
1

Testing IP Differentiated Services Implementations

Carlos Parada, Jorge Carapinha, Francisco Fontes, Solange Lima and Paulo Carvalho
{carlos-f-parada, jorgec, fontes}@ptinovacao.pt, Portugal Telecom INovação, S.A., 3810-106 Aveiro, Portugal
{solange, paulo}@uminho.pt, Departamento de Informática,Universidade do Minho, 4710-059 Braga, Portugal

Abstract: Diffserv architecture is pointed out as a promising solution for the
provision of QoS in the Internet in a scalable manner. The main objective
of this work is to test, evaluate and discuss, from a practical point of view,
two platforms for implementing Diffserv services: one developed at
ICA/EPFL for the Linux OS and the other based on Cisco Systems
routers. After comparing the configuration strategy in each platform, QoS
related functionalities (e.g. classification, marking, policing, shaping) are
tested and assessed. In particular, the implementation of EF and AF PHBs
is analysed. The capacity of providing bandwidth guarantees and
performing adequate traffic conditioning is evaluated as well as the impact
background traffic has on delaying high priority traffic. Moreover, the
computational effort Diffserv puts on routers is also measured in terms of
CPU utilisation.

Keywords: QoS, Diffserv, PHB, Expedited Forwarding (EF), Assured Forwarding
(AF), Best Effort (BE), Traffic Conditioning, Performance Testing.

1. INTRODUCTION

The Differentiated Services (Diffserv) architecture is considered a
promising solution to implement Quality of Service (QoS) in the Internet in
a scalable manner [1]. Bringing the network complexity to edge routers, it
aims to keep the core network simple. In opposition to Integrated Services
(IntServ) architecture [2], Diffserv does not require per-flow state and
signalling at every hop [3]. Instead of dealing with individual flows, traffic is
aggregated in a limited number of classes of service (CoS) according to its
QoS requirements. Traffic belonging to each class is forwarded in each node
according to a defined Per Hop Behaviour (PHB). The Internet Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Task Force has defined two PHB. The Expedited Forwarding (EF) PHB is
intended to offer a low delay, low jitter, low loss and assured bandwidth
service [4]. The Assured Forwarding (AF) PHB is intended to offer a group
of four service classes with a certain assigned level of forwarding resources
(buffers and bandwidth), and three drop precedence (DP) per class, assuring
to each class a minimum bandwidth [5]. In a Diffserv network, services are
provided using traffic classification and traffic conditioning (TC) at network
edges coupled with the concatenation of PHBs along the transit path [1].

Diffserv routers are expected to perform different functions (not mutually
exclusive) depending on their network or domain location herein called edge
and core components. Edge components are located at DS domain
boundaries and their main functions are classification and TC based on a set
of pre-defined rules. The enforcement of TC is fundamental so that a Service
Level Agreement may be established either between a customer and a DS
domain or DS domains. Core components are located inside a DS domain
and their main functions are classification of traffic aggregates and queuing.

The main objective of this work is to test, evaluate and discuss, from a
practical point of view, two platforms for implementing Diffserv services:
one developed at ICA/EPFL (The Institute for Computer Communications
and Applications / École Polytechnique Fédérale de Lausanne) for the Linux
OS [6] and the other based on Cisco Systems routers running IOS versions
12.1(1)T and 12.1(3)T. Although other Diffserv implementations exist [7, 8],
the two chosen are widely used. While ICA/EPFL implementation is
publicly available and open, Cisco equipment was already part of our
network test infrastructure. The Linux testbed, involving edge and core
routers, interconnects two networks geographically located at Portugal
Telecom Inovação (PTIN) and Instituto de Telecomunicações (IT) in Aveiro
city. The Cisco testbed is located at PTIN.

For a wide variety of test scenarios, this study analyses how
differentiated services may be configured in both platforms, discussing their
underlying functionalities. Edge and core components are assessed attending
to their expected behaviour. The implementation of PHBs and DPs is
appraised regarding bandwidth allocation and achieved throughput. On
Cisco testbed, the impact of different background traffic on high priority
classes is also measured in terms of delay. The impact on router performance
is also measured in terms of CPU utilisation.

