
Cross-sentence contexts in
Named Entity Recognition

with BERT

Master of Science Thesis
University of Turku
Department of Computing
TurkuNLP
2021
Jouni Luoma

Supervisors:
Sampo Pyysalo

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Jouni Luoma: Cross-sentence contexts in Named Entity Recognition with BERT

Master of Science Thesis, 72 p.
TurkuNLP
June 2021

Named entity recognition (NER) is a task under the broader scope of Natural Lan-
guage Processing (NLP). The computational task of NER is often cast as a sequence
classification task where the goal is to label each word (or token) in the input se-
quence with a class from a predefined set of classes. The development of deep transfer
learning methodologies in recent years has greatly influenced both NLP and NER.
There have been improvements in the performance of NER models but at the same
time the use of cross-sentence context, the sentences around the sentence of interest,
has diminished in NER methods. Many of the current methods use inputs that
consist of only one sentence of text at a time. It is nevertheless clear that useful
information for NER is often found also elsewhere in text. Recent self-attention
models like BERT can both capture long-distance relationships in input and repre-
sent inputs consisting of several sentences. This creates opportunities for making
use of cross-sentence information in NLP tasks. This thesis presents a systematic
study exploring the use of cross-sentence information for NER using BERT models
in five languages. The study shows that adding context as additional sentences to
BERT input systematically increases NER performance. Adding multiple sentences
in input samples also allows the study of predictions for the sentences in different
contexts. A straightforward method of Contextual Majority Voting (CMV) is pro-
posed to combine these different predictions. The study demonstrates that using
CMV increases NER performance even further. Evaluation of the proposed meth-
ods on established datasets, including the Conference on Computational Natural
Language Learning CoNLL’02 and CoNLL’03 NER benchmarks, demonstrates that
the proposed approach can improve on the state-of-the-art NER results for English,
Dutch, and Finnish, achieves the best reported BERT-based results for German,
and is on par with other BERT-based approaches for Spanish. The methods imple-
mented for this work are published under open licenses.

Keywords: NLP, NER, BERT, CMV, Cross-sentence contexts, Deep learning

Contents

1 Introduction 1

2 Named Entity Recognition 4

2.1 Named Entity Recognition task . 4

2.1.1 Named Entity Recognition Corpora 6

2.1.2 Named Entity encoding methods 7

2.1.3 Named Entity Recognition Evaluation 10

2.2 Named Entity Recognition approaches 11

2.2.1 Rule- and knowledge-based approaches 11

2.2.2 Unsupervised approaches . 13

2.2.3 Feature engineering and supervised learning approaches 14

2.2.4 Feature learning and Deep Learning approaches 15

3 BERT 19

3.1 WordPiece Tokenization . 21

3.2 BERT input and output . 24

3.3 Pre-training . 25

3.4 Fine-tuning approach . 26

3.5 Feature based approach . 27

4 Methods 28

i

4.1 Background . 28

4.2 Single . 31

4.3 Sentence in Context . 31

4.4 Contextual Majority Voting . 33

5 Experimental setup 36

5.1 Data . 36

5.1.1 Data sets . 36

5.1.2 Pre-trained BERT models . 39

5.2 Implementation . 40

5.2.1 Preprocessing data . 41

5.2.2 Model construction and training 43

5.2.3 Predictions . 44

5.2.4 Evaluation . 46

5.3 Experiments . 47

5.3.1 Hyperparameter search . 48

5.4 Result analysis implementation . 49

5.5 Software and Hardware . 50

6 Results 51

6.1 Results on development sets . 51

6.1.1 English . 52

6.1.2 Dutch . 56

6.1.3 Finnish . 58

6.1.4 Spanish . 58

6.1.5 German . 60

6.1.6 On reporting different methods 61

6.1.7 Best hyperparameter combinations 62

ii

6.1.8 CMV vs. First . 64

6.2 Results on test sets . 65

6.2.1 Comparison with the state of the art 67

6.2.2 English . 67

6.2.3 Dutch . 68

6.2.4 Finnish . 69

6.2.5 Spanish . 69

6.2.6 German . 70

7 Conclusion 71

References 73

iii

List of Figures

2.1 Example of Named Entity Recognition system predictions 6

4.1 Illustration of various input representations for sequence labeling tasks 32

5.1 Example of Named Entity Recognition evaluation 46

6.1 English, BERT base, performance on different starting positions . . . 52

6.2 English, BERT base, performance on different starting positions, Best

found performance on development data set 53

6.3 English, BERT Large WWM, performance on different starting posi-

tions . 54

6.4 English, BERT Large WWM, Comparison of methods 55

6.5 Dutch, performance on different starting positions 57

6.6 Finnish, performance on different starting positions 58

6.7 Spanish, performance on different starting positions 59

6.8 German, performance on different starting positions 60

iv

List of Tables

2.1 Example of IOB2 named entity annotation 10

3.1 Example of WordPiece tokenized sentence 23

5.1 NER corpora used in this study . 37

5.2 Entity categories in CoNLL data sets 37

5.3 Entity categories in Finnish data sets 38

5.4 Key statistics of the NER data sets 38

5.5 Pre-trained BERT models used in this study 39

5.6 Hyperparameter suggestions from study introducing BERT 48

5.7 Hyperparameters used in this study 49

5.8 Software versions used in results . 50

6.1 Hyperparameter combinations resulting in the best performance on

the development sets . 63

6.2 Dutch, Hyperparameters for which method First outperforms CMV 65

6.3 NER results for different methods and languages 66

6.4 NER result comparison . 68

v

List of acronyms

BERT Bidirectional Encoder Representations from Transformers

biLSTM Bidirectional LSTM

CNN Convolutional Neural Network

CoNLL Conference on Computational Natural Language Learning

CRF Conditional Random Fields

CSV Comma Separated Values

LSTM Long short-term memory

MLM Masked Language Model

NER Named Entity Recognition

NLP Natural Language Processing

NSP Next Sentence Prediction

POS Part of Speech

RNN Recurrent Neural Network

SGML Standard Generalized Markup Language

WWM Whole Word Masking

vi

1 Introduction

Deep learning methods have been introduced to multiple domains of machine learn-

ing in recent years with great success. These methods have been able to remarkably

improve results on various machine learning tasks [1–3]. One difficulty with deep

learning methods has been that their efficient use often requires huge amounts of

data for training the neural networks. This has been a major hindrance especially

with supervised learning approaches as producing labeled data sets is a labour heavy

and time consuming task. One of the keys to success in alleviating the situation

has been the use of transfer learning. Transfer learning is based on the idea that

a model is first generally trained with a large amount of readily available data and

then fine-tuned for a purpose with task specific data. The data for initial training

does not need to be specific to the task, but it is sufficient e.g. to use data from

the same domain. For example, an image classifying Convolutional Neural Network

(CNN) may be trained on readily available labeled image data sets to recognize

completely different classes than what we are really interested in. The weights of

this kind of pre-trained neural network can be then used as a starting point for train-

ing a task-specific neural network with task-specific data. The benefit of transfer

learning comes from the fact that the amount of task-specific labeled data needed

in this approach is only a fraction of what would otherwise be needed to train a

corresponding model from scratch.

CHAPTER 1. INTRODUCTION 2

Named Entity Recognition (NER) is a task under the broader scope of Natural

Language Processing (NLP). It is normally cast as a sequence classification task,

assigning each item in a sequence (words or tokens in this case) to a class in a

predefined set of classes. The goal of NER is to find mentions of named entities

in a text and classify them into categories that are predefined for the task. The

correctness of the found mentions is normally evaluated not only by the category

that a named entity is classified to, but also by the span of text which constitutes

the mention. The usual method for evaluation is to compare the output of a trained

named entity recognition system against test data that is annotated with named

entities of different types with the same annotation principles as the training data.

A named entity mention is correctly recognised only if its predicted text span and

category both exactly match to the gold standard labels in test data.

NER as computational task often operates on single sentences of input at a

time. This thesis is a study of how to introduce cross-sentence information, meaning

e.g. other sentences in a passage of text around the sentence of interest, to improve

NER results. This is done by using BERT [1] as a basis for an NER system. BERT

is a recently introduced language representation model based on the Transformer

architecture [4] which is first pre-trained in an unsupervised/self-supervised fashion

with unannotated data. This pre-trained model can then be fine-tuned for use in

different NLP tasks using annotated task-specific data. This study is continued

and expanded from a Master’s project course work, which implemented an NER

pipeline that was used for example in our study introducing BERT for Finnish [5].

This study introduces new methods to improve NER results for Finnish and other

languages.

Chapter 2 takes a closer look on the task of NER. The task and the data used

for NER are introduced. The chapter also briefly introduces the reader to some of

the different methods used for NER and how the data is processed for performing

CHAPTER 1. INTRODUCTION 3

the task. Chapter 3 describes the BERT model in more detail and explains how the

model can be utilized for NER. Chapter 4 goes through the methods developed in

this study to incorporate cross-sentence contexts in NER. Chapter 5 describes the

experimental setup for evaluating the introduced methods. The implementation and

the data are discussed. Chapter 6 takes a look at the results of the experiments and

compares the results to those found in the scientific literature. The results and com-

parisons reflect the situation in May 2020, when the experiments were performed.

The main results published in [6] are elaborated and some observations that were

made throughout the study are presented in this chapter. Chapter 7 concludes this

thesis with discussion on the relevance of the results, limits on the scope of this

thesis, future ideas and possible topics for continuation of the research.

2 Named Entity Recognition

In this chapter the NER task is described with details on the data and methods

used for performing the task. The chapter starts by introducing the task and data,

followed by a short overview of the history and the methods used for NER as well

as the current state of the art excepting for BERT-based approaches which are

discussed in the next chapter.

2.1 Named Entity Recognition task

NER is one of the key tasks in NLP and it is often used as a first step for downstream

NLP tasks such as Information Extraction from documents, Information Retrieval,

Question answering, automatic text summarization, and Co-reference resolution,

among others [7, 8]. In historical perspective, the methods that now fall under

the scope of NER were earlier considered to be a part of Information Extraction.

One early mention of NER as a separate evaluation task was introduced in the

sixth Message Understanding Conference (MUC-6) [9]. The reason for this separate

evaluation task was a desire to develop technologies that are of practical use, domain

independent and could be automated in a near term future. NER was seen as such

a task [9].

The NER task consists of finding and classifying mentions of entities with proper

names (proper noun or noun phrases that refer to individual person, organization,

location etc.) or other identifying sequences such as abbreviations in passages of

CHAPTER 2. NAMED ENTITY RECOGNITION 5

text. One named entity mention may consist of one or several consecutive words

in text. The NER task is often expanded also to consider entities in categories

such as dates and money, which in a strict sense are not named entities, but can

be recognized with similar methods. The categories for classification are usually

specific to the task and the data at hand.

NER is often cast as a sequence classification task. The input to a system is given

as a sequence of words, and the desired output is a sequence of labels identifying the

named entities found from the input text. In sequence classification approaches to

NER, the goal is to output a sequence of labels, matching the length of the input,

with an entity class assigned to each word (or token) found in input text. Some

of the usual categories are persons, locations or organizations in news texts, or

perhaps proteins, chemicals, species and diseases in medical texts, or stock market

ticker codes in economic news.

A named entity mention may consist of different lengths of text and the target

in NER is to simultaneously find the correct category of each named entity mention

as well as to find the boundaries of each mention in text. Finding the boundaries of

a named entity mention means the task of finding which words (or tokens) belong

to that particular mention and which belong to other named entity mentions or are

outside of any such mentions. Finding the correct category for an entity mention

simply means that we assign the entity in question a class from the set of predefined

categories according to the guidelines given for the task. If the system for performing

the NER task is machine learning-based, the categories for classification are normally

inferred from the annotated data that are used for training the machine learning

model. An example of NER system predictions with entity types and spans on a

Finnish language passage of text is shown in Figure 2.1.

CHAPTER 2. NAMED ENTITY RECOGNITION 6

Figure 2.1: Example of Named Entity Recognition system predictions

2.1.1 Named Entity Recognition Corpora

To be able to train and evaluate systems designed for NER, there is a need for

annotated collections of text for NER. These annotated text collections are called

NER corpora. In general, a corpus in NLP refers to a set of texts which optionally

contain also corresponding annotations. Therefore collections of annotated texts for

NER are called NER corpora.

A corpus for NER consists of body of text annotated in such a way that the

spans and categories of named entity mentions can be distinguished from passages

of text belonging to other named entity mentions or not belonging to any mentions.

There are different ways to encode this information as annotations. For example, in

the MUC-6 conference mentioned earlier, the named entity mentions were annotated

CHAPTER 2. NAMED ENTITY RECOGNITION 7

with Standard Generalized Markup Language (SGML) tags inside running text [10].

Another way of annotating the data is to use IOB (Inside-Outside-Begin) encoding

(or some variants of it) for labels [11] to mark spans and categories of entity mentions.

More about the named entity annotation methods is explained in Section 2.1.2.

An NER corpus may also include some metadata or have some other granularity

in addition to sentences and words. For example, sentences may be grouped under

an original document from which they were extracted, or some metadata regarding

the type or domain of the documents are preserved in the corpus. This kind of

additional information can also be utilized by NER systems.

Some NER corpora are widely used in the scientific literature as a reference. An

example of widely used corpora are CoNLL (Conference on Computational Natural

Language Learning) shared task corpora from the years 2002 [12] and 2003 [13].

These data sets are often used as benchmarks for evaluating the performance of NER

algorithms. The availability of these resources have also influenced the languages

for which NER systems have been developed: for example, the research for English,

German, Spanish and Dutch have been more active due in part to the resources

published in the CoNLL tasks.

Today, there exists multiple resources for different languages and purposes avail-

able publicly (as well as proprietary resources) and more are published frequently

for example in scientific conferences.

2.1.2 Named Entity encoding methods

NER corpora are available and distributed in different formats. The main catego-

rization of text annotation methods may perhaps be made between inline annotation

and stand-off annotation. Inline annotation contains the annotation within the text,

and the data and the annotation reside in the same location (e.g. file). Examples of

inline annotation are methods such as IOB/IOB2 [11, 14] and variants of them as

CHAPTER 2. NAMED ENTITY RECOGNITION 8

well as the use of SGML in MUC-6 [10]. Stand-off markup or Stand-off annotations

refer to ways where the text to be annotated and the annotation reside separately

(e.g. separate files). One example method for stand-off annotation is to store an-

notations in a separate file with information on the location (e.g. character offset),

span and category of each mention in the text file.

NER data used in this study are plain text files constructed in the following

way (illustrated in Table 2.1). The input file contains tab-separated lines of text.

Each line in the file contains information on one word in the text. A line consists

of tab-separated values giving the string representation of the word and the class

of the word encoded with an IOB2 tag, as explained below. Blank lines in the files

separate sentences. This encoding is loosely similar to the later introduced CoNLL-

U format1 where all other fields beside the word form and label are removed. NER

corpora may be distributed in different formats like the CoNLL-U but for this study

the files are pre-processed to conform to the format described here.

IOB2 encoding [14] is a variant of IOB encoding that was first introduced in

text chunking research. The text chunking task is shortly summarized by Tjong

Kim Sang and Buchholz in CoNLL’00 shared task introduction [15]: “Text chunking

consists of dividing a text into phrases in such a way that syntactically related words

become member of the same phrase. These phrases are non-overlapping which means

that one word can only be a member of one chunk." The aim of the original IOB

encoding was to add an additional “chunk tag” to part of speech (POS) tags in

such a way that chunk structure can be derived from the tags. A chunk tag set of

[I],[O],[B] was used to mark noun phrases. The tag [I] was used for words inside

a noun phrase, the tag [O] marked words outside of phrases, and the tag [B] was

used to mark the leftmost word of a chunk immediately following another chunk to

distinguish that a new chunk is starting. This encoding scheme was later adopted

1https://universaldependencies.org/format.html

https://universaldependencies.org/format.html

CHAPTER 2. NAMED ENTITY RECOGNITION 9

in NER so that the category of a named entity was appended to a chunk tags.

