110 research outputs found

    ENVIRONMENTAL EFFECTS ON BEHAVIOR AND PHYSIOLOGY IN CRAYFISH

    Get PDF
    Despite dramatic morphological differences between animals from different taxa, several important features in organization and sensory system processing are similar across animals. Because of this similarity, a number of different organisms including mammals, insects, and decapod crustaceans serve as valuable model systems for understanding general principles of environmental effects. This research examines intrinsic and extrinsic factors by behaviorally and physiologically means to identify the impact of environmental conditions on two distinct crayfish species- Procambarus clarkii (surface) and Orconectes australis packardi (cave). The research identified behavioral and physiological responses in these two morphological and genetically distinct species. The studies also examined multiple levels of complexity including social behavior, an autonomic response, chemosensory capabilities and neuronal communication, identified comparative similarities/differences, addressed learning and environmental influences on learning and examined behavioral and cellular responses to high levels of carbon dioxide. I found environmental factors directly influence crayfish behavior of social interactions. Interactions were more aggressive, more intense and more likely to end with a physical confrontation when they took place \u27in water\u27 than \u27out of water\u27. The modified social interaction resulted in a altered fighting strategy. A study on motor task learning was undertaken which showed similar learning trends among these crayfish species despite their reliance on different sensory modalities. I also demonstrated learning was dependent on perceived stress by the organism. Previously trained crayfish inhibited from completing a task showed significant increase in an autonomic stress response. Studies on the behavioral and physiological responses to CO2 revealed that high [CO2] is a repellent in a concentration dependent manner. The autonomic responses in heart rate and an escape tailflip reflex shows complete cessation with high [CO2]. A mechanistic effect of CO2 is by blocking glutamate receptors at the neuromuscular junction and through inhibition of the motor nerve within the CNS

    Aspects of Pacemakers

    Get PDF
    Outstanding steps forward were made in the last decades in terms of identification of endogenous pacemakers and the exploration of their controllability. New "artifical" devices were developed and are now able to do much more than solely pacemaking of the heart. In this book different aspects of pacemaker - functions and interactions, in various organ systems were examined. In addition, various areas of application and the potential side effects and complications of the devices were discussed

