4,517 research outputs found

    Advances in monolingual and crosslingual automatic disability annotation in Spanish

    Get PDF
    Background Unlike diseases, automatic recognition of disabilities has not received the same attention in the area of medical NLP. Progress in this direction is hampered by obstacles like the lack of annotated corpus. Neural architectures learn to translate sequences from spontaneous representations into their corresponding standard representations given a set of samples. The aim of this paper is to present the last advances in monolingual (Spanish) and crosslingual (from English to Spanish and vice versa) automatic disability annotation. The task consists of identifying disability mentions in medical texts written in Spanish within a collection of abstracts from journal papers related to the biomedical domain. Results In order to carry out the task, we have combined deep learning models that use different embedding granularities for sequence to sequence tagging with a simple acronym and abbreviation detection module to boost the coverage. Conclusions Our monolingual experiments demonstrate that a good combination of different word embedding representations provide better results than single representations, significantly outperforming the state of the art in disability annotation in Spanish. Additionally, we have experimented crosslingual transfer (zero-shot) for disability annotation between English and Spanish with interesting results that might help overcoming the data scarcity bottleneck, specially significant for the disabilities.This work was partially funded by the Spanish Ministry of Science and Innovation (MCI/AEI/FEDER, UE, DOTT-HEALTH/PAT-MED PID2019-106942RB-C31), the Basque Government (IXA IT1570-22), MCIN/AEI/ 10.13039/501100011033 and European Union NextGeneration EU/PRTR (DeepR3, TED2021-130295B-C31) and the EU ERA-Net CHIST-ERA and the Spanish Research Agency (ANTIDOTE PCI2020-120717-2)

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Unsupervised Context-Sensitive Spelling Correction of English and Dutch Clinical Free-Text with Word and Character N-Gram Embeddings

    Full text link
    We present an unsupervised context-sensitive spelling correction method for clinical free-text that uses word and character n-gram embeddings. Our method generates misspelling replacement candidates and ranks them according to their semantic fit, by calculating a weighted cosine similarity between the vectorized representation of a candidate and the misspelling context. To tune the parameters of this model, we generate self-induced spelling error corpora. We perform our experiments for two languages. For English, we greatly outperform off-the-shelf spelling correction tools on a manually annotated MIMIC-III test set, and counter the frequency bias of a noisy channel model, showing that neural embeddings can be successfully exploited to improve upon the state-of-the-art. For Dutch, we also outperform an off-the-shelf spelling correction tool on manually annotated clinical records from the Antwerp University Hospital, but can offer no empirical evidence that our method counters the frequency bias of a noisy channel model in this case as well. However, both our context-sensitive model and our implementation of the noisy channel model obtain high scores on the test set, establishing a state-of-the-art for Dutch clinical spelling correction with the noisy channel model.Comment: Appears in volume 7 of the CLIN Journal, http://www.clinjournal.org/biblio/volum