For example, a mention of category Person [PER] would be marked as [I-PER] and

Organisation [ORG] as [I-ORG]. This encoding scheme would create 2N + 1 different

tags for N categories of mentions, as there are [B-Category] and [I-Category]

tags for each category and the [O] tag is used to mark words not belonging to any

mention. This kind of encoding is sufficient to separate the different non-overlapping

mentions in text from each other.

Variants of the IOB scheme have later been introduced to alleviate some of the

problems encountered with the original IOB tagging. In the original tagging scheme

the [B-Category] tags are quite rare, and encountering them requires multiple

named entities of a same category to occur next to each other in the text. The

imbalance in the number of different tags creates problems with statistical and

machine learning approaches to the task. This study uses IOB2 encoding, which

assigns [B-Category] tag for the beginning of every named entity mention. An

example of a sentence in IOB2 encoding is shown in Table 2.1. Some variants of IOB

tagging also employ separate tags for the last and the middle parts of multi-token

named entity mentions and for mentions of single / unit length. These approaches

have been referred in literature for example with names BILOU (Begin-In-Last-Out-

Unit), IOBES (In-Out-Begin-End-Single), or BMEWO (Begin-Middle-End-Single-

Out).

Some NER corpora also contain information on nested named entities where a

part of a long multi-word named entity mention may contain also a mention of a

shorter named entity. For example a mention of organisation like “University of

Turku” may contain also a nested named entity mention of location “Turku”. The

methods introduced in this thesis are not using nested named entity mentions.

CHAPTER 2. NAMED ENTITY RECOGNITION 10

Erik B-PER

Justander I-PER

oli O

Turun B-ORG

akatemian I-ORG

professori O

. O

Table 2.1: Example of IOB2 named entity annotation. Translation: Erik Justander

was a professor for the Academy of Turku

2.1.3 Named Entity Recognition Evaluation

The performance of NER systems is often assessed in terms of mention-level exact

match Precision, Recall and F-score. This type of evaluation has been applied in

NER tasks for example in CoNLL’02, and CoNLL’03 conferences [12, 13].

Mention-level metrics are calculated separately for each of the named entity

categories. The predicted outputs of an NER system for each category are compared

to the annotated test data. A True Positive (TP) classification happens when both

the category and the span of the predicted named entity mention are identical to

an annotation in test data. A False Positive (FP) classification happens when the

system predicts a named entity mention, which does not match any annotation in

the test data (class, span or both do not align). A False negative (FN) happens when

the system does not predict an entity mention of the correct type in a position where

one exists in the annotated test data. The evaluation scores are then expressed as

Precision (2.1), Recall (2.2) and F1-score (2.3) on each type of the Named Entity

categories in text. The total performance of the system is usually expressed as micro

average calculated by totalling the TP, FP, and FN counts over all categories and

CHAPTER 2. NAMED ENTITY RECOGNITION 11

taking overall Precision, Recall, and F1-score.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1 =
2 · Precision ·Recall

Precision+Recall
(2.3)

The performance measures applied in this study are calculated as defined above.

The calculations are done with a version of the conlleval script, which has been used

in CoNLL shared task evaluations. The connleval script was originally implemented

in the Perl programming language but for this study a Python version2 is used so

that evaluation may be easily done inside a Python program.

2.2 Named Entity Recognition approaches

NER approaches have evolved through different methodological phases during the

last decades. The approaches to NER can be roughly split to four different cate-

gories: rule- and knowledge-based approaches, unsupervised approaches, feature en-

gineering and supervised learning approaches, and feature learning and deep learning

approaches. The last one also includes the latest deep learning and transfer learning

based approaches [7, 8].

2.2.1 Rule- and knowledge-based approaches

According to Nadeau and Sekine [16] one of the earliest research papers regarding

named entities was by Rau [17] in 1991. NER, as defined in Section 2.1, was intro-

2https://github.com/spyysalo/conlleval.py

https://github.com/spyysalo/conlleval.py

CHAPTER 2. NAMED ENTITY RECOGNITION 12

duced as a separate task in MUC-6 Conference in 1995 [9]. Before that, the methods

for finding e.g. names in text were considered to be part of information extraction

and NER was not defined as a standalone task.

Early NER methods applying rule- and knowledge-based approaches, often relied

on gazetteers/lexicons (lists of names, locations, etc.) and on handcrafted approaches

as Borthwick [18] describes the systems that are “built by hand and rely heavily on

the intuition of their human designers.” These systems for example matched words

and phrases, or parts of them, found from text to lexicons and with different rules

tried to determine if a sequence in text is a named entity mention and of which

type. Some descriptions of these early information extraction and NER systems

can be found e.g. in the Message Understanding Conference proceedings from the

1990s [19–23].

The methods used for finding entities often made several passes through the text

while trying to increase the performance of the system on each pass. On the first

passes, the methods presumed to have high precision, meaning that mentions that

had a good probability to be correctly classified were tagged. This information was

used in the next passes through the text, trying to find new mentions with higher

confidence. One example of such a system is described by Mikheev et al. in [24] and

the characteristics of this kind of systems were summed up by Borthwick [18]:

“In sum, if one is smart enough and works hard enough, it is possible to build a strong

named entity system using conventional handcoded techniques. However, these systems

will still have a number of drawbacks.”

1. They will be expensive, since they will rely on the expertise of trained computational
linguists

2. They will have to be manually adapted to new domains

3. Their rules and lexicons must be completely rewritten when they are ported to new
languages

4. Performance will be highly sensitive to the computational linguist’s skill in writing
the named entity patterns and to the amount of labor devoted to the task

CHAPTER 2. NAMED ENTITY RECOGNITION 13

2.2.2 Unsupervised approaches

Unsupervised approaches to NER are not always easy to categorize. Some of the ap-

proaches presented here are classified under semi-supervised approaches in a survey

by Nadeau and Sekine [16] and on the other hand are under unsupervised approaches

in more recent surveys by Yadav and Bethard, and by Li et al. [7, 8]. The approaches

falling under this scope vary, and some were used to automatically detect and dis-

ambiguate named entity mentions [25, 26] while some were aimed more at extracting

information and building lists (gazetteers) of named entities e.g. from the web [27].

What is common to many of these approaches is that the they often use some “seed”

information and try to create new rules by iterating through a large corpus. There-

fore, these unsupervised approaches tend to rely on similar classification methods

as the rule- and knowledge-based approaches. The difference is that here the rules

for classification are automatically extracted from documents. One example of an

unsupervised approach is presented by Collins and Singer [25]. Their system keeps

track of (Spelling, Context) patterns, where Spelling is the written form of a

named entity and Context refers to the surrounding text of that entity. A small set

of seed rules are given to the system, and the system performs iterations through a

large corpus. It first labels the corpus given the Spelling rules and induces Context

rule candidates from the found matches, and keeps a predefined number of the most

promising rules. Next the corpus is annotated again, now using the Context rules to

find new candidates for Spelling rules. The most promising ones are again kept and

added to the list of Spelling rules. The iteration continues again from Spelling

rules, and this is continued until a predefined number of rule patterns are reached.

Some approaches such as those by Nadeau et al. [26] and Etzioni et al. [27] also

utilize web search engines in their approaches to validate candidates for new rules

or entities to be inserted in knowledge base.

A lot of the research that could be categorized as unsupervised or semi-supervised

CHAPTER 2. NAMED ENTITY RECOGNITION 14

learning has used these methodologies in connection with supervised learning ap-

proaches. The purpose of using unlabeled data has been to extract information from

a large amount of unlabeled text to improve the results of supervised learning [28,

29]. Also, some of the more recent feature learning approaches such as BERT [1] use

unsupervised or self-supervised approaches for pre-training of models. More about

the current uses of unsupervised learning is covered in Section 2.2.4.

2.2.3 Feature engineering and supervised learning approaches

NER systems evolved from matching strings and patterns to calculating different

features of words and surrounding text, and used machine learning approaches and

supervised learning to find and classify entity mentions in text. The technologies

applied in these supervised learning approaches were varied and they were some-

times used in combination with the earlier rule-based approaches. The develop-

ments within supervised learning continued with researchers continuously trying to

find better classification methods and also better ways to extract features for clas-

sifiers. Some things that have greatly helped the development of the NER systems

were the introduction of publicly available datasets for NER as well as the methods

for utilizing the output of other NLP tasks and unlabeled data to prepare better

features. According to Tjong Kim Sang and De Meulder [13] the competing systems

in CoNLL’03 shared task were for example using the following kind of features for

classification:

• Lexical features
• Part-of-speech (POS) tags
• Affix information (n-grams)
• Previously predicted Named entities
• Ortographic information and patterns
• Gazetteers, Lexicons (lists of entities)
• Chunk tags
• Case infomation of words

CHAPTER 2. NAMED ENTITY RECOGNITION 15

There were 16 competitors in the CoNLL’03 shared task, and according to Tjong

Kim Sang and De Meulder [13] the learning methods used in the competition were

the following:

• Maximum Entropy Modeling in [30–34]
• Hidden Markov Models in [33–36]
• Robust Risk Minimization in [33, 37]
• Voted Perceptrons in [38]
• Long Short-term Memory (LSTM) [39] used in [40]
• AdaBoost.MH in [41, 42]
• Memory based learning in [43, 44]
• Transformation based learning in [33]
• Support Vector Machines in [35]
• Conditional Random Fields (CRF) [45] in [46]

The list above shows that by the time of CoNLL’03 conference, many of the

learning methods for the coming decade were already introduced, even though not

all of them were in active use yet.

2.2.4 Feature learning and Deep Learning approaches

During the last decade, feature learning and deep learning-based approaches have

gained more popularity as they usually require minimal feature engineering and are

not as domain specific as earlier methods [7]. One of the largest changes behind the

current developments has been on how the textual data is represented to the NLP

systems. The earlier machine learning-based approaches often used sparse vector

representations (thousands, even hundreds of thousands of dimensions). For exam-

ple, each word in the text sequence was represented with features describing some

properties of that word, its surroundings, statistical presence in some text corpus,

etc. In feature learning approaches the main idea is, instead of having thousands

of engineered features, to learn dense representation vectors (often under 1000 di-

mensions) of words or tokens automatically. This learning of representations is

CHAPTER 2. NAMED ENTITY RECOGNITION 16

often achieved by using deep neural networks and large amounts of unannotated

data that is readily available. The learned representations are then used as features

with supervised learning algorithms as-is or by fine-tuning the representations simul-

taneously with learning NLP task-specific neural network weights. These learned

representations are often called embeddings, which is a common name for different

representations that map textual information to vectors of real numbers.

Recent survey studies have approached the classification of the modern neural

architectures for NER in differing ways. Yadav and Bethard [7] base their classi-

fication of feature learning approaches broadly on how the text is represented to

the classifier and include categories for Word level architectures, Character level ar-

chitectures, Character + Word level architectures, and Character + Word + Affix

architectures. In word level architectures the text is given to a model as sequence of

individual words, represented by word embeddings. In character level architectures,

the text is seen as sequence of characters. Character + Word level architectures

combine the word embeddings with character level information. Character + Word

+ Affix architectures also include learned affix features as part of the combined

embeddings. Li et al. [8], on the other hand, propose a new taxonomy for Deep

Learning approaches to NER. Their approach divides methods based on three dif-

ferent aspects of a NER system: Distributed representations (embeddings) used as

inputs, context encoder architectures, and tag decoder architectures. Distributed

representations in this taxonomy are similar to the ones proposed by Yadav and

Bethard: Word-level representations, Character-level representations, and Hybrid

representations. Context encoder architecture refers to the ways to include context

information of a word in text to the tagging process. These include among oth-

ers CNN, Recurrent Neural Networks (RNN), and Transformer-based architectures.

Tag decoder architectures refer to classifiers that produce a sequence of tags from

the context-sensitive representations. The survey mentions for example Multi-layer

CHAPTER 2. NAMED ENTITY RECOGNITION 17

perceptron + softmax, CRF and RNN as possible tag decoding architectures.

Word-level representations deal with whole words of input at a time. Some of

the methods and tools for creating word embeddings include Word2Vec [47, 48],

GloVe [49], fasttext [50], and SENNA [51]. One example of feature learning in NER

scope (and other NLP tasks as well) was presented by Collobert et al. [51] where an

embedding was learned for every word in a fixed size vocabulary. A special “RARE”

token was used to represent every word in input data that was not present in the

vocabulary. The embeddings were trained from unannotated English Wikipedia

data as well as Reuters RCV1 corpus [52] for some models. Their approach did

not outperform the state of the art in NER at that time, but was able to get close

without using extensive feature engineering. Their experiments demonstrated that

unsupervised training using a large amount of unannotated data was able to produce

such word embeddings (vectors) that words with similar syntactic and semantic

properties often reside near each other in the vector space. They were also able to

separate the lengthy training process of language models with large unannotated

data from faster supervised training with smaller data set for a task such as NER.

This is the same idea of the transfer learning approaches that is used throughout the

field nowadays. The embeddings calculated this way were also known as SENNA

embeddings, named after the software the authors released in addition to their

research. One shortcoming of word-level representations is related to the size of

vocabulary, which easily grows due to word inflection as every inflected word is

considered as its own token in the vocabulary. Other problems with word level

representations include polysemy (the same word form may have different meanings)

and their inability to handle out-of-vocabulary words well.

Character level representations work upwards from the level of single characters

to get representations for text. The text is seen as a sequence of characters instead

of predefined words, and word (or string) representations are constructed based on

CHAPTER 2. NAMED ENTITY RECOGNITION 18

the character sequences. These representations are normally learned using end-to-

end neural models, which are often CNN- or RNN-based. For RNN models, LSTM

[39] and Gated Recurrent Unit (GRU) [53] are common choices for neural network

basic units. Character-level embeddings are able to use sub-word-level information

such as prefixes and suffixes as well as better handle out of vocabulary words [8].

Character-level representations are sometimes combined with word embeddings e.g.

by concatenating to get better predictions. There also exist approaches where char-

acter representations are not mapped to word representations first: for example,

character level representations try to directly tag characters and these predictions

can be combined into word level predictions. Hybrid representations try to incor-

porate additional information besides the plain text into the final representations of

words, for example by adding some engineered features as part of embeddings.

The current state-of-the-art results in NER and NLP in general have been

achieved using contextual embeddings, which are categorized under Hybrid repre-

sentations by Li et al. [8]. Contextual embeddings are a way to encode the context

of a word into the embedding so that a word occurring in different contexts gets dif-

ferent embeddings. Contextual embeddings are a way to overcome the problem with

same word having multiple meanings (polysemy). One example of this is the name

Washington, which may be a name of Person, City, or State and only the context

tells which of these is correct. Multiple contextual embedding approaches have been

recently proposed [1, 54–56]. Some of the contextual embeddings approaches also

use sub-word level representations that try to combine the benefits of both word-

and character-based models. One of these sub-word methods is discussed in Section

3.1.

3 BERT

BERT: Bidirectional Encoder Representations from Transformers [1] was introduced

in late 2018 with great impact, as it was able to improve the performance in multiple

NLP benchmark tasks by a considerable amount.

BERT is a type of language representation model that benefits from training

with vast amounts of unlabeled data and can later be adapted to specific tasks with

a reasonable amount of labeled data in a transfer learning approach. BERT is based

on the Transformer architecture [4], but it completely omits the decoder part of the

original Transformer architecture and also introduces a different training objective

function. These aspects of the design, combined with the advantages of the Trans-

former architecture such as the omission of recurrent connections, relying only on

the attention mechanism, and better parallel computation capabilities made BERT-

based models computationally efficient and highly accurate at various NLP tasks.