Recent studies [9,10] focused on particular aspects of this study.
However, in our opinion, the wide variety of tests carried out identifying the
main strengths, weaknesses and problems of the two platforms are an
additional contribution to the field.

After a brief introduction, a summary of Diffserv functionalities under
evaluation is presented in section 2. How these functions are supported in

3

Linux and Cisco IOS is described in sections 3 and 4, respectively. The
complete set of experiments and results are presented and discussed in
section 5 and 6 for Linux and Cisco IOS testbeds, respectively. The main
conclusions are reported in section 7.

2. EVALUATED DIFFSERV FUNCTIONALITIES

Diffserv functionalities can be divided in edge and core components. A
brief description of their objectives is highlighted below before discussing
their implementation on ICA/EPFL and Cisco IOS platforms.

2.1 Edge Component

An edge component may encompass the following functions:
Classification selects packets based either on one or more header fields
(Multi-Field/MF Classification) or on the DS CodePoint (DSCP) (Behaviour
Aggregate/BA Classification). While the former is usually applied to
individual flows, the latter is applied to traffic aggregates already marked.
Marking sets the DS field to a particular DSCP [3] so that a particular PHB
can be applied to them. Metering measures the temporal properties of traffic
previously classified. This information, verified against the traffic profile
specified in the Traffic Conditioning Agreement, is used by other TC
functions to trigger according actions to packets in or out-of-profile. Policing
enforces a specified traffic profile preventing non-conformant traffic from
entering the network by dropping or remarking it with lower priority.
Shaping regulates traffic submitted to the network by adjusting traffic
characteristics to a defined profile. The Token Bucket (TB), Leaky Bucket
(LB) or combinations thereof are common algorithms used for shaping.

2.2 Core Component

A core component may encompass the following functions: Classification
selects traffic based on a single header field - the DSCP- (BA Classification).
Queuing is essential to implement differentiation. Apart from FIFO, which
per si is not oriented to packet differentiation, Priority Queuing (PQ) and
Fair Queuing (FQ) are possible approaches to implement QoS-aware
queuing. PQ implements a strict priority among existing queues. This means
that while a high priority queue has traffic to be scheduled, low priority
traffic will not be served. Although this mechanism may be particularly
convenient to implement EF PHB, it may lead to traffic starvation. FQ aims

4

to solve PQ limitations by controlling the bandwidth allocated to each class.
Variants of this algorithm have been used to implement at the same time the
EF and the AF PHBs. Congestion Avoidance prevents queue congestion by
discarding packets according to a particular criterion. Initially proposed by
Jacobson and Floyd [11], Random Early Detection (RED) algorithm is a
reference in this context. RED parameters include a minimum and a
maximum threshold (Min, Max), and a drop probability (DP) for Max (see
Figure 3). RED variants have been developed such as WRED, GRED or RIO
to deal with multiple AF DPs.

3. LINUX PLATFORM

The Linux implementation under study was developed at ICA/EPFL [6].
In order to establish a Diffserv network, the configuration strategy lays in the
definition of a certain number of nested functions. This is achieved using
mainly the tc tool. ip, route or ipchains can also be used. Three entities can
be configured with tc: nodes (have a queuing discipline - qdisc - associated
with them), filters (classifiers), and classes.

3.1 Edge Component

At the edge level, the main implemented functionalities are as follows:
Classification MF/BA and Marking are achieved using qdisc DSMARK,
being created as many classes as the number of existing CoS. Policing is
also implemented using qdisc DSMARK. It is possible to define Dropping
or Remarking of out-of-profile packets. Shaping is implemented using qdisc
Token Bucket Filter (TBF), which follows a Token Bucket algorithm.