    Self-disclosure model for classifying & predicting text-based online disclosure

    Full text link
    Les médias sociaux et les sites de réseaux sociaux sont devenus des babillards numériques pour les internautes à cause de leur évolution accélérée. Comme ces sites encouragent les consommateurs à exposer des informations personnelles via des profils et des publications, l'utilisation accrue des médias sociaux a généré des problèmes d’invasion de la vie privée. Des chercheurs ont fait de nombreux efforts pour détecter l'auto-divulgation en utilisant des techniques d'extraction d'informations. Des recherches récentes sur l'apprentissage automatique et les méthodes de traitement du langage naturel montrent que la compréhension du sens contextuel des mots peut entraîner une meilleure précision que les méthodes d'extraction de données traditionnelles. Comme mentionné précédemment, les utilisateurs ignorent souvent la quantité d'informations personnelles publiées dans les forums en ligne. Il est donc nécessaire de détecter les diverses divulgations en langage naturel et de leur donner le choix de tester la possibilité de divulgation avant de publier. Pour ce faire, ce travail propose le « SD_ELECTRA », un modèle de langage spécifique au contexte. Ce type de modèle détecte les divulgations d'intérêts, de données personnelles, d'éducation et de travail, de relations, de personnalité, de résidence, de voyage et d'accueil dans les données des médias sociaux. L'objectif est de créer un modèle linguistique spécifique au contexte sur une plate-forme de médias sociaux qui fonctionne mieux que les modèles linguistiques généraux. De plus, les récents progrès des modèles de transformateurs ont ouvert la voie à la formation de modèles de langage à partir de zéro et à des scores plus élevés. Les résultats expérimentaux montrent que SD_ELECTRA a surpassé le modèle de base dans toutes les métriques considérées pour la méthode de classification de texte standard. En outre, les résultats montrent également que l'entraînement d'un modèle de langage avec un corpus spécifique au contexte de préentraînement plus petit sur un seul GPU peut améliorer les performances. Une application Web illustrative est conçue pour permettre aux utilisateurs de tester les possibilités de divulgation dans leurs publications sur les réseaux sociaux. En conséquence, en utilisant l'efficacité du modèle suggéré, les utilisateurs pourraient obtenir un apprentissage en temps réel sur l'auto-divulgation.Social media and social networking sites have evolved into digital billboards for internet users due to their rapid expansion. As these sites encourage consumers to expose personal information via profiles and postings, increased use of social media has generated privacy concerns. There have been notable efforts from researchers to detect self-disclosure using Information extraction (IE) techniques. Recent research on machine learning and natural language processing methods shows that understanding the contextual meaning of the words can result in better accuracy than traditional data extraction methods. Driven by the facts mentioned earlier, users are often ignorant of the quantity of personal information published in online forums, there is a need to detect various disclosures in natural language and give them a choice to test the possibility of disclosure before posting. For this purpose, this work proposes "SD_ELECTRA," a context-specific language model to detect Interest, Personal, Education and Work, Relationship, Personality, Residence, Travel plan, and Hospitality disclosures in social media data. The goal is to create a context-specific language model on a social media platform that performs better than the general language models. Moreover, recent advancements in transformer models paved the way to train language models from scratch and achieve higher scores. Experimental results show that SD_ELECTRA has outperformed the base model in all considered metrics for the standard text classification method. In addition, the results also show that training a language model with a smaller pre-training context-specific corpus on a single GPU can improve its performance. An illustrative web application designed allows users to test the disclosure possibilities in their social media posts. As a result, by utilizing the efficiency of the suggested model, users would be able to get real-time learning on self-disclosure

    Cross-sentence contexts in Named Entity Recognition with BERT

    Get PDF
    Named entity recognition (NER) is a task under the broader scope of Natural Language Processing (NLP). The computational task of NER is often cast as a sequence classification task where the goal is to label each word (or token) in the input sequence with a class from a predefined set of classes. The development of deep transfer learning methodologies in recent years has greatly influenced both NLP and NER. There have been improvements in the performance of NER models but at the same time the use of cross-sentence context, the sentences around the sentence of interest, has diminished in NER methods. Many of the current methods use inputs that consist of only one sentence of text at a time. It is nevertheless clear that useful information for NER is often found also elsewhere in text. Recent self-attention models like BERT can both capture long-distance relationships in input and represent inputs consisting of several sentences. This creates opportunities for making use of cross-sentence information in NLP tasks. This thesis presents a systematic study exploring the use of cross-sentence information for NER using BERT models in five languages. The study shows that adding context as additional sentences to BERT input systematically increases NER performance. Adding multiple sentences in input samples also allows the study of predictions for the sentences in different contexts. A straightforward method of Contextual Majority Voting (CMV) is proposed to combine these different predictions. The study demonstrates that using CMV increases NER performance even further. Evaluation of the proposed methods on established datasets, including the Conference on Computational Natural Language Learning CoNLL'02 and CoNLL'03 NER benchmarks, demonstrates that the proposed approach can improve on the state-of-the-art NER results for English, Dutch, and Finnish, achieves the best reported BERT-based results for German, and is on par with other BERT-based approaches for Spanish. The methods implemented for this work are published under open licenses
    • …
    corecore