The developers of BERT released the source code and pre-trained models for the

English language as well as a multilingual model trained for 104 languages to public

use.1 However, the developers announced that they do not intend to release addi-

tional language-specific models, and this has led to development and public release

of multiple language-specific models by different parties around the world, such as

FinBERT, BERTje, and BETO [5, 57, 58].

1https://github.com/google-research/bert

https://github.com/google-research/bert

CHAPTER 3. BERT 20

A detailed description of the Transformer architecture is out of the scope of this

thesis, but for clarity it should be mentioned that it consists of stacked Transformer

encoder blocks and stacked Transformer decoder blocks. The size and architecture

of the BERT neural model can be characterized with the following parameters.

• Number of Layers L

• Hidden Size H

• Number of self-attention heads A

The number of layers refers to the number of stacked Transformer encoder blocks

used in the network architecture. The hidden size refers to the dimension of the vec-

tors that are input and output of each of the encoder blocks. This is also the size of

the input embedding vectors, and the size of the vectors used in residual connections

[59] and layer normalization [60] output inside each of the encoder blocks. The num-

ber of self-attention heads refer to the number of parallel self-attention operations

done on the same input in each of the encoder blocks. The self-attention in each of

the encoder blocks in BERT model is calculated on reduced size vectors with dimen-

sion of H / A. The parameters used in linear transformations between the hidden

size and the reduced size are learned on each of the encoder blocks during the model

pre-training and the fine-tuning. Using multiple self-attention heads improves the

performance of the model and enables more complex representations. The original

pre-trained BERT models published were of two different sizes: BERT base (L=12,

H=768, A=12, with 110M parameters in total) and BERT Large (L=24, H=1024,

A=16, with 340M parameters in total).

In addition to the size of the BERT model, one parameter that is often mentioned

with the BERT implementations is the maximum sequence length of the input. The

maximum sequence length defines the longest possible sequence of text (measured

CHAPTER 3. BERT 21

in WordPieces, see Section 3.1) that will fit in one input sample. Attention mech-

anism calculations are quadratic in computational complexity in proportion to the

sequence length, and the maximum sequence length provided by the pre-trained

models is often capped to 512 WordPieces. One reason for this limitation is that

BERT uses positional embeddings (see Section 3.2) which are trained during the

pre-training, and an increase in maximum sequence length would also increase the

time required for pre-training. Normal sentences of text are rarely longer than some

tens of WordPieces, but for this research the maximum sequence length limits the

number of sentences that fit into one input sample at a time.

It is mentioned by Devlin et al. [1] that there are two different strategies for

utilizing the pre-trained contextual representations of BERT for language under-

standing tasks, namely fine-tuning and feature-based approaches. In feature-based

approaches the pre-trained contextual word embeddings (i.e. the output of a BERT

model that is not fine-tuned to a task) are used as features (or extra features) in a

separate machine learning architecture, e.g. bidirectional LSTM (biLSTM) network,

to benefit from the pre-training. In fine-tuning approaches, the whole network pro-

ducing the contextual embeddings is fine-tuned to a task with extra layer(s) added

on top of the pre-trained model. Also, the objective function of training is normally

changed to a task-specific one.

3.1 WordPiece Tokenization

BERT uses WordPiece tokenization, categorized as hybrid representation by Li

et al. [8], to represent text to the model. WordPiece tokenization was first in-

troduced by Schuster and Nakajima [61] as WordPieceModel and later adopted by

Wu et al. [62], to process text for neural machine translation. According to Wu

et al. WordPiece tokenization aims to improve the handling of rare words by di-

viding words into a limited set of common sub-word units. WordPiece tokenization

CHAPTER 3. BERT 22

allows the neural model to “understand” also infrequent words like affixed, inflicted

and compounded words, names, etc. There is much less need for special treat-

ment for words not available in the vocabulary, as these words can in most cases

be constructed from their constituent WordPieces. Naturally, there may still exist

unknown WordPieces e.g. with foreign words and names. This is generally rare and

an acceptable tradeoff, as restricting vocabulary to a manageable size helps the ac-

curacy of the system in other ways. If a WordPiece is never seen in the pre-training

data, its vector would be random as there is no signal to learn the embedding. Us-

ing WordPieces for encoding the data is a way to seek for a balance between the

flexibility of processing input on the character level and efficiency of processing the

input one word at a time. The idea behind building the WordPiece vocabulary is

quite similar to Byte Pair Encoding (BPE) algorithm presented by Philip Gage in

1994 [63]. The vocabulary building is determined by an iterative process over the

input data. The algorithm for building a WordPiece vocabulary is presented below

and in more detail in [61].

1. Initialize the WordPiece vocabulary first with the characters needed for the

data we want to present

2. Build a language model from training data using the current vocabulary

3. Add a new WordPiece to vocabulary by combining two existing WordPieces

so that the selected new WordPiece increases the likelihood on training data

the most

4. Repeat from 2. until a predefined number on WordPieces are created or like-

lihood increase drops below a selected threshold

In other words the goal of the algorithm is to find a set of WordPieces that

produces the minimal number of WordPieces when segmenting the training data

CHAPTER 3. BERT 23

according to the model [62]. The size of the vocabulary therefore varies depending

on the training corpus and chosen likelihood drop (or predefined number of Word-

Pieces), but e.g. for the English language model released by the BERT team, the

size of the vocabulary is around 30 000 tokens.

WordPiece tokens are used to represent text in a way that allows the reconstruc-

tion of the original words from the WordPiece representation. The exception to this

with BERT are the whitespace characters, which are not tokenized. The WordPieces

that are starting words (or representing whole words) are plain character sequences.

If an encoded word is constructed from multiple WordPieces, every additional Word-

Piece after the first has a prefix of two hashmarks (##) to mark that the WordPiece

continues an incomplete word in the sequence. This is illustrated with a WordPiece

tokenized sentence in Table 3.1. The most frequent words in the data have just one

WordPiece token representing them, while uncommon ones may in extreme cases be

represented one character at time. This is however very rare in practice.

The code for generating the WordPiece vocabulary for the original BERT paper

had dependencies to Google internal libraries and is not released as open source.2

Therefore the different groups training their own BERT models have used other, sim-

ilar approaches to create vocabularies for their BERT models. Sentencepiece [64]

is one method providing essentially the same functionality as WordPiece and which

also has code available.3 In this work, all the sub-word vocabulary generating meth-

ods are referred to as WordPiece, regardless of which actual implementation was

used to generate the vocabulary of the BERT model(s) in question.

Th, ##is, is, not, an, ex, ##am, ##ple, sen, ##ten, ##ce

Table 3.1: Example of WordPiece tokenized sentence

2Mentioned in https://github.com/google-research/bert
3https://github.com/google/sentencepiece

https://github.com/google-research/bert
https://github.com/google/sentencepiece

CHAPTER 3. BERT 24

3.2 BERT input and output

The main input to the BERT model is written text, converted to WordPieces. The

maximum sequence length that the model is capable of processing at a time is de-

fined by the training configuration of the pre-trained BERT model. In addition to

WordPiece encoded text, the input may contain some special tokens. Each sequence

that is input to the model starts with a [CLS] token at the beginning of the input

sample. The sequences of text (e.g. sentences) are usually separated from each other

with a [SEP] token. If the input to the model is shorter than the maximum sequence

length, the input sample is padded with [PAD] tokens to fill up the sample. There

is also an [UNK] token available for encoding characters, symbols or sequences that

are not available in the BERT vocabulary. The sequence of text is presented to the

model as sequence of indices to the vocabulary file, which contain the WordPieces

the model was pre-trained with. These indices are also used to fetch the correspond-

ing vector representation of each WordPiece in the embedding layer of the model

to use in the calculations. The vector representations of input tokens, the (input

embeddings), are learned during pre-training and fine-tuning. In addition to the

input embedding, the model is also given information on the position of each input

token in the sequence (position embeddings) and information on what the different

parts of the input represents (segment embeddings). The segment embeddings are

used for example in pre-training (see Section 3.3) for the next sentence prediction

task, but are not used in all applications. For example, the NER system developed

in this study does not differentiate between segments of the input, and sets all the

segment indices to zero.

The output of the BERT model from the last of the stacked Transformer blocks

for one input sample is an array of size Sequence length x Hidden size. The output

has a contextual embedding calculated for each of the input tokens. It is on top of

this output that task-specific network structure is added.

CHAPTER 3. BERT 25

3.3 Pre-training

The power of BERT lies in that it can be pre-trained on a vast amount of unanno-

tated text and the pre-trained model then used as a basis for training task-specific

NLP models. This transfer learning approach significantly reduces the amount of

work needed for training a task-specific model either by fine-tuning (see Section 3.4)

or a feature-based approach (see Section 3.5) by using a significantly smaller amount

of task-specific data than would be needed for training a comparable model from

scratch.

The pre-training of BERT is performed with unsupervised or self-supervised

learning where no manual labeling is needed, but the targets for network predictions

can be inferred from unannotated text. The study introducing BERT [1] proposes a

masked language model (MLM) training objective, which has similar idea to Cloze

task introduced by Taylor [65]. The MLM training objective is such that a certain

percentage, e.g. 15% (the amount used by Devlin et al.) of input token positions

in each sequence are masked at random, mostly by replacing input tokens with

special [MASK] tokens, and the objective of training is to predict the tokens that

are masked from the surrounding tokens that are visible to the model. This allows

the model to take advantage of the bidirectional information available in context.

One issue that Devlin et al. point out is that MLM training objective introduces

[MASK] tokens in pre-training, and that token does not occur in the task-specific

data or fine-tuning process. Instead of masking the tokens in all of the positions

selected for masking, they decided to replace the token with [MASK] in 80% of the

cases, replace the token with random token 10% of the time, and keep the token

unchanged 10% of the time. The BERT team introduced Whole Word Masking

(WWM) in pre-training approximately half a year after the introduction of BERT.

In WWM, instead of masking individual WordPieces, the mask is applied to all of

the WordPieces of a multi-token word. The team said that the original MLM task

CHAPTER 3. BERT 26

was too “easy” as a training task. Some WordPieces were often trivial to predict

from the visible WordPieces of the same word in cases where a single word was

expressed with multiple WordPieces. This improved the results from the original

paper when the algorithm was otherwise kept the same.

The BERT team also introduced a second training objective that is optimized

together with the MLM objective. The Next Sentence Prediction (NSP) objective

aims to introduce some understanding of the relationships between sentences into

the model, as this kind of information is largely not required to perform the masked

language modeling task. The NSP objective is trained so that examples for pre-

training contain two sentences or passages of text separated by the [SEP] token.

These sentences, A and B for example, are generated from the original corpus used

for training. The generation process is done in such way that 50% of the time

sentence B is the continuation to Sentence A in the original data. The other 50% of

the time the sentence B is a random sentence from the corpus. In the next sentence

prediction task the first output token of the BERT model (corresponding to the

[CLS] token in the input) is used to predict if the sentence B is the continuation of

the sentence A in the original corpus. This same first token output is also used in

sentence-level classification tasks after fine-tuning a model for such a task.

3.4 Fine-tuning approach

The fine-tuning approach as presented by Devlin et al. works as follows. The net-

work weights learned in pre-training are used to initialize the model to be trained

for a certain NLP task. The output structure of the network corresponding to the

MLM and NSP tasks that were used in pre-training are replaced by an output struc-

ture needed for the NLP task at hand. To get the state-of-the-art results, Devlin

et al. used only one additional dense output layer on top of the BERT encoder layers

as task-specific structure. The input samples are generally of the same size (with

CHAPTER 3. BERT 27

varying amount of padding) for implementation reasons, but some new implemen-

tations for using a trained model for predictions can also utilize the information

of different lengths of the input for speeding up computations. For the NER task

a time-distributed dense classification layer is added on top of the BERT encoder

blocks so that the output of the NER model are softmax probabilities [66] of each

input WordPiece to belong to one of the named entity tags defined in the training

data. For the fine-tuning approach it is common that all of the trainable parameters

in the network are fine-tuned according to the task-specific data. It is also possible

to select which parameters or layers to train with task-specific data.

3.5 Feature based approach

In feature-based approaches the BERT model is used as a feature extractor. The

input sequence is used to generate contextual embeddings for each of the input

WordPieces and these embeddings are then used as an input to another model such

as the biLSTM proposed by Huang et al. [67]. This approach is usually suitable in

situations where a pipeline and architecture for an NER system already exists and

one wants to use the context-sensitive embeddings as drop-in replacement to other

embeddings.

4 Methods

The study of the adding context in NER with BERT was started when doing re-

search for Finnish BERT [5]. In that study, cross-sentence context was added to

the sentence of interest in BERT input samples. The sentence of interest is the

only sentence in input sample that is used for prediction, and the other sentences

in the sample serve as context. This was done by fitting as many as possible sub-

sequent sentences from data to each input sample. The sentence of interest in this

case was always the first sentence of the sample. In this approach the context was

introduced to the right of the sentence of interest. However, BERT is bidirectional,

and a decision was made to test how the predictions of a sentence of interest behave

in bidirectional context and in different parts of the window of maximum sequence

length.

4.1 Background

This section is based on material previously published by Luoma and Pyysalo [6].

As mentioned in Section 2.2, NER approaches have evolved through different

methodological phases in recent decades. Two recent surveys classify NER methods

roughly to four different categories: rule- and knowledge-based approaches, unsu-

pervised approaches, feature engineering and supervised learning approaches, and

feature learning approaches [7, 8]. The use of cross-sentence information in some

CHAPTER 4. METHODS 29

form has been a normal part of many NER methods in the former categories, but

its role has diminished with the current deep learning based approaches. Rule-

and knowledge-based approaches such as that of Mikheev et al. [24] often matched

strings to lexicons and similar domain knowledge sources for finding named entities.

In Feature engineering and supervised approaches, manually engineered features

were used to incorporate information from the surrounding text, whole documents,

data sets, and also from external sources. As the number of different features and

classifiers grew during the years, it was normal to include features that contained

cross-sentence information in decision making [68, 69]. Dense vector representations

of text such as word, character, string and sub-word embeddings first started to

appear in NER methods as additional features to be used with classifiers [51]. Step

by step, feature engineering has been demoted to a lesser role, as the most recent

deep learning approaches learn to create context-sensitive representations of text by

pre-training with vast amounts of unlabeled data. These contextual representations

are often used directly as features for existing NER architectures or, in transfer

learning, fine-tuned with labeled data to match a certain task.

In recent years, the development of NLP in general and NER in particular has

been greatly influenced by deep transfer learning methods capable of creating con-

textual representations of words, to the extent that many of the state-of-the-art

NER systems mainly differ from one another on the basis of how these contextual

representations are created [1, 54–56]. Using such models, sequence tagging tasks

are often approached one sentence at a time, essentially discarding any information

available in the broader surrounding context, and there is only little recent study

on the use of cross-sentence context – sentences around the sentence of interest – to

improve sequence tagging performance. This study presents methods to introduce

cross-sentence context to named entity recognition task with focus on the recent

BERT deep transfer learning models.

CHAPTER 4. METHODS 30

One recent method taking sentence context into account is that of Akbik et al. [70],

which addresses a weakness of an earlier contextual string embedding method also

by Akbik et al. [54], specifically the issue of rare word representations occurring in

underspecified contexts. In the continuation study [70] the authors make the in-

tuitive assumption that such occurrences happen when a named entity is expected

to be known to the reader, i.e. the name is either introduced earlier in text or is

of general in-domain knowledge. Their approach is to maintain a memory of con-

textual representations of each unique string in text and pool together contextual

embeddings of a string occurring in text with the contextual embeddings of the same

string earlier in text. This pooled contextual embedding is then concatenated with

the current contextual embedding to get the final embedding to use in classification.

