5,312 research outputs found

    The Far-Field Equatorial Array for Binaural Rendering

    Get PDF
    We present a method for obtaining a spherical harmonic representation of a sound field based on a microphone array along the equator of a rigid spherical scatterer. The two-dimensional plane wave de-composition of the incoming sound field is computed from the microphone signals. The influence of the scatterer is removed under the assumption of distant sound sources, and the result is converted to a spherical harmonic (SH) representation, which in turn can be rendered binaurally. The approach requires an order of magnitude fewer microphones compared to conventional spherical arrays that operate at the same SH order at the expense of not being able to accurately represent non-horizontally-propagating sound fields. Although the scattering removal is not perfect at high frequencies at low harmonic orders, numerical evaluation demonstrates the effectiveness of the approach

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac

    Full text link
    A part analytical, part numerical ideal MHD analysis of low-frequency Alfven wave physics in the H-1 stellarator is given. The three-dimensional, compressible ideal spectrum for H-1 is presented and it is found that despite the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic interactions occur at low frequencies. Several quasi-discrete modes are found with the three-dimensional linearised ideal MHD eigenmode solver CAS3D, including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps. The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D convergence difficulties requiring the inclusion of many Fourier harmonics for the parallel component of the fluid displacement eigenvector even for shear wave motions. The highest beta-induced gap reproduces large parts of the observed configurational frequency dependencies in the presence of hollow temperature profiles

    Use of beamforming for detecting an acoustic source inside a cylindrical shell filled with a heavy fluid

    Get PDF
    International audienceThe acoustic detection of defects or leaks inside a cylindrical shell containing a fluid is of prime importance in the industry, particularly in the nuclear field. This paper examines the beamforming technique which is used to detect and locate the presence of an acoustic monopole inside a cylindrical elastic shell by measuring the external shell vibrations. In order to study the effect of fluid-structure interactions and the distance of the source from the array of sensors, a vibro-acoustic model of the fluid-loaded shell is first considered for numerical experiments. The beamforming technique is then applied to radial velocities of the shell calculated with the model. Different parameters such as the distance between sensors, the radial position of the source, the damping loss factor of the shell, or of the fluid, and modifications of fluid properties can be considered without difficulty. Analysis of thes

    Wind turbine acoustics

    Get PDF
    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics

    Near-field acoustic holography with sound pressure and particle velocity measurements

    Get PDF

    Studies into the detection of buried objects (particularly optical fibres) in saturated sediment. Part 2: design and commissioning of test tank

    No full text
    This report is the second in a series of five, designed to investigate the detection oftargets buried in saturated sediment, primarily through acoustical or acoustics-relatedmethods. Although steel targets are included for comparison, the major interest is intargets (polyethylene cylinders and optical fibres) which have a poor acousticimpedance mismatch with the host sediment. This particular report details theconstruction of a laboratory-scale test facility. This consisted of three maincomponents. Budget constraints were an over-riding consideration in the design.First, there is the design and production of a tank containing saturated sediment. Itwas the intention that the physical and acoustical properties of the laboratory systemshould be similar to those found in a real seafloor environment. Particularconsideration is given to those features of the test system which might affect theacoustic performance, such as reverberation, the presence of gas bubbles in thesediment, or a suspension of particles above it. Sound speed and attenuation wereidentified as being critical parameters, requiring particular attention. Hence, thesewere investigated separately for each component of the acoustic path.Second, there is the design and production of a transducer system. It was the intentionthat this would be suitable for an investigation into the non-invasive acousticdetection of buried objects. A focused reflector is considered to be the most costeffectiveway of achieving a high acoustic power and narrow beamwidth. Acomparison of different reflector sizes suggested that a larger aperture would result inless spherical aberration, thus producing a more uniform sound field. Diffractioneffects are reduced by specifying a tolerance of much less than an acousticwavelength over the reflector surface. The free-field performance of the transducerswas found to be in agreement with the model prediction. Several parameters havebeen determined in this report that pertain to the acoustical characteristics of the waterand sediment in the laboratory tank in the 10 – 100 kHz frequency range.Third, there is the design and production of an automated control system wasdeveloped to simplify the data acquisition process. This was, primarily, a motordrivenposition control system which allowed the transducers to be accuratelypositioned in the two-dimensional plane above the sediment. Thus, it was possible forthe combined signal generation, data acquisition and position control process to be coordinatedfrom a central computer.This series of reports is written in support of the article “The detection by sonar ofxdifficult targets (including centimetre-scale plastic objects and optical fibres) buriedin saturated sediment” by T G Leighton and R C P Evans, written for a Special Issueof Applied Acoustics which contains articles on the topic of the detection of objectsburied in marine sediment. Further support material can be found athttp://www.isvr.soton.ac.uk/FDAG/uaua/target_in_sand.HTM
    • …
    corecore