6 research outputs found

    La ruta de señalización de MAPK Pmk1p y el mantenimiento de la integridad celular del Schizosaccharomyces Pombe

    Get PDF
    Three cascades of MAPKs have been described about the Schizosaccharomyces pombe such as: the pheromone response with Spk1p as MAP kinase, the stress response in which Sty1p/Spc1p is MAPK, and the maintenance of cell integrity led by Pmk1p/Spm1p. The elimination of any of the kinases of the integrity path causes morphological alterations and multitabicated cells under stress conditions; suggesting a role in ionic homeostasis and cell wall biosynthesis. So, it was proposed to study the role of the MAPK Pmk1p signaling pathway in the maintenance of cell integrity in S.pombe. The organism mainly used was the fission yeast S. pombe and different molecular strains of Escherichia coli were used to carry out the molecular cloning work. Different techniques of molecular cloning, genetic methods, Western Blot and determination of the activity of Pmk1p under stress conditions were used. The most important conclusions were that the "sensors" "Mtl2p and Wsc1p" signal towards Rho1p but they are not "authentic" components of the cascade, and their mutants do not present the Vic phenotype (viable in the presence of immunosuppressant and chloride ion), characteristic of the mutants in the components of the cascade. Mtl2p and Wsc1p do not play an important role in signaling in response to osmotic stress and cell wall damage through the cellular integrity pathway of Pmk1p.Con respecto a la Schizosaccharomyces pombe se han descrito tres cascadas de MAPKs: la de respuesta feromonas, con Spk1p como MAP kinasa; la de respuesta a estrés en la que Sty1p/Spc1p es la MAPK y la de mantenimiento de la integridad celular liderada por Pmk1p/Spm1p. La eliminación de cualquiera de las kinasas de la ruta de integridad provoca alteraciones morfológicas y células multitabicadas en condiciones de estrés; lo que sugiere una función en homeostasis iónica y en la biosíntesis de la pared celular por lo que se propuso estudiar el papel de la ruta de señalización de MAPK Pmk1p en el mantenimiento de la integridad celular en S.pombe. El organismo mayoritariamente utilizado fue la levadura de fisión S. pombe y para realizar los trabajos de clonación molecular se utilizaron también diferentes estirpes de Escherichia coli. Se emplearon diversas técnicas de clonación molecular, métodos genéticos, Western Blot y determinación de la actividad de Pmk1p bajo condiciones de estrés. Las conclusiones más importantes fueron: que los “sensores” “Mtl2p y Wsc1p” señalizan hacia Rho1p pero no son componentes “auténticos” de la cascada, y sus mutantes no presentan el fenotipo vic (viable en presencia de inmunosupresor y de iones cloruro), característico de los mutantes en los componentes de la cascada. Mtl2p y Wsc1p no desempeñan un papel importante en la señalización en respuesta a estrés osmótico y daño en la pared celular a través de la ruta de integridad celular de Pmk1p

    Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    No full text
    <div><p>The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (<i>Saccharomyces cerevisiae</i>). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback.</p></div

    Dynamique de la paroi cellulaire dans la régulation de la morphogenèse et de la croissance cellulaire

    Get PDF
    Cells in nature develop in a wide range of forms, following diverse growth patterns. Despite the importance of these fundamental processes, how cells regulate their growth and morphogenesis is still poorly understood. In this thesis, I explored these processes, focusing my investigations on tip growing walled cells and in particular, by exploiting the fission yeast Schyzosaccharomyces pombe, adopting a mainly biomechanical approach. To this aim, I first developed novel methods to measure key cell wall mechanical parameters in vivo and in large scale, which allowed the very first observations of cell wall dynamics. This revealed that the cell wall is softer and highly variable at growing poles, and almost stable and stiffer at non-growing sites. During elongation, there is an interplay between wall mechanics and cell growth, whose active control allows cell expansion while preserving cell integrity. In addition, I observed that there is a strong correlation between cell wall mechanics and cell morphology, and ectopic perturbations of wall properties directly affect shape establishment and maintenance. Together my results show that the regulation of wall mechanics is fundamental in the determination of cell dynamics in tip growing walled cells. Moreover, this suggests that dynamic observation of cell surface mechanics is crucial for a complete understanding of multifactorial and complex processes as growth and morphogenesis.Les cellules dans la nature se développent dans un large éventail de formes, suivant divers modèles de croissance. Malgré l'importance de ces processus fondamentaux, la façon dont les cellules régulent leur croissance et leur morphogenèse est encore mal comprise. Dans cette thèse, j'ai exploré ces aspects, avec une approche principalement biomécanique, en concentrant mes investigations sur des cellules à paroi à croissance de pointe et en exploitant en particulier la levure fissipare Schyzosaccharomyces pombe. J'ai d'abord développé de nouvelles méthodes pour mesurer les paramètres mécaniques clés de la paroi cellulaire in vivo et à grande échelle, ce qui a permis les premières observations de la dynamique des parois cellulaires. Ceci a révélé que la paroi cellulaire est plus souple et très variable au niveau des pôles de croissance, et presque stable et plus rigide dans les sites non cultivés. Au cours de l'allongement, il existe une interaction entre la mécanique des parois et la croissance cellulaire, dont le contrôle actif permet l'expansion cellulaire tout en préservant l'intégrité des cellules. De plus, j'ai observé qu'il existe une forte corrélation entre la mécanique des parois cellulaires et la morphologie cellulaire, et des perturbations des propriétés de la paroi affectent directement l'établissement et la maintenance de la forme. Ensemble, mes résultats montrent que la régulation de la paroi est fondamentale dans la détermination de la dynamique cellulaire dans les cellules à parois épaissies. Globalement, cela suggère que l'observation dynamique de la mécanique de surface cellulaire est essentielle pour une compréhension complète des processus multifactoriels et complexes comme la croissance et la morphogenèse
    corecore