Another recent approach taking broader context into account for NER was pro-

posed by Luo et al. [71], where in addition to token representations, also sentence

and document level representations are calculated and used for classification using

a CRF model. A sliding window is used by Wu and Dredze [72] so that part of the

input is preserved as context when the window is moved forward in text. Baevski

et al. [56] states that they use longer paragraphs in pre-training their model, but

it is not mentioned in the paper if such longer paragraphs are used also in fine-

tuning the model or predicting tags for NER. Some other approaches such as that

of Liu et al. [73] include explicit global information in the form of e.g. gazetteers.

Also, some approaches formulate NER as a span finding task instead of sequence

labeling [74, 75]. These approaches would likely allow the use of longer sequences,

but the incorporation of cross-sentence information is not explicitly proposed by the

authors. In the paper introducing BERT, the authors write in the description of

their NER evaluation “we include the maximal document context provided by the

data.” However, no detailed description of how this inclusion was implemented is

provided, and some NER implementations using BERT have struggled to reproduce

CHAPTER 4. METHODS 31

the results of the paper.1,2 The addition of document context to NER using BERT

is discussed also by Virtanen et al. [5]. This approach is named as the method First

in this study and discussed in Section 4.3

Of the related work discussed above, our approach most closely resembles that

of Devlin et al. By contrast to other studies discussed above, the methods in this

study do not introduce extra features or embeddings to represent cross-sentence

information or incorporate extra information in addition to that captured by the

BERT model. Instead, the BERT architecture is directly utilized and the methods

rely only on self-attention and predictions for sentences in different contexts and

additionally aggregations thereof.

4.2 Single

The method Single refers to the most simple and perhaps the most usual imple-

mentation of NER with BERT. The method simply uses one sentence of text per

sample in training and prediction time. The sample is filled with padding tokens up

to the maximum sequence length after the WordPieces corresponding to the actual

sentence are placed in the beginning of the sample. This will be used as a baseline

against which the other approaches are compared. This method is illustrated in

Figure 4.1a.

4.3 Sentence in Context

The Sentence in Context method was the starting point for this research. The right

side cross-sentence context was added to a sentence of interest by Virtanen et al. [5].

The input sample built this way also contained bidirectional context for the added

1https://github.com/google-research/bert/issues/581
2https://github.com/google-research/bert/issues/569

https://github.com/google-research/bert/issues/581
 https://github.com/google-research/bert/issues/569

CHAPTER 4. METHODS 32

Figure 4.1: Illustration of various input representations for sequence labeling tasks.

a) One sentence per example (Single), b) including following sentences (First,

CMV), c) including preceding and following sentences (Sentence in context). CMV

combines predictions for the same sentence (e.g. S3 in b) in various positions and

contexts. The empty square (□) stands for special separator symbols (e.g. [CLS],

[SEP] and [PAD] for BERT); a light background color is used to represent special

symbols and incomplete sentences in c)

sentences, but that information was not used. Introducing the right side cross-

sentence context to input also means that each sentence may be a part of multiple

input samples, and therefore reside in different places inside the maximum sequence

length window in different samples. The problem was that in contexts constructed in

this way, we were not able to consistently measure the performance for a sentence of

interest. The sentences were of different lengths and as more sentences were added

as parts of input samples, the beginning of the sample was only place where the

sentences would align. Also, the number of sentences fitting to a single sample vary

sample by sample. We were not able to pick the Nth sentence for study as there

were no guarantees one will exist in every sample. Or, if it existed, we were not able

to control where in the sample it actually resides.

For the reason stated above, a method was implemented to place the sentence of

CHAPTER 4. METHODS 33

interest to start at a predefined location inside the window of maximum sequence

length. The input sample was then filled by adding the previous and next sentences

from input data around the sentence of interest. If the predefined starting location of

a sentence of interest was such that the whole sentence would not have fit to the win-

dow, the sentence was moved backwards in the window so that whole sentence fits.

This enabled the measurement of the performance with F1-score in different start-

ing locations inside the window of maximum sequence length. The sentence with a

certain starting position in context was only used in prediction time. Fine-tuning of

the BERT model was still done with the input samples containing consecutive sen-

tences from data. This decision was done because taking also the starting position

as one hyperparameter in training would have lead to an excessive computational

cost. This method of arranging input samples is illustrated in Figure 4.1c.

The intuition behind the Sentence in Context approach was that samples in the

middle of the maximum sequence length window would benefit from the context in

both directions. This intuition was later empirically found not to hold in all cases

(see Section 6.1)

For the rest of this thesis, adding only the right side context is referred to as the

method First, which is a short form of First sentence in context, and otherwise the

Sentence in Context is normally referred to with the starting place of the sentence

inside the maximum sequence length window.

4.4 Contextual Majority Voting

When the cross-sentence context was added to BERT input samples (see Figure 4.1b),

it was noted that the predictions for the same sentence in different contexts were

not the same. The idea of having multiple classifications of the same input lead to

thinking about ensemble methods. Knowing that ensembles of classifiers are com-

monly used to improve the performance of classification methods, the predictions of

CHAPTER 4. METHODS 34

the same sentence in difference samples were combined to create an ensemble-like

construct. This is not a real ensemble in the usual sense as we have only one model

and the number of predictions for each sentence varies due to the length of sentence

and the sentences around it. Additionally, some sentences did not fit into one input

sample but had to be split into several samples to be able to process the complete

input data, resulting in only a single prediction for some parts of sentences.

Two approaches to combining the results from predictions in different contexts

were evaluated. The first approach was to assign labels to tokens according to the

majority vote of the labels from different contexts. This method is called Contextual

Majority Voting (CMV) throughout this study. The other approach was to sum

the softmax probabilities of the predictions in different contexts and then take the

maximum value of the combined probabilities as prediction. This method is called

Contextual Majority Voting on Probabilities (CMV-P) in this study. Both of these

methods are variations of the same underlying idea and the term Contextual Majority

Voting is used to refer to both of them, unless there is a need to make a distinction

between the two approaches.

Another feature of implementation is the construction of documentwise input

samples. This was used in cases where the input data had boundaries between

different documents in the original data marked e.g. with -DOCSTART- tokens. The

subsequent sentences were filled into input samples only from the same original

document. The sentences after the last sentence in the original document were

taken from the beginning of the same original document and the sentences before a

first sentence in document were taken from the end of the same original document

instead of the previous document.

This research also studies the effect of moving the sentence of interest inside

the window of maximum sequence length. The training data was constructed as in

Virtanen et al. [5] but testing data was constructed so that the sentence of interest is

CHAPTER 4. METHODS 35

started at given location inside the maximum sequence length and the input sample

was filled to both directions with sentences before and after the sentence of interest

in test data.

5 Experimental setup

This chapter provides details on the experimental setup of this study. The methods

introduced in Chapter 4 were tested on five different languages to get a more general

evaluation of the effect of adding cross-sentence information in BERT fine-tuning and

prediction. The pre-trained BERT models and the annotated NER corpora used in

this study are introduced and some details of the implementation and computational

environment are presented in the following.

5.1 Data

The data used to run the experiments for this study consists of six pre-trained BERT

models and six NER corpora in five different languages.

5.1.1 Data sets

For each of the five languages considered in this study, pre-trained BERT model(s) is

fine-tuned for the NER task. Annotated data as defined in Section 2.1.1 is required

for training and evaluating a fine-tuned model, and for that purpose we use an NER

corpus for each tested language. For Finnish, the corpus is a combination of two

corpora. The NER corpora used in this study are listed in Table 5.1.

The NER corpora for English, German, Dutch and Spanish were introduced as

CoNLL shared task data sets in the years 2002 and 2003. These data sets have

become established as benchmark standards for evaluating NER methods and that

CHAPTER 5. EXPERIMENTAL SETUP 37

Language Source

English CoNLL’03 Shared task [13]

Dutch CoNLL’02 Shared task [12]

German CoNLL’03 Shared task [13]

Spanish CoNLL’02 Shared task [12]

Finnish FiNER news corpus[76]

Finnish Turku NER corpus [77]

Table 5.1: NER corpora used in this study

provides a good reason to select them for this study. Each of these four data sets

consist of three different data files. Training data for training the algorithm, devel-

opment data for hyperparameter optimization and tuning the algorithm, and test

data for evaluating the final performance of the trained models. The Named Entity

annotations in all of these four data sets have four different categories annotated.

The categories in these datasets are presented in Table 5.2.

Category Entity type ID

Persons [PER]

Organizations [ORG]

Locations [LOC]

Miscellaneous [MISC]

Table 5.2: Entity categories in CoNLL data sets

This study is a continuation from a work done for the Finnish BERT [5], and

Finnish was naturally selected as one language for this study as well. For Finnish, a

combination of two NER corpora is used: a Finnish news corpus for NER (FiNER

news) [76]1, which was the first publicly available NER corpus for Finnish, and the

1https://github.com/mpsilfve/finer-data

https://github.com/mpsilfve/finer-data

CHAPTER 5. EXPERIMENTAL SETUP 38

Category Entity ID

Persons [PER]

Organizations [ORG]

Locations [LOC]

Products [PROD]

Events [EVENT]

Date [DATE]

Table 5.3: Entity categories in Finnish data sets

Turku NER corpus [77]2, which was annotated to be compatible with the FiNER

news corpus. In this study, the data of these two corpora are combined together.

More specifically, the train, development and test data sets from both corpora are

joined with simple concatenation to form combined train, combined development

and combined test sets for Finnish. These Finnish NER corpora have six named

entity categories annotated as listed in Table 5.3. The key statistics of the NER

corpora used in this study are listed in Table 5.4. For Finnish language the numbers

are for the combined corpus.

Tokens English German Spanish Dutch Finnish

Train 203,621 206,931 264,715 202,644 342,924

Development 51,362 51,444 52,923 37,687 31,872

Test 46,435 51,943 51,533 68,875 67,425

Entities English German Spanish Dutch Finnish

Train 23,499 11,851 18,798 13,344 27,026

Development 5,942 4,833 4,352 2,616 2,286

Test 5,648 3,673 3,559 3,941 5,129

Table 5.4: Key statistics of the NER data sets

2https://github.com/TurkuNLP/turku-ner-corpus

https://github.com/TurkuNLP/turku-ner-corpus

CHAPTER 5. EXPERIMENTAL SETUP 39

Language BERT model

English BERT Large Whole Word Masking, Cased [1]3

Dutch BERTje base, Cased [57]4

Finnish FinBERT, Cased [5]5

Spanish BETO, Cased [58]6

Spanish BERT Multilingual, Cased7

German German BERT, Cased8

Table 5.5: Pre-trained BERT models used in this study

5.1.2 Pre-trained BERT models

Pre-trained BERT models are the basis for the fine-tuning approach to training

an NER system. In this study, monolingual BERT models for each of the studied

languages were preferred, as recent studies have suggested that well-constructed

language-specific models outperform multilingual ones [5, 57, 78]. The pre-trained

models chosen for this study are listed in Table 5.5. The models were selected for

this study mainly because they were, besides Spanish, readily discoverable, and were

freely available for the languages that have established benchmark data for NER, as

described in Section 5.1.1.

The pre-trained BERT models are often released with different variants to be

used with cased and uncased text. The cased variants accept as input both upper

and lower case text and the vocabulary is constructed accordingly. The uncased

variants accept only lower case text as input and the input text must be converted

3https://github.com/google-research/bert
4https://github.com/wietsedv/bertje
5https://github.com/TurkuNLP/FinBERT
6https://github.com/dccuchile/beto
7https://github.com/google-research/bert
8https://deepset.ai/german-bert

https://github.com/google-research/bert
https://github.com/wietsedv/bertje
https://github.com/TurkuNLP/FinBERT
https://github.com/dccuchile/beto
https://github.com/google-research/bert
https://deepset.ai/german-bert

CHAPTER 5. EXPERIMENTAL SETUP 40

accordingly. All of the models used in this study were cased variants of the pre-

trained models. All the models except English BERT are the size of the BERT base

model. For English, the BERT Large model trained with whole word masking was

chosen for the study to achieve the best possible results. Also, we noted that the

BERT base model for English had some issues when using the maximum sequence

length of 512 WordPiece tokens. This issue is discussed further in Chapter 6. The

German BERT model was published by company deepset.

5.2 Implementation

This section describes in more detail the NER pipeline implemented for this study.

The implementation is available under an open license.9 The implementation is

written in the Python programming language, and in addition to Python standard

libraries it has dependencies on the following software and platforms:

• BERT, https://github.com/google-research/bert
• keras-bert, https://pypi.org/project/keras-bert/
• conlleval, https://github.com/spyysalo/conlleval.py
• Tensorflow, https://www.tensorflow.org/
• Keras, https://keras.io/
• numpy, https://numpy.org/

The pipeline itself is language independent and may be used with any BERT

model and NER corpus, given that the requirements for the input file structure are

fulfilled. The primary implementation for NER is found in the file ner.py, which

contains the main program, and common.py, which contains the methods needed

for data processing. The different processing steps of the pipeline are described in

subsections below.

9https://github.com/jouniluoma/bert-ner-cmv

https://github.com/google-research/bert
https://pypi.org/project/keras-bert/
https://github.com/spyysalo/conlleval.py
https://www.tensorflow.org/
https://keras.io/
https://numpy.org/
https://github.com/jouniluoma/bert-ner-cmv

CHAPTER 5. EXPERIMENTAL SETUP 41

The computations for this study were made on the CSC Puhti supercomputing

cluster and the source code also contains some scripts and and an argument parser

implemented for the purpose of modifying the read and write locations as well as

functionality of the program for different purposes.

5.2.1 Preprocessing data

Preprocessing the data consists of multiple steps starting from reading in the IOB2-

encoded data from the input file(s) and ending in transforming the data into a

format that is ready to be input to the model for training. First, the NER data is

read with the read_connl() method, which returns the data as sentences (lists of

words) and their corresponding tags (lists of labels). The format of the input data

is described in the Section 2.1.2.

Tokenization

BERT uses WordPiece tokenization, as discussed in Chapter 3, in order to be able

to represent complex words with a limited-size vocabulary. Every BERT model

is distributed with its corresponding WordPiece vocabulary that was used when

pre-training the model. The vocabulary gives unique ID:s to WordPieces, and also

contains IDs for special tokens such as unknown [UNK], separator[SEP], and padding

[PAD]. The sentences of data (lists of words) are next tokenized with WordPiece tok-

enizer and the corresponding vocabulary for the model in question. After tokenizing

the sentences, it is checked that each tokenized sentence will fit into an input sample

of maximum sequence length. If a sentence does not fit, it will be split to multiple

“sentences” for further processing. As the result of tokenization, the lists of input

sentences are represented as lists of WordPiece tokens, and these WordPiece token

lists are each shorter than the maximum sequence length selected for the training.

CHAPTER 5. EXPERIMENTAL SETUP 42

Process sentences

In this phase the cross-sentence context is added to sentences and BERT input

samples are constructed from individual tokenized sentences. In this study, different

methods to process the tokenized sentences are evaluated to study the effect of cross-

sentence context on predictions. The methods are described in detail in Chapter 4.

The baseline processing, against which the other methods are compared, is as

follows. Every input sentence forms its own input sample and no context is added.

The input sample is simply filled with padding tokens after the input sentence. This

is a common approach that different BERT implementations use for fine-tuning a

BERT model. This baseline processing is enabled with --nocontext as a command

line input argument when running ner.py. This is also called method Single.

For testing the methods First and CMV, the input samples are created so that

subsequent sentences from the input data are added to the same input sample. The

input data is looped through so that each sentence is starting a BERT sample exactly

once, and the next sentences from the original data are added to the same sample

as long as the next sentence in the input fits into the sample. At the end of the

input data the last samples are constructed so that the input samples are filled with

sentences from the beginning of the input data if no new sentences are available at

the end of the data. The sentences in each sample are separated with a [SEP] token.