    Advances in Bioengineering

    Get PDF
    The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques

    Development and plasticity of locomotor circuits in the zebrafish spinal cord

    Full text link
    A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.Un objectif important en neurobiologie est de comprendre le développement et l'organisation des circuits neuronaux qui entrainent les comportements. Chez l'embryon, la première activité motrice est une lente contraction spontanée qui est entrainée par l'activité intrinsèque des circuits spinaux. Ensuite, les embryons deviennent sensibles aux stimulations sensorielles et ils peuvent éventuellement nager, comportements qui sont façonnées par l'intégration de l'activité intrinsèque et le rétrocontrôle sensoriel. Pour cette thèse, j'ai utilisé un modèle vertébré simple, le poisson zèbre, afin d'étudier en trois temps comment les réseaux spinaux se développent et contrôlent les comportements locomoteurs embryonnaires. Pour la première partie de cette thèse j'ai caractérisé la transition rapide de la moelle épinière d'un circuit entièrement électrique à un réseau hybride qui utilise à la fois des synapses chimiques et électriques. Nos expériences ont révélé un comportement embryonnaire transitoire qui précède la natation et qu'on appelle « double coiling ». J'ai démontré que les motoneurones spinaux présentaient une activité dépendante du glutamate corrélée avec le « double coiling » comme l'a fait une population d'interneurones glutamatergiques ipsilatéraux qui innervent les motoneurones à cet âge. Ce travail (Knogler et al., Journal of Neuroscience, 2014) suggère que le « double coiling » est une étape distincte dans la transition du réseau moteur à partir d'un circuit électrique très simple à un réseau spinal entrainé par la neurotransmission chimique pour générer des comportements plus complexes. Pour la seconde partie de ma thèse, j'ai étudié comment les réseaux spinaux filtrent l'information sensorielle de mouvements auto-générés. Chez l'embryon, les neurones sensoriels mécanosensibles sont activés par un léger toucher et ils excitent en aval des interneurones sensoriels pour produire une réponse de flexion. Par contre, les contractions spontanées ne déclenchent pas ce réflexe même si les neurones sensoriels sont toujours activés. J'ai démontré que les interneurones sensoriels reçoivent des entrées glycinergiques pendant les contractions spontanées fictives qui les empêchaient de générer des potentiels d'action. L'inhibition glycinergique de ces interneurones, mais pas des autres neurones spinaux, est due à l'expression d'un sous-type de récepteur glycinergique unique qui augmente iii le courant inhibiteur. Ce travail (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggère que la signalisation glycinergique chez les interneurones sensoriels agit comme un signal de décharge corolaire pour l'inhibition des réflexes pendant les mouvements auto- générés. Dans la dernière partie de ma thèse, je décris le travail commencé à la maîtrise et terminé au doctorat qui montre comment la plasticité homéostatique est exprimée in vivo aux synapses centrales à la suite des changements chroniques de l'activité du réseau. J'ai démontré que l'efficacité synaptique excitatrice de neurones moteurs spinaux est augmentée à la suite d’une diminution de l'activité du réseau, en accord avec des études in vitro précédentes. Par contre, au niveau du réseau j'ai démontré que la plasticité homéostatique n'était pas nécessaire pour maintenir la rythmicité des circuits spinaux qui entrainent les comportements embryonnaires. Cette étude (Knogler et al., Journal of Neuroscience, 2010) a révélé pour la première fois que l'organisation du circuit est moins plastique que l'efficacité synaptique au cours du développement chez l'embryon. En conclusion, les résultats présentés dans cette thèse contribuent à notre compréhension des circuits neuronaux de la moelle épinière qui sous-tendent les comportements moteurs simples de l'embryon

    Respiratory Control: Central and Peripheral Mechanisms

    Get PDF
    Understanding of the respiratory control system has been greatly improved by technological and methodological advances. This volume integrates results from many perspectives, brings together diverse approaches to the investigations, and represents important additions to the field of neural control of breathing. Topics include membrane properties of respiratory neurons, in vitro studies of respiratory control, chemical neuroanatomy, central integration of respiratory afferents, modulation of respiratory pattern by peripheral afferents, respiratory chemoreception, development of respiratory control, behavioral control of breathing, and human ventilatory control. Forty-seven experts in the field report research and discuss novel issues facing future investigations in this collection of papers from an international conference of nearly two hundred leading scientists held in October 1990. This research is of vital importance to respiratory physiologists and those in neurosciences and neurobiology who work with integrative sensory and motor systems and is pertinent to both basic and clinical investigations. Respiratory Control is destined to be widely cited because of the strength of the contributors and the dearth of similar works. The four editors are affiliated with the University of Kentucky: Dexter F. Speck is associate professor of physiology and biophysics, Michael S. Dekin is assistant professor of biological sciences, W. Robert Revelette is research scientist of physiology and biophysics, and Donald T. Frazier is professor and chairman of physiology and biophysics. Experts in the field report current research and discuss novel issues facing future investigations. —SciTech Book Newshttps://uknowledge.uky.edu/upk_biology/1002/thumbnail.jp