3.2 Core Component

At the core level, the main implemented functionalities are as follows:
Classification BA is configured at the nodes level, using DSCP filters, based
on the tcindex classifier. Queuing is configured mainly using qdisc Class-
Based Queuing (CBQ). Although there are other qdiscs available (apart from
FIFO), common policies may coexist in the same CBQ, for instance strict
priority, proportional bandwidth sharing, guaranteed bandwidth, or traffic
isolation. Congestion Avoidance is implemented resorting to qdisc RED and
Generalised RED (GRED). The first one is an implementation of a RED-
based algorithm, while the second one allows defining n simple REDs.

5

4. CISCO PLATFORM

The Cisco platform is configured through the usual Command Line
Interface (CLI). Setting up DS services in this system is far simpler than in
Linux, however, it is less flexible than the latter since nesting functionalities
are not allowed. Individual mechanisms can be configured separately.

4.1 Edge Component

At the edge level, the main implemented functionalities are as follows:
Classification MF/BA and Marking, such as in Linux, are not carried out
separately. Cisco implementation uses Policy-Based Routing (PBR), which
allows the classification of packets based on multiple fields. Policing is
based on Committed Access Rate (CAR). Traffic exceeding CAR can be
either dropped or remarked. Shaping is a functionality implemented through
Generic Traffic Shaping (GTS). GTS follows the TB algorithm.

4.2 Core Component

At the core level, the main implemented functionalities are as follows:
Classification BA is a function embedded in the queuing functions. Queuing
includes three algorithms in addition to FIFO: PQ implementing a strict
priority scheme; Custom Queuing (CQ) allowing a percentage bandwidth
allocation scheme; Class-Based Weighted Fair Queuing (CB-WFQ) where a
minimum guaranteed bandwidth can be defined for each class (useful to
implement AF classes), being the remaining bandwidth divided
proportionally to the reserved bandwidth. A high priority class can also be
defined, having strict priority. Congestion Avoidance mechanisms are
implemented through Weighted RED (WRED), which uses multiple drop
probability profiles.

5. TESTING LINUX PLATFORM

In this section, the Linux differentiated services implementation is
configured, tested and evaluated.

5.1 Traffic Related Tools and Equipment

Two traffic generation tools are used in the experiments: mgen for UDP
traffic and netperf for TCP. While in mgen the volume of generated traffic

6

needs to be specified, in netperf traffic is generated according to TCP ability
to adapt to network load conditions. Traffic analysis is carried out resorting
to the tcpdump tool and PrismLite / RADCOM equipment. While tcpdump is
used for simple bandwidth measurements and debugging, and PrismLite /
RADCOM allows more elaborated numerical and statistical analysis.

The main testbed equipment consists of routers and end systems running
Linux RedHat 6.X and Mandrake 7.X. The tc version used in these tests is the
one included in the iproute2-000503 with the patch ds-8 for iproute2, using
the kernel 2.3.40.

5.2 Linux Testbed

The test platform running Diffserv over Linux is illustrated in Figure 1.
The clouds represent the DS networks located at PTIN and at IT,
respectively. The network layout consists of two Linux systems, a traffic
sender and a receiver, and three Linux routers. These routers (two edge, one
core) form a single DS domain.

All nodes are connected using Ethernet at 10Mbps, except the core router
at PTIN and the edge router at IT, which use an ATM CBR connection,
running classical IP over ATM. The ATM connection allows limiting the
peak rate to a pre-defined value. This option is taken in most of the
experiments in order to force a backbone bottleneck. In this way, a certain
congestion level can be easily forced and managed. PrismLite/RADCOM
measurements were carried out at core router outgoing ATM link.

Figure 1. Testbed used in Linux tests.

5.2.1 Testing Edge Functionalities

The objective of this set of experiments is to assess the effectiveness of
TC actions. mgen and tcpdump are used as traffic generator and traffic
analyser respectively. Test scenarios for different traffic rates, packet sizes,
source/destination address and ports are considered. Table 1 summarises the
results obtained.