This is the standard way of constructing input samples in this implementation.

If the input data contains -DOCSTART- tokens, also a documentwise construction

is possible. In this case, the next sentences are added only from the same original

document in input data, and the data is rotated at the end of that original document

instead of the end of the whole file. This optional processing is enabled with the

--documentwise command line input argument.

To evaluate the prediction performance of a model on sentences residing at a

predefined location, the input samples are constructed so that a sentence of interest

CHAPTER 5. EXPERIMENTAL SETUP 43

is placed to start at the given location inside the input sample as described in the

Section 4.3. If needed, the sentence of interest is moved backwards in the window

so that it will fit as the last sentence of the sample. For this reason the tested

starting locations are not always exact but rather desired locations for starting each

sentence.

The output from read_conll() is input to one of the processing functions, which

tokenizes the input, combines the sentences according to the selected method, and

optionally also splits sentences that are longer than maximum sequence length. The

count of WordPieces of each original word are kept for further processing and for

reconstructing the data after predictions. The processing function returns a named

tuple Sentences which contains the original sentences, tokenized sentences with

their tags and the lengths of each original word in WordPieces. Also, combined

sentences with their tags are part of the Sentences tuple.

Encoding

Up to this point the data are kept in textual format in list structures. To be

able to make calculations, the final step of pre-processing is to convert the textual

data to input samples in numerical format. Every WordPiece in the vocabulary

has a numerical ID corresponding to the index of the relevant embedding. The

textual WordPieces are converted to numerical numpy arrays containing the IDs.

Converting textual data to numerical format as well as padding and formatting the

data for calculations is done by the encode() method. Also the labels for sequence

classification are converted to numerical format with the label_encode() method.

5.2.2 Model construction and training

The BERT reference implementation and the keras-bert library do not directly

have functionality for NER purposes. In this study, a new model for NER is con-

CHAPTER 5. EXPERIMENTAL SETUP 44

structed by attaching a time-distributed dense layer on top of the pre-trained BERT

model. This model is then fine-tuned with data annotated for NER. The Adam op-

timizer [79] with warm-up, weight decay, and linear learning rate decay is used in

training the model. The hyperparameters used for training are given as command

line arguments to ner.py and the argument parser is used to relay the information

to the training process. In this study, the Adam optimizer parameters were fixed to

following:

• Linear warmup of 10% of the samples followed by
• Linear learning rate decay on the 90% of samples
• Weight decay with rate 0.01
• Adam optimizer parameters β1 = 0.9, β2 = 0.999, ϵ = 1e− 6

• Norm clipping on 1.0

Training uses the Keras framework and the embeddings of the input WordPieces

are propagated forward through the model to get softmax probabilities for each

input WordPiece belonging to a certain class. Sparse categorical cross-entropy is

used as a loss function in calculations, and the Adam optimizer with the parameters

given above is used to update the neural network weights. The [CLS] token starting

an input sample and the [SEP] tokens separating the sentences are excluded from

the loss calculation.

Also adding a CRF [45] layer on top of the BERT model was briefly tested, but

the fine-tuning method with just a dense layer provided similar or better results in

preliminary experiments, and a CRF layer was not applied in the final experiments

reported below. The experiments with a CRF layer were not exhaustive, and perhaps

this option could be studied further later on.

5.2.3 Predictions

For evaluating the performance of a fine-tuned model, a separate set of annotated

text is pre-processed and passed through the model to get predictions of classes

CHAPTER 5. EXPERIMENTAL SETUP 45

for each WordPiece. The development data is used for hyperparameter search and

the test data is used for evaluating the final results. The predictions are presented

as softmax probabilities for an input token belonging to each of the classes. The

maximum softmax probability is selected as the label for each WordPiece in the input

sample (except for CMV-P). After this, there are different ways to construct the

final predictions from the initial predictions. For the method Single (--nocontext),

there is only one sentence per input sample and the predictions for that sentence

are directly taken as the final result. If the starting place of a sentence inside a

context is defined, the results are taken from the single sentence starting at that

location in each input sample. If Contextual Majority Voting is activated, there are

two different approaches to get the final predictions. Either the final prediction for

a token is a majority vote for predictions of the same token in different samples

(CMV), or the final prediction is the maximum of summed softmax probabilities of

the same token in different samples (CMV-P).

The predictions are used as an input to the write_sentences() method, which

combines the WordPiece representations of original tokens back to a format where

each word has exactly one label attached to it. No extra heuristic is built into this

stage e.g. to fix broken IOB2 sequences. If a word consists of multiple WordPieces,

the label for the first WordPiece is used to represent the label of the whole word.

The method writes out an evaluation file that can be later examined with an eval-

uation script. The evaluation file follows the format described in the Section 2.1.1,

with the modification that in addition to a word and its correct label, also the pre-

dicted label is written as additional tab-separated field to this file. The method

also returns the lines written so that the same data may be evaluated inside the

program with methods provided in conlleval.py. There is also a “predict” mode

for write_sentences() which is used when unlabeled data is passed through the

system for labeling. This was added for building a demo application for NER. The

CHAPTER 5. EXPERIMENTAL SETUP 46

demo application and related functionality (web service, web pages etc.) were added

to the repository after building the main NER pipeline and are not contributions of

the author of this study.

5.2.4 Evaluation

This study uses entity level Precision, Recall and F1-score as metrics for measuring

NER task performance. These are standard evaluation metrics for NER and were

used for example in the CoNLL shared tasks that introduced the English, Dutch,

German and Spanish data sets used in this study. This is also the evaluation metric

that conlleval.py script implements. The total evaluation scores are expressed

as micro average over the results of each named entity type. The result output

of one evaluation done with conlleval.py script on CoNLL’03 English language

development set is shown in Figure 5.1.

processed 51578 tokens with 5942 phrases; found: 6005 phrases; correct: 5767.
accuracy: 99.37%; precision: 96.04%; recall: 97.05%; FB1: 96.54

LOC: precision: 97.72%; recall: 97.82%; FB1: 97.77 1839
MISC: precision: 89.79%; recall: 92.52%; FB1: 91.13 950
ORG: precision: 95.28%; recall: 96.27%; FB1: 95.77 1355
PER: precision: 98.12%; recall: 99.13%; FB1: 98.62 1861

Figure 5.1: Example of Named Entity Recognition evaluation

The test implementation is built so that once a model is trained, multiple dif-

ferent tests can be run against the model. If the --documentwise command line

option is used, the model is trained with training samples built documentwise and

all the different tests are run against this model, including also the ones with input

samples build without documentwise context. With the --nocontext command line

option, the model is trained on single sentences and also tested on single sentences.

CHAPTER 5. EXPERIMENTAL SETUP 47

The default functionality of the ner.py program is to build BERT samples by

adding subsequent sentences from input data. No documentwise wrapping of the

samples are used in testing in this case.

Once the tests are run, the evaluation results are written into a Comma Separated

Values (CSV) file for further analysis and visualization purposes. The file contains

information on the pre-trained model, the training data set filename, the test data

set file name, the training hyperparameters and the precision, recall and F1-score

for each test that was run and an identifier of the method used for prediction. As

the tests were run in the Slurm environment of the CSC Puhti supercomputer, also

the Slurm-job ID was saved. This same job ID was saved also as part of the log and

output files from which the results were calculated.

5.3 Experiments

To evaluate the effect of introducing cross-sentence information to NER, the follow-

ing scenarios were examined. The last scenario of single sentence only was selected

as baseline against which the methods with cross-sentence information is compared.

• CMV, documentwise built samples
• CMV, subsequent sentence context (default)
• CMV-P, documentwise built samples
• CMV-P, subsequent sentence context
• First, documentwise built samples
• First, subsequent sentences context
• Sentence in context, starting positions 32 .. 512 with 32 WordPiece intervals
• Single, no context used

These methods were defined in the Chapter 4.

CHAPTER 5. EXPERIMENTAL SETUP 48

5.3.1 Hyperparameter search

A hyperparameter search was performed for all of the scenarios defined above. The

creators of BERT suggested that an exhaustive grid search over a small selection

of learning rates, batch sizes and epochs would be enough to reach state of the art

results (at the time) using the fine-tuning approach. The hyperparameter range

suggested by Devlin et al. is presented in Table 5.6:

Hyperparameter Suggested values

Epochs 2, 3, 4

Batch Size 16, 32

Learning rate 2e-5, 3e-5, 5e-5

Table 5.6: Hyperparameter suggestions from study introducing BERT

The hyperparameter range for the grid search in this study was modified from the

original, and the used hyperparameters are presented in Table 5.7. This was done

mostly due to the fact that the implementation did not initially support multi-GPU

processing. The fine-tuning was performed using a single NVIDIA Tesla V100 GPU

with 32 GB of GPU memory in the CSC Puhti Supercomputer shared environment.

The execution on a single V100 GPU using BERT base sized model failed with an

Out-of-Memory error with batch size of 32 and the maximum sequence length set to

512. The implementation successfully ran on batch size of 16 or lower, and therefore

the hyperparameter search was limited to those batch sizes.

Initial tests with the implementation were performed with batch sizes 4, 8, and

16. After some tests against the development set, also batch size 2 was added into the

hyperparameter search range. This was due to the fact that the best hyperparameter

combinations often included a batch size which was found on the lower end of the

hyperparameter range. The same result was seen with the number of epochs as the

system many times reached comparatively good results after training for a single

CHAPTER 5. EXPERIMENTAL SETUP 49

epoch. An additional factor influencing the decision to take smaller batch sizes into

use was that it enabled the experimentation on personal computer. Experiments

with the personal computer ran the code on a single NVIDIA RTX2080Ti GPU

with a maximum sequence length of 512. This was done only for development

purposes, and all of the final results were calculated in the CSC Puhti supercomputer

environment. For the reasons stated above, the following hyperparameter range was

finally selected to be tested for all of the pre-trained models and languages.

Hyperparameter Values

Epochs 1, 2, 3, 4

Batch Size 2, 4, 8, 16

Learning rate 2e-5, 3e-5, 5e-5

Table 5.7: Hyperparameters used in this study

The multi-GPU support was later implemented as the English language pre-

trained model had to be changed from BERT base to BERT Large Whole Word

Masking (WWM) model, and a single V100 GPU was only able to process the

batch sizes 2 and 4 with a maximum sequence length of 512. Part of the motivation

to change to BERT Large WWM was a discovery made during the analysis of the

hyperparameter search results on the English data set. The English BERT base

cased model appeared to lose prediction performance in certain locations inside the

input sequence. More detail about this behaviour is provided in Section 6.1.1.

5.4 Result analysis implementation

The results from running the tests were gathered to CSV text files which were later

analysed. The contents of these files are defined in Section 5.2.4. The results were

analysed using the Jupyter notebook environment (Python) and the Pandas library

CHAPTER 5. EXPERIMENTAL SETUP 50

for processing the data. Evaluation with each hyperparameter combination was re-

peated 5 times and the mean values are reported in Chapter 6. The result analysis

was performed by combining the output result files to a Pandas DataFrame, group-

ing the results by different fields (e.g. hyperparameter, method, sentence starting

location), and calculating measures based on these groupings (e.g. mean and stan-

dard deviation of precision, recall and F1-score).

5.5 Software and Hardware

The hyperparameter search and the final evaluations were performed on the CSC

Puhti supercomputer. More specifically, the gpu partition of Puhti was used and

the calculations utilized one NVIDIA Tesla V100 GPU on all computations except

for the BERT Large model with batch sizes 8 and 16. The BERT Large model with

batch size 8 used 2 NVidia Tesla V100 GPUs and the computations with batch size

16 utilized 4 NVidia Tesla V100 GPUs in parallel.

Tensorflow 1.14

Keras 2.2.4

keras-bert 0.80.0

python 3.7.3

Table 5.8: Software versions used in results

The software versions used for calculating the results in this thesis are listed

in Table 5.8. The versions of software were not fixed during development, as for

example CRF layer on top of BERT model had different prerequisites for the used

libraries. The source code has been updated after the evaluations and the released

version now supports Tensorflow version 2.x and the tensorflow.keras version of

the Keras library.10

10https://github.com/jouniluoma/bert-ner-cmv

https://github.com/jouniluoma/bert-ner-cmv

6 Results

This chapter describes the results achieved by introducing cross-sentence contexts

to NER. The main results have been published in [6], and the results are described

here in more detail. First, a look is taken at the results on the development data sets

obtained during hyperparameter search. These include testing the performance of

the Sentence in Context method on different locations inside BERT samples. These

results are also compared to the results of the method CMV on the development

set. Next, the results on the test set are evaluated for the models trained with the

hyperparameters that gave the highest development set performance in the search.

The results on the test data reach new state of the art level for three languages

when compared to NER benchmark results reported in domain literature at the

time when the study was performed. Incidental findings that were observed during

the study are also discussed. Not all of these findings were thoroughly tested, and

they should therefore be considered more as preliminary indications than as verified

results. The distinction between fully tested results and preliminary is clearly stated

when presenting each.

6.1 Results on development sets

The results on development sets are next discussed one language at a time. Some

general topics are additionally presented under the headings for relevant individual

languages.

CHAPTER 6. RESULTS 52

6.1.1 English

The initial tests for English were performed using the BERT base sized pre-trained

model. The initial results for sentences starting in different locations are shown in

Figure 6.1, which shows the Sentence in context (see Chapter 4) results, expressed

as mean of all the results for each sentence starting position during hyperparameter

search.

It appears that the NER classification performance with the English BERT base

cased model drops noticeably if the sentence of interest resides in the latter part

of the 512 WordPiece maximum sequence length window. The performance of the

100 200 300 400 500
Sentence starting position

0.84

0.86

0.88

0.90

0.92

0.94

F-
sc

or
e

English, BERT base

Figure 6.1: English, BERT base, performance on different starting positions. F1-

score presented as mean of the results over the whole hyperparameter range on the

development data set.

CHAPTER 6. RESULTS 53

model is quite stable for the sentence start locations up to approximately 300 Word-

Pieces, having a development set F1-score higher than 93% throughout this range.

The performance drops after that from 93% to approximately 86%. This kind of

drop was not observed for any other language. The first thoughts were that this

issue must be related either to the pre-trained model or the training data. To rule

out the possibility that the performance drop happens only due to taking the mean

over all hyperparameter combinations, the best achieved F1-score (as mean of 5

repetitions) for each sentence starting position was plotted in a similar way. This

approach shows a similar drop in performance, although the scale is smaller in this

case, as show in Figure 6.2.

100 200 300 400 500
predict_start

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

F-
sc
or
e

Figure 6.2: English, BERT base, performance on different starting positions, Best

found performance on development data set

CHAPTER 6. RESULTS 54

At the time of this evaluation no other data set for English with comparable size

and entity types was available. To assess whether the model might be causing this

effect, the experiment was repeated using BERT large model for English to see if

the behaviour was similar. The results looked considerably more stable with respect

to the starting position with BERT Large WWM, as seen in Figure 6.3, where the

vertical axis is set roughly similarly as in Figure 6.1. It was decided to continue the

study using that model instead of BERT base cased. Additionally, testing on BERT

large was a good way to test the Contextual Majority Voting method against other

state-of-the-art methods, which are commonly evaluated using BERT large.

100 200 300 400 500
Sentence starting position

0.84

0.86

0.88

0.90

0.92

0.94

0.96

F-
sc

or
e

English, BERT Large WWM

Figure 6.3: English, BERT Large WWM, performance on different starting posi-

tions, development data set

CHAPTER 6. RESULTS 55

The BERT Large WWM model has stable performance throughout the range

of starting locations when using the same data as with the BERT base pre-trained

model. This appears to confirm that the BERT base cased pre-trained model has

some issues learning to perform the NER task when using WordPieces at offsets

greater than approximately 350. While this is a preliminary finding only, this sug-

gests that careful evaluation should be performed if one is to use the BERT base

model in real-world applications.