    Aspects of Signal Processing in Noisy Neurons

    Get PDF
    In jüngerer Zeit hat sich die Erkenntnis durchgesetzt, daß statistische Einflüsse, oft Rauschen genannt, die Verarbeitung von Signalen nicht notwendig behindern, sondern unterstützen können. Dieser Effekt ist als stochastische Resonanz bekannt geworden. Es liegt nahe, daß die Evolution Wege gefunden hat, diese Phänomen zur Optimierung der Informationsverarbeitung im Nervensystem auszunutzen. Diese Dissertation untersucht am Beispiel des pulserzeugenden Integratorneurons mit Leckstrom, ob die Kodierung periodischer Signale in Neuronen durch das ohnehin im Nervensystem vorhandene Rauschen verbessert wird. Die Untersuchung erfolgt mit den Methoden der Theorie der Punktprozesse. Die Verteilung der Intervalle zwischen zwei beliebigen aufeinanderfolgenden Pulsen, die das Neuron aussendet, wird aus einem Integralgleichungsansatz numerisch bestimmt und die zeitliche Ordnung der Pulsfolgen relativ zum periodischen Signal als Markoffkette beschrieben. Daneben werden einige Näherungsmodelle für die Pulsintervallverteilung, die weitergehende analytische Untersuchungen erlauben, vorgestellt und ihre Zuverlässigkeit geprüft. Als wesentliches Ergebnis wird gezeigt, daß im Modellneuron zwei Arten rauschinduzierter Resonanz auftreten: zum einen klassiche stochastische Resonanz, d.h. ein optimales Signal-Rausch-Verhältnis der evozierten Pulsfolge bei einer bestimmten Amplitude des Eingangsrauschens. Hinzu tritt eine Resonanz bezüglich der Frequenz des Eingangssignals oder Reizes. Reize eines bestimmten Frequenzbereichs werden in Pulsfolgen kodiert, die zeitlich deutlich strukturiert sind, währ! end Stimuli außerhalb des bevorzugten Frequenzbandes zeitlich homogenere Pulsfolgen auslösen. Für diese zweifache Resonanz wird der Begriff stochastische Doppelresonanz eingeführt. Der Effekt wird auf elementare Mechanismen zurückgeführt und seine Abhängigkeit von den Eigenschaften des Reizes umfassend untersucht. Dabei zeigt sich ,daß die Reizantwort des Neurons einfachen Skalengesetzen unterliegt. Insbesondere ist die optimale skalierte Rauschamplitude ein universeller Parameter des Modells, der vom Reiz unabhängig zu sein scheint. Die optimale Reizfrequenz hängt hingegen linear von der skalierten Reizamplitude ab, wobei die Proportionalitätskonstante vom Gleichstromanteil des Reizes bestimmt wird (Basisstrom). Während große Basisströme Frequenz und Amplitude nahezu entkoppeln, so daß Reize beliebiger Amplitude in zeitlich wohlstrukturierten Pulsfolgen kodiert werden, erlauben es kleine Basisströme, das optimale Frequenzband durch Veränderung der Reizamplitude zu wählen

    Synaptic Plasticity and Hebbian Cell Assemblies

    Get PDF
    Synaptic dynamics are critical to the function of neuronal circuits on multiple timescales. In the first part of this dissertation, I tested the roles of action potential timing and NMDA receptor composition in long-term modifications to synaptic efficacy. In a computational model I showed that the dynamics of the postsynaptic [Ca2+] time course can be used to map the timing of pre- and postsynaptic action potentials onto experimentally observed changes in synaptic strength. Using dual patch-clamp recordings from cultured hippocampal neurons, I found that NMDAR subtypes can map combinations of pre- and postsynaptic action potentials onto either long-term potentiation (LTP) or depression (LTD). LTP and LTD could even be evoked by the same stimuli, and in such cases the plasticity outcome was determined by the availability of NMDAR subtypes. The expression of LTD was increasingly presynaptic as synaptic connections became more developed. Finally, I found that spike-timing-dependent potentiability is history-dependent, with a non-linear relationship to the number of pre- and postsynaptic action potentials. After LTP induction, subsequent potentiability recovered on a timescale of minutes, and was dependent on the duration of the previous induction. While activity-dependent plasticity is putatively involved in circuit development, I found that it was not required to produce small networks capable of exhibiting rhythmic persistent activity patterns called reverberations. However, positive synaptic scaling produced by network inactivity yielded increased quantal synaptic amplitudes, connectivity, and potentiability, all favoring reverberation. These data suggest that chronic inactivity upregulates synaptic efficacy by both quantal amplification and by the addition of silent synapses, the latter of which are rapidly activated by reverberation. Reverberation in previously inactivated networks also resulted in activity-dependent outbreaks of spontaneous network activity. Applying a model of short-term synaptic dynamics to the network level, I argue that these experimental observations can be explained by the interaction between presynaptic calcium dynamics and short-term synaptic depression on multiple timescales. Together, the experiments and modeling indicate that ongoing activity, synaptic scaling and metaplasticity are required to endow networks with a level of synaptic connectivity and potentiability that supports stimulus-evoked persistent activity patterns but avoids spontaneous activity

