497 research outputs found

    RMD-QOSM - The Resource Management in Diffserv QoS model

    Get PDF
    This document describes an NSIS QoS Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to edge nodes in the RMD network. The RMD Ingress edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the edge nodes

    QUALITY OF SERVICE ARCHITECTURES APPLICABILITY IN AN INTRANET NETWORK

    Get PDF
    The quality of service (QoS) concept, which appeared initially as a necessity to improve Internet users perception, deals actually with new valences along with information society maturation. At the organisationā€™s level, the Intranet network shall assure in a similar manner as the Internet all kinds of services, which are useful to the organisationā€™s users. Starting from the traditional QoS architectural models, network administrators shall plan and design a QoS architecture, which will map on the organisationā€™s requirements, having at disposal not only own network elements but also communication services provided by other operators. The aim of this paper is to present, starting from the general QoS models, a comparative study of main advantages and drawbacks in implementing a specific Intranet QoS architecture taking into consideration all kind of aspects (material, financial, human resources), which impact on a good Intranet QoS management.QoS, IntServ, DiffServ, IntServ over DiffServ, VPN-MPLS, Intranet network

    GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flowā€™s RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    RMD-QOSM: The NSIS Quality-of-Service Model for Resource Management in Diffserv

    Get PDF
    This document describes a Next Steps in Signaling (NSIS) Quality-of- Service (QoS) Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to Edge nodes in the RMD network. The RMD Ingress Edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress Edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the Edge nodes

    LC-PCN: The Load Control PCN Solution

    Get PDF
    There is an increased interest of simple and scalable resource provisioning solution for Diffserv network. The Load Control PCN (LC-PCN) addresses the following issues:\ud o Admission Control for real time data flows in stateless Diffserv Domains\ud o Flow Termination: Termination of flows in case of exceptional events, such as severe congestion after re-routing.\ud Admission control in a Diffserv stateless domain is a combination of:\ud o Probing, whereby a probe packet is sent along the forwarding path in a network to determine whether a flow can be admitted based upon the current congestion state of the network\ud o Admission Control based on data marking, whereby in congestion situations the data packets are marked to notify the PCN-egress-node that a congestion occurred on a particular PCN-ingress-node to PCN-egress-node path.\ud \ud The scheme provides the capability of controlling the traffic load in the network without requiring signaling or any per-flow processing in the PCN-interior-nodes. The complexity of Load Control is kept to a minimum to make implementation simple.\u

    Resource management in Diffserv measurement-based admission control PHR

    Get PDF
    The purpose of this draft is to present the Resource Management in Diffserv (RMD) Measurement-Based Admission Control (RIMA) Per Hop Reservation (PHR) protocol. The RIMA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior (PHB) with Measurement-based Admission Control features

    Testing IP differentiated services implementations

    Get PDF
    Diffserv architecture is pointed out as a promising solution for the provision of QoS in the Internet in a scalable manner. The main objective of this work is to test, evaluate and discuss, from a practical point of view, two platforms for implementing Diffserv services: one developed at ICA/EPFL for the Linux OS and the other based on Cisco Systems routers. After comparing the configuration strategy in each platform, QoS related functionalities (e.g. classification, marking, policing, shaping) are tested and assessed. In particular, the implementation of EF and AF PHBs is analysed. The capacity of providing bandwidth guarantees and performing adequate traffic conditioning is evaluated as well as the impact background traffic has on delaying high priority traffic. Moreover, the computational effort Diffserv puts on routers is also measured in terms of CPU utilisation.EURESCOM P1006 - DISCMAN Projec
    • ā€¦
    corecore