100 200 300 400 500
predict_start

0.956

0.958

0.960

0.962

0.964

0.966

0.968

0.970

F-
sc
or
e

Context, mean
Context, best
CMV

Figure 6.4: English, BERT Large WWM, Comparison of methods, development

data set

Figure 6.4 shows the performance of the BERT Large WWM model on the En-

glish development set with different starting positions. The curve "Context, mean"

(blue colour) is the average performance at a specified starting position (Sentence

CHAPTER 6. RESULTS 56

in context), averaged across all the results for that position and all of the hyperpa-

rameter combinations tested. The curve "Context, best" (orange colour) is a curve

which shows the best result found in hyperparameter search for each position. The

best result for each position is expressed the best mean F1-score of 5 repeated exper-

iments with same hyperparameter combination. The result for Contextual Majority

Voting (CMV) is the best mean of 5 repetitions with same hyperparameters. From

Figure 6.4 it is apparent that the Contextual Majority Voting gives a benefit over

any specific starting position when comparing the results on the development set.

6.1.2 Dutch

The hyperparameter search for Dutch was performed in a similar manner as for

English. Figure 6.5 shows that the Sentence in Context results vary according to

the starting position of the sentence, but for Dutch model the differences are not

very notable. An observation was made that both the Sentence in context and

Contextual Majority Voting methods provided considerably better results than the

ones presented by de Vries et al. [57] where the Dutch BERTje model was introduced

and achieved a development set F1-score of 87.8% for the NER task with the same

data. This is remarkably promising result, as we observe an almost 5 percentage

point improvement in the results.

Before starting the experiments evaluating the effect of adding cross-sentence

context to BERT training samples, the initial expectation was that placing the sen-

tence of interest near the middle of the sequence would generally yield the best

performance. However, while this effect could be clearly observed for English (Fig-

ure 6.4), the pattern does not hold in all cases. While performance does appear to

improve in most cases when moving the starting position away from either end of

the context window, in some cases the problem was that the performance in the

middle of the context did not appear to be stable enough to reliably pick a starting

CHAPTER 6. RESULTS 57

100 200 300 400 500
predict_start

0.916

0.918

0.920

0.922

0.924

0.926

F-
sc
or
e

Context, best
Context, mean
CMV, Documentwise

Figure 6.5: Dutch, performance on different starting positions, development data

set

position. The results for Dutch deviated the most from the initial expectation, and

a possible reason for this was later found from the source data: the sentence order

of the documents inside the original Dutch language data set has been randomized

for copyright reasons. To see if randomizing the sentence order of documents has an

effect on results, we tested adding such shuffling to data in other languages. How-

ever, in our initial experiments randomizing sentences inside each document did not

result in notable performance drop on any of the tested languages. [6]

CHAPTER 6. RESULTS 58

6.1.3 Finnish

Finnish results on the development set appear to be in line with results for the other

languages: prediction performance for a starting location appears to increase when

moving away from either end of the maximum sequence length window (Figure 6.6).

Also in this case the Contextual Majority Voting method seems to provide an increase

in performance compared to any single starting location inside the window.

100 200 300 400 500
predict_start

0.912

0.914

0.916

0.918

0.920

0.922

0.924

0.926

F-
sc
or
e

Context, best
Context, mean
CMV, Documentwise

Figure 6.6: Finnish, performance on different starting positions, development data

set

6.1.4 Spanish

Spanish was added to the tested languages in comparatively late in the study as

no monolingual BERT model was available for Spanish when this work was first

CHAPTER 6. RESULTS 59

started. During the study a Spanish BERT model, named BETO, was introduced

to public [58]1. In experiments using Contextual Majority Voting, the results on the

development set appeared to be quite similar to those achieved using multilingual

BERT by Wu and Dredze [72] and for comparison purpose the NER evaluation was

extended to also include multilingual BERT for the Spanish data. In our experi-

ments on the development data, the Multilingual BERT model was found to produce

slightly better results than the monolingual pre-trained model (Figure 6.7).

100 200 300 400 500
Sentence starting position

0.865

0.870

0.875

0.880

0.885

F-
sc
or
e

mBERT mean
mBERT best
Beto mean
Beto best
CMV, mBERT
CMV, BETO

Figure 6.7: Spanish, performance on different starting positions, Comparison of

mBERT and BETO, development data set

1https://github.com/dccuchile/beto

https://github.com/dccuchile/beto

CHAPTER 6. RESULTS 60

6.1.5 German

The hyperparameter search results on German were, in absolute terms, somewhat

disappointing. The results seemed underwhelming after observing some of the high

levels of absolute performance (F1-score over 90%) achieved with BERT for other

languages, and performance of some other methods on German [54, 70]. On the

other hand, comparing the results e.g. to those achieved with multilingual BERT

[72], things did not look that bad. Perhaps German is a challenging language for

BERT models, or perhaps there are some issues with the CoNLL’03 German corpus.

The results on development set for German are shown in Figure 6.8

100 200 300 400 500
predict_start

0.830

0.832

0.834

0.836

0.838

0.840

0.842

0.844

F-
sc
or
e

Context best
Context, mean
CMV, Documentwise

Figure 6.8: German, performance on different starting positions, development data

set

CHAPTER 6. RESULTS 61

It was also later learned that there exists a “revised” version of the CoNLL corpus

for German and at least some other published NER results have used the revised

corpus in their experiments. The problem was that it was not always clearly stated

which studies have used the revised version. This study is made on the original

CoNLL’03 version of the corpus. Despite the lower than expected F1-scores, the

results show a similar pattern of benefit of the CMV model seen with the other

languages.

6.1.6 On reporting different methods

As seen in the preceding language-specific subsections, the results are shown only

for Contextual Majority Voting (CMV) and the results when sentences are starting

in a designated positions inside the input sample (Sentence in Context). Selecting

the Contextual Majority Voting (CMV) as the method to report (over CMV-P)

was due to the fact that in hyperparameter searches both the CMV and CMV-P

consistently provided nearly identical numerical results, and both methods usually

had the best performance with the same hyperparameters. The differences were too

small to draw meaningful conclusions on whether one of these methods performed

better than the other.

For cross-sentence context, the input samples built documentwise were preferred

as the documentwise grouping appeared to work marginally better in comparison to

the setting that does not use document information from input data. The exception

to this was Spanish, which did not contain document information in the input data.

One challenge in assessing the impact of starting positions on NER performance

is that often the results are quite similar regardless of the starting position. Av-

eraging results over different hyperparameter combinations or over the whole hy-

perparameter range indicates some peaks and valleys in the results, but it is not

guaranteed that a certain starting location would robustly improve results and gen-

CHAPTER 6. RESULTS 62

eralize to good results on test set. The results between different repetitions of the

same experiment with different random initializations of the NER layer weights var-

ied in some cases more than the difference between different starting positions. This

is one of the reasons that the Sentence in Context results on test data will be pub-

lished only for the method First, meaning the sentence starting immediately after

the [CLS] token in input sample. It would have been very challenging to make a

reliable choice on any single location to use in final experiments on the test data.

Another reason for selecting only the first position is to enable more direct com-

parison of the results to the selected Baseline, Single sentence, where the model is

fine-tuned only by using single sentences in input samples without the context on

the right side as in method First.

For the above-mentioned reasons the results provided in the tables and figures in

the rest of this thesis will be for Contextual Majority Voting (CMV) on documentwise

(except Spanish) built input samples, First sentence in Context (First) and Single

sentence baseline (Single).

6.1.7 Best hyperparameter combinations

Table 6.1 presents the best F1-scores and the corresponding hyperparameters found

when evaluating the different methods against the development set during hyper-

parameter search. These hyperparameter combinations were used when fine-tuning

the pre-trained models for final performance evaluation on test data sets.

CHAPTER 6. RESULTS 63

Model Epochs Batch size Learning rate F1-score (dev)

Finnish, CMV 2 2 2e-5 92.66

Finnish, First 2 2 2e-5 92.54

Finnish, Single 4 4 2e-5 91.48

English, CMV 3 2 3e-5 96.99

English, First 3 2 3e-5 96.86

English, Single 4 4 2e-5 96.17

Dutch, CMV 2 2 3e-5 92.62

Dutch, First 2 2 2e-5 92.37

Dutch, Single 4 2 2e-5 90.87

German, CMV 4 2 3e-5 84.43

German, First 2 2 3e-5 83.96

German, Single 3 4 3e-5 83.89

Spanish, CMV 3 8 2e-5 87.78

Spanish, First 3 8 2e-5 86.90

Spanish, Single 3 2 3e-5 86.56

S-mBERT, CMV 1 4 3e-5 88.75

S-mBERT, First 3 4 3e-5 87.64

S-mBERT, Single 4 4 3e-5 86.91

Table 6.1: Hyperparameter combinations resulting in the best performance on the

development sets for different languages and methods

From the selected hyperparameters we can clearly observe that training BERT

for NER with these data sets tends to favor smaller batch sizes as well as smaller

learning rates. Almost all of the best hyperparameter combinations have batch size

of 2 or 4. The highest batch size of 16 or the highest learning rate of 5e-5 is not

selected for any of the many combinations of languages and methods.

CHAPTER 6. RESULTS 64

6.1.8 CMV vs. First

In the preceding development set experiments, it was not only the best hyperparam-

eter combinations selected for each method where the Contextual Majority Voting

appeared to perform the better than method First : for most of the individual hy-

perparameter combinations, the best results were achieved when using CMV (or

CMV-P) rather than any of the starting locations separately. The performance of

CMV with different hyperparameters was also analyzed from the full results of the

hyperparameter search and compared to the other methods. An analysis for all the

languages and all of the hyperparameter combinations was performed to check if

the method First provides better results than CMV for some combinations. It was

found that for all of the tested languages and hyperparameter combinations besides

Dutch, the method CMV provided better results on development data than method

First in all cases. For Dutch there were 7 hyperparameter combinations out of the

total 48 where CMV performed worse than First. The results for these 7 cases are

shown in Table 6.2. These results show that the margin between the two methods

with all of these parameters is quite small. Based on this information, one can

quite safely recommend the usage of CMV method to improve results in almost all

situations.

CHAPTER 6. RESULTS 65

Epochs Learning Rate Batch Size CMV First CMV better

2 0.00002 4 92.03% 92.05% False

0.00003 8 91.84% 92.02% False

3 0.00002 4 92.12% 92.24% False

8 91.87% 91.89% False

4 0.00002 4 92.02% 92.20% False

16 91.92% 92.00% False

0.00005 16 91.93% 92.17% False

Table 6.2: Dutch, Hyperparameters for which method First outperforms CMV

6.2 Results on test sets

The results of experiments with the best found hyperparameter combinations are

summarized in Table 6.3. From these results it is obvious that BERT predictions

benefit from taking into account cross-sentence context. For all of the languages

tested on the models which are fine-tuned and tested with samples containing con-

text information outperform the models which do not use any context but rely

only on single sentences. This difference is clearly significant for languages other

than Spanish, with several percentage points separating the results for CMV from

the results for Single with standard deviations generally well below half a percent-

age point. The ordering of the methods for Spanish is the same, but the results fall

within one standard deviation of each other. It can also be observed from the results

that using contextual information in both directions and using CMV aggregation

tends to produce better results than the models which only use the right side context

information. Exceptions to this rule seem to be English and Dutch languages.

One thing to note here is that also with English and Dutch the CMV outperforms

CHAPTER 6. RESULTS 66

Precision Recall F1 F1 train+dev

English, CMV 93.06 (0.25) 93.78 (0.08) 93.42 (0.12) 93.57 (0.33)

English, First 93.15 (0.15) 93.73 (0.04) 93.44 (0.06) 93.74 (0.25)

English, Single 91.12 (0.25) 92.28 (0.23) 91.70 (0.24) 91.94 (0.15)

Dutch, CMV 93.12 (0.26) 93.26 (0.18) 93.19 (0.21) 93.49 (0.23)

Dutch, First 93.03 (0.65) 93.38 (0.38) 93.21 (0.51) 93.39 (0.26)

Dutch, Single 91.57 (0.35) 91.49 (0.41) 91.53 (0.37) 91.92 (0.30)

Finnish, CMV 92.91 (0.18) 94.42 (0.13) 93.66 (0.13) 93.78 (0.26)

Finnish, First 92.56 (0.14) 94.24 (0.08) 93.39 (0.10) 93.65 (0.26)

Finnish, Single 90.74 (0.10) 92.11 (0.24) 91.42 (0.16) 91.97 (0.21)

German, CMV 86.91 (0.31) 84.38 (0.32) 85.63 (0.30) 87.31 (0.27)

German, First 86.37 (0.39) 84.07 (0.10) 85.21 (0.22) 86.91 (0.11)

German, Single 85.55 (0.20) 81.81 (0.31) 83.64 (0.21) 85.67 (0.25)

Spanish, CMV 87.80 (0.25) 87.98 (0.18) 87.89 (0.21) 87.97 (0.21)

Spanish, First 86.71 (0.31) 87.41 (0.28) 87.06 (0.28) 87.27 (0.25)

Spanish, Single 87.43 (0.53) 87.90 (0.34) 87.66 (0.43) 87.52 (0.41)

S-mBERT, CMV 87.25 (0.50) 88.67 (0.46) 87.95 (0.47) 88.32 (0.26)

S-mBERT, First 86.92 (0.40) 87.88 (0.44) 87.40 (0.42) 87.54 (0.25)

S-mBERT, Single 87.19 (0.28) 87.81 (0.26) 87.50 (0.26) 87.57 (0.29)

Table 6.3: NER results for different methods and languages

(standard deviation in parentheses)

the method First if we compare the CMV result with the same hyperparameter

combination that is used for First. It seems that with CMV the differences between

the best hyperparameter combinations are so small that the parameter combination

chosen as best, even with five repetitions, may not represent the best choice of

hyperparameters for the final model. As noted in Section 6.1.6, to get a better

CHAPTER 6. RESULTS 67

understanding on the effect of CMV, a comparison between the method First and

CMV on different hyperparameters was performed. From those results it was seen

that CMV improves the results at almost all of the points throughout the evaluated

hyperparameter range.

From Table 6.3 it can also be seen that adding more training data seems to

improve results on almost all of the languages and the methods. For testing this,

the versions of final models were trained alternatively with the combined data of

the training and development data sets. The combined data was used to fine-tune

the pre-trained models with the best hyperparameter combinations selected for each

method and language, and the resulting model was evaluated against the test set

of the corresponding language. When using the extra data in training, the CMV

model outperformed the method First also for Dutch. All of the results in Table 6.3

are expressed as the mean of five repetitions of the experiment, and their standard

deviation written in parentheses. The best results for each language is shown with

bold font.

6.2.1 Comparison with the state of the art

In this section the results of the implemented NER system are compared to the

results of methods published in the literature and that represented the state of the

art at the time of performing this study (May 2020). Table 6.4 presents the results

with added cross-sentence context, state of the art results as well as the best results

achieved with BERT-based systems for all of the languages considered in this study.