7

Table 1. Summary of the Linux test results (edge).
TEST OBJECTIVE RESULTS

Marking
(DSMARK)

Check if all packets are
correctly marked based on the

traffic characteristics

The Marking is correct for all
different traffic scenarios

Policing with
Dropping

(DSMARK drop)

Check if packets are policed
and dropped (if needed)

correctly

Inconclusive results
(discussed below)

Policing with
Remarking

(DSMARK remark)

Check if packets are policed
and remarked (if needed)

correctly

Inconsistent behaviour
(discussed below)

Shaping
(TBF) Check Traffic Shaping

Behaviour generally correct. The
shaped rate was correct but the

inter-packet time varied from about
1 to 15ms (discussed below)

In Policing with Dropping, after a large number of measurements, no

packet drops were registered. The reason for this behaviour may be
explained by the DS software version in use.

In Policing with Remarking, after exhaustive tests it was verified that
Policing was accomplished correctly for rates up to 800Kbps. For upper
rates, the behaviour is equal as if 800Kbps was defined. The reason for this
is the low precision of the Linux system timer, which is unable to handle
small time intervals. This also explains the large inter-packet time variation
that occurs in Shaping. This behaviour has also been noticed and
conveniently explained in [12].

5.2.2 Testing PHBs

This section covers an important set of experiments whose objective is to
evaluate the traffic forwarding behaviour in the core router, assessing
whether traffic is being differentiated as expected or not. The measurements
focus on EF, AF and BE PHBs in terms of allocated and used bandwidth, in
the presence of UDP and TCP traffic. CBQ is the Linux qdisc in use.
Bandwidth in the ATM link was limited to 4Mbps and 6Mbps
(approximately 3.7 and 5.5Mbps at IP level) depending of the test. Other test
parameters are as follows: EF peak rate of 1Mbps; AF1x and AF4x
minimum guaranteed rate of 1Mbps and 1.5Mbps, respectively.

PHBs testing results are similar for UDP (Figure 2-a) and 2-b)) and TCP
traffic (2-c) and d)). Figure 2-a) and c) represent EF and BE achieved
throughput, while b) and d) represent EF, AF11, AF41 and BE throughput,
over a time period of one minute. The different traffic is launched along this
period. In the TCP test, one connection is used for each PHB.

8

Figure 2. Throughput per PHB for UDP and TCP traffic (UDP – a) and b); TCP – c) and d)).

Figure 2 shows that EF traffic is clearly isolated from other traffic, i.e.
both BE and AF packets do not interfere with EF (although a slight variation
may occur when other traffic is injected in the network). Thus, EF
throughput is independent of the remaining traffic and the allocated rate is
guaranteed for traffic in-profile, i.e. above 1Mbps packets are dropped. For
AF traffic, the minimum allocated bandwidth is also guaranteed. The
remaining bandwidth (from 1Mbps to 1.5Mbps) is shared (not evenly)
among the existing classes. As expected, BE traffic only gets through when
high priority traffic does not take the maximum available bandwidth.

5.2.3 Testing Drop Precedence

This section focuses on how a class with different drop precedence is
affected by congestion and by a particular congestion control mechanism –
GRED. A single AF1x class with three DP is considered (both for UDP and
TCP traffic). GRED parameters in use are illustrated in Figure 3.

Figure 3. GRED parameters.

9

The ATM connection bandwidth was set to 2Mbps (about 1.8Mbps at IP
level). The results for UDP and TCP traffic are shown below.

Figure 4. Throughput for the AF1x class (UDP – a) and b); TCP – c) and d)).

Figure 4 shows that, for equal GRED parameters, each AF1x receives
identical treatment regarding throughput and packet loss. For different
GRED parameters (Min and Max), AF1x behaviour evolves consistently, for
instance, traffic with higher DP is drastically dropped and AF13 gets the
smaller bandwidth share. Finally, AF1x throughput for TCP traffic shows
more variability than the UDP traffic as consequence of TCP slow-start.

5.3 Linux Tests Summary

Positive aspects:
– great flexibility in the configuration of Diffserv mechanisms due to the

capacity of nesting functionalities;
– number of Diffserv functionalities implemented;
– Marking and Shaping work correctly;
– easy to implement standard PHBs with the existing Queuing and

Congestion Avoidance mechanisms;
– good performance both for UDP and TCP traffic.
Negative aspects:

– complexity and size of the configuration scripts;
– lack of documentation;
– problems with Policing (Dropping/Remarking) and Shaping (jitter).

