market-place to obtain the average joint-payoff. Then, such a joint-payoff is compared to
that obtained at the theoretical Nash equilibrium point. It is found that using a weighted
combination of tactics to determine the concession value of each negotiation issue leads to
more robust results (e.g., in terms of stable joint-payoffs) under varying negotiation situ-
ations. Similar approach has also been applied to find the optimal negotiation parameters
for a set of pre-defined negotiation tactics under a case-based negotiation architecture
and a fuzzy rule-based negotiation architecture respectively [31]. Nevertheless both of
these approaches [32, 31] suffer from the serious limitation in that they only work under
a centralised decision making mechanism where complete information about each nego-
tiator’s preferences is available. On the contrary, the approach discussed in this paper
is based on the assumption of a decentralised decision making model where each agent
makes its own negotiation decision according to the respective GA. Such an assumption
better reflects the real-world negotiation situations such as negotiations for e-Business.



Similarly, a GA is also used to study the bargaining behaviour of boundedly rational
agents in a single issue (e.g., price) bi-lateral negotiation situation. The empirical results
produced by the GA are compared to the equilibrium outcomes generated by a game-
theoretic analysis [13]. Each chromosome encodes an agent’s strategy which consists of
four elements: an agent’s initial price, the final price, the eagerness factor simulating a
wide spectrum of concession behaviour (e.g., extreme Boulware to extreme Conceder),
and the agent’s negotiation deadline. The opponent’s reservation price is assumed known
and is used to establish an agent’s initial price. Only the agent’s final price and the
eagerness factor will be evolved in a competitive co-evolution process which involves two
sub-populations representing a set of buyers and sellers respectively. The average utility
achieved by an agent (after applying its particular strategy encoded on a chromosome) is
used to measure the fitness of a chromosome (i.e., a strategy). In fact, the GA is not used
to build the agents’ decision-making mechanisms but to learn the negotiation strategies
which lead to optimal joint utilities. The conclusion is that a stable state produced by
the evolutionary model does not always match an equilibrium outcome generated by
the game-theoretic model. However, if both the buyer agent and the seller agent have a
negative utility discount factor (i.e., worse off for delayed agreement), the stable outcome
generated by the GA model always matches the equilibrium outcome identified by the
game-theoretic model.

In many real-life negotiation settings such as business process management and e-
Commerce, negotiation agents have only limited information about their opponents and
limited computational resources (bounded rationality) to deliberate solutions. Under
such circumstance, it is impossible to predict or specify equilibrium strategies a pri-
ori. Therefore, employing a heuristic learning approach to develop the adaptive decision
making mechanisms of negotiation agents is desirable. A fuzzy similarity-based trade-off
mechanism is developed to search for near optimal negotiation solutions under the con-
straints imposed by real-world applications [40, 11]. Conceptually, the set of feasible offers
isoα(θ) = {x|Uα(x) = θ} lying on the indifference curve for a given utility aspiration level
θ of an agent α is first identified. Then, a hill-climbing algorithm is applied to learn the
trade-off strategy, that is, an offer z = trade-offα(x,y) = arg maxz∈isoα(θ){Sim(z,y)},
such that z is most similar to the opponent’s latest offer y to maximise the chance of reach-
ing an agreement. The usual interpretation of a fuzzy similarity function Simj(xj , yj)
is: Simj(xj , yj) = min1≤i≤m(hi(xj) ↔ hi(yj)), where xj , yj are the issues subject to
comparison, and hi(xj), hi(yj) are the corresponding criteria functions. The notation
↔ represents a fuzzy equivalence operator. Nevertheless, Faratin et. al.’s implementa-
tion [11] adopts a weighted mean approach to define the fuzzy similarity operation:
Simj(xj , yj) =

∑
1≤i≤m wi × (hi(xj) ↔ hi(yj)). Experimental results confirm that the

heuristic algorithm is effective in generating trade-offs in a range of negotiation contexts.

7. Conclusions

Real-world negotiation scenarios such as those found in B2B environment are char-
acterised by combinatorially complex negotiation spaces, tough negotiation deadlines,
limited information about the opponents, and volatile negotiator preferences. Therefore,
practical negotiation systems must be equipped with effective learning mechanisms to
automatically acquire domain knowledge from the negotiation environments and con-
tinuously adapt to the dynamic negotiation contexts. Our proposed GA-based adaptive



negotiation agents are empowered by the effective evolutionary learning mechanisms such
that these agents can learn the opponents’ preferences gradually and continuously adapt
to the changing negotiation contexts. The design of our GA-based adaptive negotiation
agents fulfils all the requirements of practical negotiation systems because these agents
can mimic a wide spectrum of negotiation attitudes, identifying near optimal solutions
based on limited information about the negotiation spaces, continuously learning the
opponents’ preferences, and adapting to the changing negotiation contexts. Our em-
pirical study shows that under realistic negotiation conditions, the GA-based adaptive
negotiation agents outperform a theoretically optimal negotiation model which generally
guarantees Pareto optimal. In addition, the proposed GA-based adaptive negotiation
mechanism that takes into account of time pressure can improve the negotiation outcomes
(e.g., joint payoff and success rate) under various agent encounters. Our research work
opens the door to the development of practical negotiation mechanisms for real-world
applications. Future work includes the enhancement of our existing genetic algorithm by
using adaptive genetic operators and by taking into account the market-oriented factors
in multi-lateral negotiations [41, 42, 43, 45].
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