6.2.2 English

English and perhaps Chinese are the most studied languages in NER at the moment

and therefore the results achieved in English language carry particular weight. The

implementation adding cross-sentence context to input sample, evaluated on the

CHAPTER 6. RESULTS 68

Model Our F1 Our F1 (t+d) BERT best SOTA

English 93.44 93.74 93.47 [80] 93.5 [56]

Dutch 93.21 93.49 90.94 [72] 92.69 [81]

Finnish 93.66 93.78 93.11 [77] 93.11 [77]

German 84.89 86.97 82.82 [72] 88.32 [54]

Spanish 87.89 87.97 88.43 [58] 88.81 [81]

Spanish, mBERT 87.95 88.32 88.43 [58] 88.81 [81]

Table 6.4: NER result comparison

CoNLL’03 English test data set (testb) achieved a mention level F1-score of 93.44%

as a mean of five repetitions. This result was improved to an F1-score of 93.74%

when additional data (CoNLL’03 English development set) was used in fine-tuning

the Bert Large WWM pre-trained model. The F1-score of 93.74%, which set the

new state of the art for English CoNLL’03 NER benchmark, was reached using the

method First. As the method CMV outperformed the method First with every

hyperparameter combination on the development set, it was a surprise to see the

method First performing better. In fact, the results of method CMV with the

same hyperparameters as the method First resulted in an even better F1-score of

93.88%, this simply was not achieved with the hyperparameters that happened to

be selected for the method CMV in hyperparameter selection and therefore were

not in our published study [6].

6.2.3 Dutch

For Dutch, the CMV method achieves the state-of-the-art results with F1-score

of 93.21% using only training set to fine-tune the models and F1-score of 93.49%

when also development set data was added in training the final models. Both of

these results surpass the previous state of the art of 92.69% presented by Straková

CHAPTER 6. RESULTS 69

et al. [81]. One thing of interest to note that all the methods in Dutch (CMV, First,

Single) outperform the NER results presented by de Vries et al. [57] clearly, and this

implementation uses the pre-trained model that was introduced in their study.

6.2.4 Finnish

The CMV approach manages to improve on the previous state-of-the-art NER re-

sults in Finnish achieved when introducing the Turku NER corpus [77]. The per-

formance on the combined Finnish corpus was increased from F1-score of 93.11%

to F1-score of 93.66% without extra training data and to 93.78% using the devel-

opment set in training in addition to the training set. The previous state of the

art was achieved with essentially the same setup as with the method First. The

difference is that in this study the results for method First were obtained using

input samples with documentwise built context. The method First with F1-score of

93.39% without extra training data and 93.65% with adding the development set to

training also outperforms the previous state of the art.

6.2.5 Spanish

The results achieved with multilingual BERT outperform the results with the language-

specific BERT model for Spanish. The result using multilingual BERT and the CMV

method was an F1-score of 87.95% without additional training data and 88.32%

when using the development set for training in addition to the training set. Both of

these results outperform the previous multilingual BERT-based results presented by

Wu and Dredze [72] and fall somewhat short from the state of the art for Spanish

claimed by Straková et al. [81]. The performance of the multilingual model over a

language specific model was unexpected as monolingual BERT models have in many

case reported to improve on the performance of multilingual BERT [5, 57, 78].

CHAPTER 6. RESULTS 70

6.2.6 German

The results achieved by the creators of German BERT were published on the same

web page with the model weights2 without providing detailed information on the test

setup used to achieve those results. The CMV method, with F1-scores of 84.89%

for a model trained without extra data and F1-score of 86.97% for a model with

extra data, outperformed the NER results published (80.4% for CoNLL’03 German)

on that web page quite substantially. This implementation also outperformed the

best BERT-based NER result of 82.82 (multilingual) published by Wu and Dredze

[72] but falls behind from the state of the art on German NER of 88.81% published

by Straková et al. [81]. The German model in particular appeared to benefit from

additional training data as the performance increased by over 2 percentage points

when introducing the additional data from the development set for training the final

models.

2https://deepset.ai/german-bert

https://deepset.ai/german-bert

7 Conclusion

This study has introduced methods for including cross-sentence contexts to the

Named Entity Recognition task. The proposed methods are using BERT language

representation models, which are based on the Transformer deep neural network

architecture and the transfer learning approach. The introduced methods provide

a simple and easy-to-implement approach for the NER task using only pre- and

post-processing of the inputs and outputs of the BERT model, keeping the model

architecture intact. This way the approaches introduced here can be easily utilised

with other BERT-based implementations. The proposed methods established new

state-of-the-art results in NER for three languages and were near the state of the art

for two other languages, demonstrating how simple ideas can boost the performance

of even very strong models.

Naturally, there exist many possible areas for further study of NER that were

left out of the scope of this work. The implemented methods and the NER pipeline

as whole provide a good starting point for further studies with BERT and other

Transformer-based methods. Some further developments could be to analyse the

errors in predictions on a detailed level and study if there is some information there

that could be utilized in developing better methods. Also, an observation was made

that results seemed better when more training data was used for the final models.

This raises the question if there are methods to easily generate more training data

or perhaps augment the current data in some way as is commonly done e.g. with

CHAPTER 7. CONCLUSION 72

image data. Another possible direction for further study could be to study how to

utilize other available NER resources better. There is already a long history of study

in Named Entity Recognition, different training data and also potent models for the

task released before and after BERT. It is perhaps worthwhile sometimes to take

a look at what we already have and not always rush to the newest neural network

architecture. There is so much to learn, just go for it!

References

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

deep bidirectional transformers for language understanding”, in Proceedings of

the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), Minneapolis, Minnesota: Association for Computational

Linguistics, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. [Online].

Available: https://www.aclweb.org/anthology/N19-1423.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks”, in Advances in Neural Information Pro-

cessing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

Eds., vol. 25, Curran Associates, Inc., 2012. [Online]. Available: https://

papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mas-

tering the game of Go with deep neural networks and tree search”, nature,

vol. 529, no. 7587, pp. 484–489, 2016.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

u. Kaiser, and I. Polosukhin, “Attention is All You Need”, in Proceedings of

the 31st International Conference on Neural Information Processing Systems,

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

REFERENCES 74

ser. NIPS’17, Long Beach, California, USA: Curran Associates Inc., 2017,

pp. 6000–6010, isbn: 9781510860964.

[5] A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F.

Ginter, and S. Pyysalo, “Multilingual is not enough: BERT for Finnish”, ArXiv,

vol. abs/1912.07076, 2019.

[6] J. Luoma and S. Pyysalo, “Exploring cross-sentence contexts for named entity

recognition with BERT”, in Proceedings of the 28th International Conference

on Computational Linguistics, Barcelona, Spain (Online): International Com-

mittee on Computational Linguistics, Dec. 2020, pp. 904–914. doi: 10.18653/

v1/2020.coling-main.78. [Online]. Available: https://www.aclweb.org/

anthology/2020.coling-main.78.

[7] V. Yadav and S. Bethard, “A Survey on Recent Advances in Named Entity

Recognition from Deep Learning models”, in Proceedings of the 27th Inter-

national Conference on Computational Linguistics, Santa Fe, New Mexico,

USA: Association for Computational Linguistics, Aug. 2018, pp. 2145–2158.

[Online]. Available: https://www.aclweb.org/anthology/C18-1182.

[8] J. Li, A. Sun, J. Han, and C. Li, “A Survey on Deep Learning for Named

Entity Recognition”, IEEE Transactions on Knowledge and Data Engineering,

pp. 1–1, 2020, issn: 2326-3865. doi: 10.1109/tkde.2020.2981314. [Online].

Available: http://dx.doi.org/10.1109/tkde.2020.2981314.

[9] R. Grishman and B. Sundheim, “Message understanding conference- 6: A brief

history”, in COLING 1996 Volume 1: The 16th International Conference on

Computational Linguistics, 1996. [Online]. Available: https://www.aclweb.

org/anthology/C96-1079.

[10] “Appendix C: Named entity task definition (v2.1)”, in Sixth Message Under-

standing Conference (MUC-6): Proceedings of a Conference Held in Columbia,

https://doi.org/10.18653/v1/2020.coling-main.78
https://doi.org/10.18653/v1/2020.coling-main.78
https://www.aclweb.org/anthology/2020.coling-main.78
https://www.aclweb.org/anthology/2020.coling-main.78
https://www.aclweb.org/anthology/C18-1182
https://doi.org/10.1109/tkde.2020.2981314
http://dx.doi.org/10.1109/tkde.2020.2981314
https://www.aclweb.org/anthology/C96-1079
https://www.aclweb.org/anthology/C96-1079

REFERENCES 75

Maryland, November 6-8, 1995, 1995. [Online]. Available: https : / / www .

aclweb.org/anthology/M95-1024.

[11] L. Ramshaw and M. Marcus, “Text Chunking using Transformation-Based

Learning”, in Third Workshop on Very Large Corpora, 1995. [Online]. Avail-

able: https://www.aclweb.org/anthology/W95-0107.

[12] E. F. Tjong Kim Sang, “Introduction to the CoNLL-2002 shared task: Language-

independent named entity recognition”, in COLING-02: The 6th Conference

on Natural Language Learning 2002 (CoNLL-2002), 2002. [Online]. Available:

https://www.aclweb.org/anthology/W02-2024.

[13] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003

shared task: Language-independent named entity recognition”, in Proceedings

of the Seventh Conference on Natural Language Learning at HLT-NAACL

2003, 2003, pp. 142–147. [Online]. Available: https://www.aclweb.org/

anthology/W03-0419.

[14] A. Ratnaparkhi, “Maximum entropy models for natural language ambiguity

resolution”, Ph.D. dissertation, University of Pennsylvania, 1998.

[15] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the CoNLL-2000

shared task chunking”, in Fourth Conference on Computational Natural Lan-

guage Learning and the Second Learning Language in Logic Workshop, 2000.

[Online]. Available: https://www.aclweb.org/anthology/W00-0726.

[16] D. Nadeau and S. Sekine, “A survey of named entity recognition and classifi-

cation”, Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[17] L. Rau, “Extracting company names from text”, in [1991] Proceedings. The

Seventh IEEE Conference on Artificial Intelligence Application, vol. i, 1991,

pp. 29–32. doi: 10.1109/CAIA.1991.120841.

https://www.aclweb.org/anthology/M95-1024
https://www.aclweb.org/anthology/M95-1024
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W00-0726
https://doi.org/10.1109/CAIA.1991.120841

REFERENCES 76

[18] A. E. Borthwick, “A Maximum Entropy Approach to Named Entity Recogni-

tion”, AAI9945252, Ph.D. dissertation, USA, 1999, isbn: 0599472324.

[19] Third Message Uunderstanding Conference (MUC-3): Proceedings of a Confer-

ence Held in San Diego, California, May 21-23, 1991, 1991. [Online]. Available:

https://www.aclweb.org/anthology/M91-1000.

[20] Fourth Message Uunderstanding Conference (MUC-4): Proceedings of a Con-

ference Held in McLean, Virginia, June 16-18, 1992, 1992. [Online]. Available:

https://www.aclweb.org/anthology/M92-1000.

[21] Fifth Message Understanding Conference (MUC-5): Proceedings of a Confer-

ence Held in Baltimore, Maryland, August 25-27, 1993, 1993. [Online]. Avail-

able: https://www.aclweb.org/anthology/M93-1000.

[22] Sixth Message Understanding Conference (MUC-6): Proceedings of a Confer-

ence Held in Columbia, Maryland, November 6-8, 1995, 1995. [Online]. Avail-

able: https://www.aclweb.org/anthology/M95-1000.

[23] Seventh Message Understanding Conference (MUC-7): Proceedings of a Con-

ference Held in Fairfax, Virginia, April 29 - May 1, 1998, 1998. [Online].

Available: https://www.aclweb.org/anthology/M98-1000.

[24] A. Mikheev, C. Grover, and M. Moens, “Description of the LTG system used

for MUC-7”, in Seventh Message Understanding Conference (MUC-7): Pro-

ceedings of a Conference Held in Fairfax, Virginia, April 29 - May 1, 1998,

1998. [Online]. Available: https://www.aclweb.org/anthology/M98-1021.

[25] M. Collins and Y. Singer, “Unsupervised Models for Named Entity Classifi-

cation”, in 1999 Joint SIGDAT Conference on Empirical Methods in Natu-

ral Language Processing and Very Large Corpora, 1999. [Online]. Available:

https://www.aclweb.org/anthology/W99-0613.

https://www.aclweb.org/anthology/M91-1000
https://www.aclweb.org/anthology/M92-1000
https://www.aclweb.org/anthology/M93-1000
https://www.aclweb.org/anthology/M95-1000
https://www.aclweb.org/anthology/M98-1000
https://www.aclweb.org/anthology/M98-1021
https://www.aclweb.org/anthology/W99-0613

REFERENCES 77

[26] D. Nadeau, P. D. Turney, and S. Matwin, “Unsupervised named-entity recog-

nition: Generating gazetteers and resolving ambiguity”, in Conference of the

Canadian society for computational studies of intelligence, Springer, 2006,

pp. 266–277.

[27] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,

D. S. Weld, and A. Yates, “Unsupervised Named-Entity Extraction from the

Web: An Experimental Study”, Artif. Intell., vol. 165, no. 1, pp. 91–134, Jun.

2005, issn: 0004-3702.

[28] L. Ratinov and D. Roth, “Design Challenges and Misconceptions in Named

Entity Recognition”, in Proceedings of the Thirteenth Conference on Computa-

tional Natural Language Learning (CoNLL-2009), Boulder, Colorado: Associa-

tion for Computational Linguistics, Jun. 2009, pp. 147–155. [Online]. Available:

https://www.aclweb.org/anthology/W09-1119.

[29] R. Ando and T. Zhang, “A High-Performance Semi-Supervised Learning Method

for Text Chunking”, in Proceedings of the 43rd Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL’05), Ann Arbor, Michigan: As-

sociation for Computational Linguistics, Jun. 2005, pp. 1–9. doi: 10.3115/

1219840.1219841. [Online]. Available: https://www.aclweb.org/anthology/

P05-1001.

[30] O. Bender, F. J. Och, and H. Ney, “Maximum Entropy Models for Named

Entity Recognition”, in Proceedings of the Seventh Conference on Natural Lan-

guage Learning at HLT-NAACL 2003, 2003, pp. 148–151. [Online]. Available:

https://www.aclweb.org/anthology/W03-0420.

[31] H. L. Chieu and H. T. Ng, “Named Entity Recognition with a Maximum

Entropy Approach”, in Proceedings of the Seventh Conference on Natural Lan-

https://www.aclweb.org/anthology/W09-1119
https://doi.org/10.3115/1219840.1219841
https://doi.org/10.3115/1219840.1219841
https://www.aclweb.org/anthology/P05-1001
https://www.aclweb.org/anthology/P05-1001
https://www.aclweb.org/anthology/W03-0420

REFERENCES 78

guage Learning at HLT-NAACL 2003, 2003, pp. 160–163. [Online]. Available:

https://www.aclweb.org/anthology/W03-0423.

[32] J. Curran and S. Clark, “Language independent NER using a maximum en-

tropy tagger”, in Proceedings of the Seventh Conference on Natural Language

Learning at HLT-NAACL 2003, 2003, pp. 164–167. [Online]. Available: https:

//www.aclweb.org/anthology/W03-0424.

[33] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang, “Named Entity Recognition

through Classifier Combination”, in Proceedings of the Seventh Conference on

Natural Language Learning at HLT-NAACL 2003, 2003, pp. 168–171. [Online].

Available: https://www.aclweb.org/anthology/W03-0425.

[34] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning, “Named Entity Recogni-

tion with Character-Level Models”, in Proceedings of the Seventh Conference

on Natural Language Learning at HLT-NAACL 2003, 2003, pp. 180–183. [On-

line]. Available: https://www.aclweb.org/anthology/W03-0428.

[35] J. Mayfield, P. McNamee, and C. Piatko, “Named Entity Recognition using

Hundreds of Thousands of Features”, in Proceedings of the Seventh Confer-

ence on Natural Language Learning at HLT-NAACL 2003, 2003, pp. 184–187.

[Online]. Available: https://www.aclweb.org/anthology/W03-0429.