10

6. TESTING CISCO IOS PLATFORM

In this section, the Cisco IOS differentiated services implementation is
configured, tested and evaluated.

6.1 Traffic Related Tools and Equipment

The traffic generation tools used in the experiments are mgen for UDP
traffic and netperf for TCP. Traffic analysis is carried out using tcpdump and
PrismLite / RADCOM. SmartBits equipment is used for delay analysis (it
solves clock synchronisation problem). The main testbed equipment consists
of one Cisco 7200 with IOS 12.1(3)T, one Cisco 7500 with IOS 12.1(1)T,
routers and end-systems running Linux RedHat 6.X and Mandrake 7.X.

6.2 Cisco Testbed

The test platform using Cisco routers is illustrated in Figure 5.

Figure 5. Testbed used in Cisco tests.

All nodes (located at PTIN headquarters) are connected using Ethernet at
10Mbps, except the core and Linux router, which use an ATM nrt-VBR
connection with classical IP over ATM. Such as in Linux, this connection
allows forcing a bandwidth bottleneck in the routers. PrismLite / RADCOM
measurements were carried out at core router ATM outgoing link. Due to the
lack of support for the DSCP field in the used IOS versions we have used the
precedence field (this problem was solved in IOS 12.1(5)T).

6.2.1 Testing Edge Functionalities

Following the sort of experiments reported for Linux, this set of tests
assesses the effectiveness of TC actions such as Marking, Policing and
Shaping. As in Linux, mgen and tcpdump are used as traffic generator and
traffic analyser, respectively. Table 2 summarises the results obtained.

11

Table 2. Summary of the Cisco test results (edge).
TEST OBJECTIVE RESULTS

Marking
(PBR)

Check if all packets are correctly
marked based on the traffic

characteristics

Marking correct for different source
rates, traffic types and packet lengths

Policing with
Dropping

(CAR drop)

Check if packets are policed and
dropped (if needed) correctly

Policing / Dropping correct for
different source rates, traffic types

and packet lengths

Policing with
remarking

(CAR remark)

Check if packets are policed and
remarked (if needed) correctly

Policing / Remarking correct for
different source rates, traffic types

and packet lengths

Shaping
(GTS) Check Traffic Shaping

Shaping correct for different traffic
types and bucket sizes.

 Both rate and inter-packet time are
shaped correctly

6.2.2 Testing PHBs

Our objective is to assess how EF, AF and BE PHBs perform on Cisco
equipment regarding the allocated and used bandwidth, with either UDP or
TCP traffic. The ATM connection bandwidth was set to 5Mbps, EF peak
rate to 1Mbps, AF1 and AF4 minimum guaranteed rates to 1Mbps and
1.5Mbps, respectively, and CB-WFQ (see results in Figure 6). Traffic
corresponding to a given class is transmitted along pre-defined time periods.

Figure 6. Throughput per PHB for UDP and TCP traffic (UDP - a) and b); TCP c) and d)).

12

The results obtained for UDP and TCP traffic differ considerably. In fact,
throughput measurements for UDP traffic follow our expectations. The rate
achieved by EF is constant and limited by its peak rate. AF classes receive
their minimum allocated rate, being the remaining bandwidth divided by
them proportionally to the reserved bandwidth. As [1, 3] do not state how the
remaining bandwidth is distributed, BE traffic also shares (by option) this
bandwidth in the same way as other classes (see Figure 6-b)). For TCP
traffic the instability around reserved bandwidth value is notorious. Figure 6-
d) shows that AF11 throughput is kept below the minimum rate during more
than 10s. In our opinion, this behaviour is a result of heavy packet dropping
at the router and consequent TCP slow-start adaptation.

6.2.3 Testing Drop Precedence

In the following experiment AF1x behaviour is tested for WRED. Traffic
is generated as AF11, AF12 and AF13 over an ATM connection limited to
2Mbps. The tests were carried out for UDP and TCP traffic and the results
are shown in Figures 7-a) and 7-b), respectively.