[36] C. Whitelaw and J. Patrick, “Named Entity Recognition Using a Character-

based Probabilistic Approach”, in Proceedings of the Seventh Conference on

Natural Language Learning at HLT-NAACL 2003, 2003, pp. 196–199. [Online].

Available: https://www.aclweb.org/anthology/W03-0432.

[37] T. Zhang and D. Johnson, “A Robust Risk Minimization based Named En-

tity Recognition System”, in Proceedings of the Seventh Conference on Natural

Language Learning at HLT-NAACL 2003, 2003, pp. 204–207. [Online]. Avail-

able: https://www.aclweb.org/anthology/W03-0434.

https://www.aclweb.org/anthology/W03-0423
https://www.aclweb.org/anthology/W03-0424
https://www.aclweb.org/anthology/W03-0424
https://www.aclweb.org/anthology/W03-0425
https://www.aclweb.org/anthology/W03-0428
https://www.aclweb.org/anthology/W03-0429
https://www.aclweb.org/anthology/W03-0432
https://www.aclweb.org/anthology/W03-0434

REFERENCES 79

[38] X. Carreras, L. Màrquez, and L. Padró, “Learning a Perceptron-Based Named

Entity Chunker via Online Recognition Feedback”, in Proceedings of the Sev-

enth Conference on Natural Language Learning at HLT-NAACL 2003, 2003,

pp. 156–159. [Online]. Available: https://www.aclweb.org/anthology/W03-

0422.

[39] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory”, Neural com-

putation, vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[40] J. Hammerton, “Named Entity Recognition with Long Short-Term Memory”,

in Proceedings of the Seventh Conference on Natural Language Learning at

HLT-NAACL 2003, 2003, pp. 172–175. [Online]. Available: https://www.

aclweb.org/anthology/W03-0426.

[41] X. Carreras, L. Màrquez, and L. Padró, “A simple named entity extractor using

AdaBoost”, in Proceedings of the Seventh Conference on Natural Language

Learning at HLT-NAACL 2003, 2003, pp. 152–155. [Online]. Available: https:

//www.aclweb.org/anthology/W03-0421.

[42] D. Wu, G. Ngai, and M. Carpuat, “A Stacked, Voted, Stacked Model for

Named Entity Recognition”, in Proceedings of the Seventh Conference on Nat-

ural Language Learning at HLT-NAACL 2003, 2003, pp. 200–203. [Online].

Available: https://www.aclweb.org/anthology/W03-0433.

[43] F. De Meulder and W. Daelemans, “Memory-Based Named Entity Recogni-

tion using Unannotated Data”, in Proceedings of the Seventh Conference on

Natural Language Learning at HLT-NAACL 2003, 2003, pp. 208–211. [Online].

Available: https://www.aclweb.org/anthology/W03-0435.

[44] I. Hendrickx and A. van den Bosch, “Memory-based one-step named-entity

recognition: Effects of seed list features, classifier stacking, and unannotated

data”, in Proceedings of the Seventh Conference on Natural Language Learning

https://www.aclweb.org/anthology/W03-0422
https://www.aclweb.org/anthology/W03-0422
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/W03-0426
https://www.aclweb.org/anthology/W03-0426
https://www.aclweb.org/anthology/W03-0421
https://www.aclweb.org/anthology/W03-0421
https://www.aclweb.org/anthology/W03-0433
https://www.aclweb.org/anthology/W03-0435

REFERENCES 80

at HLT-NAACL 2003, 2003, pp. 176–179. [Online]. Available: https://www.

aclweb.org/anthology/W03-0427.

[45] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, in

Proceedings of the Eighteenth International Conference on Machine Learning,

ser. ICML ’01, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2001, pp. 282–289, isbn: 1558607781.

[46] A. McCallum and W. Li, “Early results for Named Entity Recognition with

Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons”,

in Proceedings of the Seventh Conference on Natural Language Learning at

HLT-NAACL 2003, 2003, pp. 188–191. [Online]. Available: https://www.

aclweb.org/anthology/W03-0430.

[47] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estimation of Word

Representations in Vector Space, 2013. arXiv: 1301.3781 [cs.CL].

[48] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality”, in Ad-

vances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bot-

tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., Curran Asso-

ciates, Inc., 2013, pp. 3111–3119. [Online]. Available: http://papers.nips.

cc/paper/5021-distributed-representations-of-words-and-phrases-

and-their-compositionality.pdf.

[49] Jeffrey Pennington and Richard Socher and Christopher D. Manning, “Glove:

Global vectors for word representation”, in Empirical Methods in Natural Lan-

guage Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available: http:

//www.aclweb.org/anthology/D14-1162.

https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/W03-0430
https://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

REFERENCES 81

[50] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vec-

tors with Subword Information”, Transactions of the Association for Com-

putational Linguistics, vol. 5, pp. 135–146, Dec. 2017, issn: 2307-387X. doi:

10.1162/tacl_a_00051. [Online]. Available: http://dx.doi.org/10.1162/

tacl_a_00051.

[51] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

“Natural Language Processing (Almost) from Scratch”, J. Mach. Learn. Res.,

vol. 12, no. null, pp. 2493–2537, Nov. 2011, issn: 1532-4435.

[52] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New Benchmark

Collection for Text Categorization Research”, J. Mach. Learn. Res., vol. 5,

pp. 361–397, Dec. 2004, issn: 1532-4435.

[53] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder–

decoder for statistical machine translation”, in Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), Doha,

Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724–1734.

doi: 10.3115/v1/D14-1179. [Online]. Available: https://www.aclweb.org/

anthology/D14-1179.

[54] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual String Embeddings for

Sequence Labeling”, in Proceedings of the 27th International Conference on

Computational Linguistics, Santa Fe, New Mexico, USA: Association for Com-

putational Linguistics, Aug. 2018, pp. 1638–1649. [Online]. Available: https:

//www.aclweb.org/anthology/C18-1139.

[55] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.

Zettlemoyer, “Deep Contextualized Word Representations”, in Proceedings of

the 2018 Conference of the North American Chapter of the Association for

https://doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1162/tacl_a_00051
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139

REFERENCES 82

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), New Orleans, Louisiana: Association for Computational Linguistics,

Jun. 2018, pp. 2227–2237. doi: 10.18653/v1/N18-1202. [Online]. Available:

https://www.aclweb.org/anthology/N18-1202.

[56] A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and M. Auli, “Cloze-driven

Pretraining of Self-attention Networks”, in Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

Hong Kong, China: Association for Computational Linguistics, Nov. 2019,

pp. 5360–5369. doi: 10.18653/v1/D19- 1539. [Online]. Available: https:

//www.aclweb.org/anthology/D19-1539.

[57] W. de Vries, A. van Cranenburgh, A. Bisazza, T. Caselli, G. v. Noord, and M.

Nissim, BERTje: A Dutch BERT Model, arXiv:1912.09582, Dec. 2019. [On-

line]. Available: http://arxiv.org/abs/1912.09582.

[58] J. Cañete, G. Chaperon, R. Fuentes, and J. Pérez, “Spanish Pre-Trained BERT

Model and Evaluation Data”, in PML4DC at ICLR 2020, 2020.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition”, in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[60] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”, arXiv preprint

arXiv:1607.06450, 2016.

[61] M. Schuster and K. Nakajima, “Japanese and korean voice search”, in 2012

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE, 2012, pp. 5149–5152.

[62] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine translation

https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.18653/v1/D19-1539
https://www.aclweb.org/anthology/D19-1539
https://www.aclweb.org/anthology/D19-1539
http://arxiv.org/abs/1912.09582

REFERENCES 83

system: Bridging the gap between human and machine translation”, arXiv

preprint arXiv:1609.08144, 2016.

[63] P. Gage, “A new algorithm for data compression”, C Users Journal, vol. 12,

no. 2, pp. 23–38, 1994.

[64] T. Kudo and J. Richardson, “SentencePiece: A simple and language indepen-

dent subword tokenizer and detokenizer for neural text processing”, in Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, Brussels, Belgium: Association for Com-

putational Linguistics, Nov. 2018, pp. 66–71. doi: 10.18653/v1/D18-2012.

[Online]. Available: https://www.aclweb.org/anthology/D18-2012.

[65] W. L. Taylor, “Cloze procedure: A new tool for measuring readability”, Jour-

nalism quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[66] J. S. Bridle, “Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition”, in Neurocom-

puting, Springer, 1990, pp. 227–236.

[67] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for sequence

tagging”, arXiv preprint arXiv:1508.01991, 2015.

[68] A. Passos, V. Kumar, and A. McCallum, “Lexicon infused phrase embeddings

for named entity resolution”, in Proceedings of the Eighteenth Conference on

Computational Natural Language Learning, Ann Arbor, Michigan: Association

for Computational Linguistics, Jun. 2014, pp. 78–86. doi: 10.3115/v1/W14-

1609. [Online]. Available: https://www.aclweb.org/anthology/W14-1609.

[69] V. Krishnan and C. D. Manning, “An effective two-stage model for exploiting

non-local dependencies in named entity recognition”, in Proceedings of the

21st International Conference on Computational Linguistics and 44th Annual

Meeting of the Association for Computational Linguistics, Sydney, Australia:

https://doi.org/10.18653/v1/D18-2012
https://www.aclweb.org/anthology/D18-2012
https://doi.org/10.3115/v1/W14-1609
https://doi.org/10.3115/v1/W14-1609
https://www.aclweb.org/anthology/W14-1609

REFERENCES 84

Association for Computational Linguistics, Jul. 2006, pp. 1121–1128. doi: 10.

3115/1220175.1220316. [Online]. Available: https://www.aclweb.org/

anthology/P06-1141.

[70] A. Akbik, T. Bergmann, and R. Vollgraf, “Pooled Contextualized Embeddings

for Named Entity Recognition”, in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), Minneapo-

lis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 724–

728. doi: 10.18653/v1/N19-1078. [Online]. Available: https://www.aclweb.

org/anthology/N19-1078.

[71] Y. Luo, F. Xiao, and H. Zhao, “Hierarchical Contextualized Representation

for Named Entity Recognition”, in The Thirty-Fourth AAAI Conference on

Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications

of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium

on Educational Advances in Artificial Intelligence, EAAI 2020, New York,

NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 8441–8448. [Online].

Available: https://aaai.org/ojs/index.php/AAAI/article/view/6363.

[72] S. Wu and M. Dredze, “Beto, Bentz, Becas: The Surprising Cross-Lingual

Effectiveness of BERT”, in Proceedings of the 2019 Conference on Empiri-

cal Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong,

China: Association for Computational Linguistics, Nov. 2019, pp. 833–844.

doi: 10.18653/v1/D19-1077. [Online]. Available: https://www.aclweb.

org/anthology/D19-1077.

[73] T. Liu, J.-G. Yao, and C.-Y. Lin, “Towards improving neural named entity

recognition with gazetteers”, in Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, Florence, Italy: Association for

https://doi.org/10.3115/1220175.1220316
https://doi.org/10.3115/1220175.1220316
https://www.aclweb.org/anthology/P06-1141
https://www.aclweb.org/anthology/P06-1141
https://doi.org/10.18653/v1/N19-1078
https://www.aclweb.org/anthology/N19-1078
https://www.aclweb.org/anthology/N19-1078
https://aaai.org/ojs/index.php/AAAI/article/view/6363
https://doi.org/10.18653/v1/D19-1077
https://www.aclweb.org/anthology/D19-1077
https://www.aclweb.org/anthology/D19-1077

REFERENCES 85

Computational Linguistics, Jul. 2019, pp. 5301–5307. doi: 10.18653/v1/P19-

1524. [Online]. Available: https://www.aclweb.org/anthology/P19-1524.

[74] P. Banerjee, K. K. Pal, M. Devarakonda, and C. Baral, Knowledge Guided

Named Entity Recognition for BioMedical Text, 2019. arXiv: 1911 . 03869

[cs.CL].

[75] X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li, “A unified MRC framework

for named entity recognition”, in Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Online: Association for Computa-

tional Linguistics, Jul. 2020, pp. 5849–5859. doi: 10.18653/v1/2020.acl-

main.519. [Online]. Available: https://www.aclweb.org/anthology/2020.

acl-main.519.

[76] T. Ruokolainen, P. Kauppinen, M. Silfverberg, and K. Lindén, “A Finnish

news corpus for named entity recognition”, Language Resources and Evalua-

tion, pp. 1–26, 2019.

[77] J. Luoma, M. Oinonen, M. Pyykönen, V. Laippala, and S. Pyysalo, “A Broad-

coverage Corpus for Finnish Named Entity Recognition”, in Proceedings of The

12th Language Resources and Evaluation Conference, Marseille, France: Eu-

ropean Language Resources Association, May 2020, pp. 4615–4624. [Online].

Available: https://www.aclweb.org/anthology/2020.lrec-1.567.

[78] H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux, A. Allauzen,

B. Crabbé, L. Besacier, and D. Schwab, “FlauBERT: Unsupervised Language

Model Pre-training for French”, in Proceedings of The 12th Language Resources

and Evaluation Conference, Marseille, France: European Language Resources

Association, May 2020, pp. 2479–2490. [Online]. Available: https://www.

aclweb.org/anthology/2020.lrec-1.302.

https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://www.aclweb.org/anthology/P19-1524
https://arxiv.org/abs/1911.03869
https://arxiv.org/abs/1911.03869
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://www.aclweb.org/anthology/2020.acl-main.519
https://www.aclweb.org/anthology/2020.acl-main.519
https://www.aclweb.org/anthology/2020.lrec-1.567
https://www.aclweb.org/anthology/2020.lrec-1.302
https://www.aclweb.org/anthology/2020.lrec-1.302

REFERENCES 86

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv

preprint arXiv:1412.6980, 2014.

[80] Y. Liu, F. Meng, J. Zhang, J. Xu, Y. Chen, and J. Zhou, “GCDT: A Global

Context Enhanced Deep Transition Architecture for Sequence Labeling”, in

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, Florence, Italy: Association for Computational Linguistics, Jul.

2019, pp. 2431–2441. doi: 10 . 18653 / v1 / P19 - 1233. [Online]. Available:

https://www.aclweb.org/anthology/P19-1233.

[81] J. Straková, M. Straka, and J. Hajic, “Neural architectures for nested NER

through linearization”, in Proceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, Florence, Italy: Association for Compu-

tational Linguistics, Jul. 2019, pp. 5326–5331. doi: 10.18653/v1/P19-1527.

[Online]. Available: https://www.aclweb.org/anthology/P19-1527.

https://doi.org/10.18653/v1/P19-1233
https://www.aclweb.org/anthology/P19-1233
https://doi.org/10.18653/v1/P19-1527
https://www.aclweb.org/anthology/P19-1527

	Introduction
	Named Entity Recognition
	Named Entity Recognition task
	Named Entity Recognition Corpora
	Named Entity encoding methods
	Named Entity Recognition Evaluation

	Named Entity Recognition approaches
	Rule- and knowledge-based approaches
	Unsupervised approaches
	Feature engineering and supervised learning approaches
	Feature learning and Deep Learning approaches

	BERT
	WordPiece Tokenization
	BERT input and output
	Pre-training
	Fine-tuning approach
	Feature based approach

	Methods
	Background
	Single
	Sentence in Context
	Contextual Majority Voting

	Experimental setup
	Data
	Data sets
	Pre-trained BERT models

	Implementation
	Preprocessing data
	Model construction and training
	Predictions
	Evaluation

	Experiments
	Hyperparameter search

	Result analysis implementation
	Software and Hardware

	Results
	Results on development sets
	English
	Dutch
	Finnish
	Spanish
	German
	On reporting different methods
	Best hyperparameter combinations
	CMV vs. First

	Results on test sets
	Comparison with the state of the art
	English
	Dutch
	Finnish
	Spanish
	German

	Conclusion
	References