Unexpectedly, throughput measurements showed invariance for the set of
WRED parameters shown in Figure 3. AF1x throughput results were
expected to be close to the ones presented in Figure 4. However, for UDP
traffic, either AF11 or AF12 or AF13 can take over (almost) the maximum
allocated bandwidth randomly (Figure 7-a). For TCP traffic, the available
link capacity is always used in a balanced way among the existing AF1x
traffic (Figure 7-b). Once again, the variability of TCP rates is clear.

Figure 7. Throughput for the AF1x class (UDP – a); TCP – b)).

This unexpected and incorrect behaviour may be due to the use of ATM
PVC interfaces where WRED cannot be configured at the interface level. In
order to solve this, CB-WFQ was defined at ATM sub-interface level, where
WRED was configured. Although this allowed proceeding with the tests, the
WRED parameterisation appeared not to be effective.

13

6.2.4 CPU Utilisation

In this section, the impact of supporting Diffserv functionalities is
evaluated in terms of additional CPU utilisation. An UDP traffic load of
8Mbps is equally distributed among EF, AF1, AF4 and BE (2Mbps each).
Policing and Shaping is done at 1Mbps for each traffic class.

Graphs a) and b) in Figure 8 illustrates the CPU utilisation at the ingress
router for packet sizes of 500 and 50 bytes, respectively. Graphs c) and d)
correspond to equivalent measurements carried out at the core router.

Figure 8. CPU utilisation.

The results presented show that edge functionalities require higher
computational effort when comparing with the without Diffserv case,
especially, for small packet sizes. Supporting MF Classification (PBR) is a
CPU-consuming task. This behaviour is unexpected as Classification and
Policing using CAR adds Policing to Classification and remains a lighter
task. These results illustrate that PBR is significantly more inefficient than
CAR. Figure 8-a) shows an increase from below 10% to over 40% in CPU
utilisation, while for small packets (50 bytes) this value goes above 90%.
CPU utilisation almost doubles when running Classification and Policing
(CAR) with remarking; this increase is smaller when dropping is carried out
instead of remarking.

Most of the tested core functionalities require a negligible increase on
CPU utilisation, either for packets of 50 or 500 bytes. Only CB-WFQ
implementation causes an additional utilisation of around 10%, for the
smaller packet sizes. Generically, the results show that reducing packet size

14

(the total number of packets increases as the rate is kept constant) requires
additional processing from DS routers, especially at the network edge. For
higher traffic rates the CPU requirements may increase substantially.

6.2.5 Delay Measurements

The main objective of delay measurements was to assess the ability to
offer low delays to high priority traffic. The initial network layout presented
in Figure 5 was slightly modified so that traffic is sent and received at the
same equipment (SmartBits) (Figure 9). This solves clock synchronisation
problem when measuring absolute delays. To increase accuracy, the delay
results presented below are taken from the average of 100 measurements.

Figure 9. Testbed used for delay measurements.

These tests focused on EF PHB in order to assess if a low delay can be
guaranteed in the presence of low priority background traffic. The ATM
connection was set to 5Mbps. The traffic is generated so that the network
operates without packet loss. The test scenario includes different types of
background traffic competing with a single EF traffic flow. Background
traffic can be either BE (CBR or on-off (bursty)) or AF (CBR), for different
packet size and for two link loads (see results in Figure 10).

Figure 10. Impact of background traffic on EF PHB.

Note that, EF traffic is slightly delayed by BE background traffic
essentially in the presence of bursty (ON-OFF) traffic. EF delay is also

15

influenced by BE packet sizes, as serialisation delay increases (as peaks in
Figure 10-a demonstrate). When a background packet is being transmitted,
even if an EF packet arrives it has to wait until the BE packet transmission is
completed (recall that the implemented CB-WFQ defines a low-latency
queue for EF traffic). Thus, the higher BE packet size is, the longer EF
traffic waits for being scheduled. In the presence of bursty BE traffic this
effect is stressed as the BE queue has periods of high activity. The difference
of having AF or BE as background traffic is not significant.

6.3 Cisco Tests Summary

Positive aspects:
– configuration of services using simple and few commands;
– number of Diffserv functionalities;
– TC mechanisms and Queuing generally work as expected;
– amount and quality of available documentation;
– platform used worldwide.
Negative aspects:
– lack of DSCP support (included from Cisco IOS version 12.1(5)T on);
– mapping to layer two with some limitations (e.g. ATM);
– problems in running WRED in ATM interfaces;
– CB-WFQ queuing discipline for TCP traffic showed problems;
– less flexible than the Linux implementation, but much simpler.

7. CONCLUSIONS

The implementation of IP differentiated services on two platforms – a
Linux and a Cisco IOS based testbed – has been established, configured,
tested and evaluated regarding both Diffserv functionalities and algorithms
supported. This work also assessed the impact edge and core functionalities
have on Cisco routers and the impact background traffic has on EF traffic.

The Diffserv implementation developed at ICA/EPFL for Linux allows a
flexible set up of services through a configuration strategy based on nested
functionalities. This flexibility may however lead to intricate and long
configurations. The Cisco testbed, including a smaller number of
functionalities oriented to traffic differentiation, is able to provide Diffserv
services while keeping the overall configuration simple. Concerning Diffserv
functionalities, ICA/EPFL implementation allows the correct definition of
rules and mechanisms to provide efficient traffic differentiation. EF traffic
rate is not impaired by other competing traffic and AF traffic can achieve

16

minimum bandwidth guarantees. The drop precedence for AF PHB group
worked as expected for UDP and TCP traffic, under GRED. Policing showed
problems in remarking, for rates above a certain (machine-dependent) value.

Cisco platform was very effective on edge component implementation,
where traffic policing and shaping were strictly enforced. In our testbed, the
core component showed poor performance and unexpected behaviour on
TCP traffic differentiation. Drop precedence tests did not lead to meaningful
results due to limitations in configuring WRED effectively at the ATM level.

Measuring CPU utilisation, it was found that while the increase of CPU
demand at core routers is negligible, at edge routers it may be significant
depending on how classification and policing/remarking are accomplished.
The increase on CPU utilisation in edge and core routers may be notorious as
packet size decreases. Regarding the impact background traffic has on EF
traffic, the measurements showed a slight increase on delay essentially in the
presence of bursty traffic and for large packets.

Future work will include test tuning in both platforms using upgraded
software versions. PHB concatenation and PDB testing will also be covered.

ACKNOWLEDGMENTS

Work included in the EURESCOM P1006 / DISCMAN Project framework.

REFERENCES

[1] S. Blake et al., RFC 2475 - An Architecture for Differentiated Services, 1998.
[2] R. Braden et al., RFC 1633 – Integrated Services in the Internet Architecture: an

Overview, June 1994.
[3] K. Nichols et al., RFC 2474 - Definition of the Differentiated Services Field (DS Field)

in the IPv4 and IPv6 Headers, December 1998.
[4] V. Jacobson et al., RFC 2598 - An Expedited Forwarding PHB, June 1999.
[5] J. Heinanen et al., RFC 2597 - Assured Forwarding PHB Group, June 1999.
[6] W. Almesberger, http://icawww.epfl.ch/linux-Diffserv/, November 1999.
[7] NEC, http://www.nec-cx.com/products/, September 2001.
[8] IBM, http://www.networking.ibm.com/netprod.html, September 2001.
[9] T. Ferrari, P. Chimento, A Measurement-based Analysis of EF PHB Mechanisms, 2000.
[10] S. Radhakrishan, Internet Protocol QoS Page, http://qos.ittc.ukans.edu.
[11] S. Floyd, V. Jacobson, Random Early Detection gateways for Congestion Avoidance,

IEEE/ACM Transactions on Networking, V.1 N.4, August 1993, pp 397-413.
[12] K.Wehrle, H. Ritter, Problems of Traffic Shaping in ATM and IP Networks Using

Standard End Systems, ATM2000 Conference, http://atm2000.ccrle.nec.de/.