    Responses of a Locust Looming Sensitive Neuron, Flight Muscle Activity and Body Orientation to Changes in Object Trajectory, Background Complexity, and Flight Condition

    Get PDF
    Survival is one of the highest priorities of any animal. Interaction in the environment with conspecifics, predators, or objects, is driven by evolution of systems that can efficiently and rapidly respond to potential collision with these stimuli. Flight introduces further complexity for a collision avoidance system, requiring an animal to compute air speed, wind speed, ground speed, as well as transverse and longitudinal image flow, all within the context of detecting an approaching object. Understanding the mechanisms underlying neural control and coordination of motor systems to produce behaviours in response to the natural environment is a main goal of neuroethology. Locusts have a tractable nervous system, and a robust, reproducible collision avoidance response to looming stimuli. This tractable system allows recording from the nerve cord and flight muscles with precision and reliability, allowing us to answer important questions regarding the neuronal control of muscle coordination and, in turn, collision avoidance behaviour during flight. In flight, a collision avoidance behaviour will most often be a turn away from the approaching stimulus. I tested the hypothesis that during loosely tethered flight, synchrony between flight muscles increases just prior to the initiation of a turn and that muscle synchronization would correlate with body orientation changes during flight steering. I found that hind and forewing flight muscle synchronization events correlated strongly with forewing flight muscle latency changes, and to pitch and roll body orientation changes in response to a lateral looming visual stimulus. These findings led me to investigate further the role of the looming-sensitive descending contralateral movement detector (DCMD) neuron in flight muscle coordination and the initiation of forewing asymmetry in rigidly tethered locusts that generate a flight-like rhythm. By conducting simultaneous recordings from the nerve cord, forewing flight muscles, and visually recording the wing positions within the same flying animal, I hypothesized that DCMD burst properties would correlate with flight muscle activity changes and the initiation of wing asymmetry associated with turning behaviour. Furthermore, I accessed the effect of manipulating background complexity of the locust’s visual environment, looming object trajectory, and the putative effect of mechanosensory feedback during flight, on DCMD burst firing rate properties. DCMD burst properties were affected by changes in background complexity and object trajectory, and most interestingly during flight. This suggests that reafferent feedback from the flight motor system modulates the DCMD signal, and therefore represents a more naturalistic representation of collision avoidance behaviour. A pivotal discovery in my study was the temporal role of bursting in collision avoidance behaviour. I found that the first burst in a DCMD spike train represents the earliest detectable neuronal event correlated with muscle activity changes and the creation of wing asymmetry. I found strong correlations across all object trajectories and background complexities, between the timing of the first bursts, flight muscle activity changes and the initiation of wing asymmetry. These findings reinforce the importance of the temporal properties of DCMD bursting in collision avoidance behaviour

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Electrical stimulation and activity for axonal regeneration

    Get PDF
    To date, there are no specific treatments available that efficiently target the loss of neural connectivity after a spinal cord injury (SCI). Thus patients usually suffer from life-long motor, sensory and autonomic dysfunction. Neuron-intrinsic growth programs are activated after a lesion in the peripheral nervous system (PNS) and can contribute to enhanced regeneration in a subsequent central lesion. Yet this so-called conditioning lesion (CL) holds little translational potential for SCI. Electrical stimulation (ES) can influence various cellular functions, including neuronal growth and could provide a practical approach to enhance regeneration after SCI. However, the mechanisms and a practical means for applying ES as a therapy after SCI are insufficiently understood. I hypothesized that evoked neuronal activity by direct ES of the peripheral nerve can enhance the growth potential of dorsal root ganglia (DRG) neurons in a similar way to CL, supporting the regeneration of the injured central branch ascending in the dorsal column. ES (20Hz, 2*MT, 0.2ms, 1h) was applied in vivo to the sciatic nerve of adult Fischer 344 rats, followed by ex-vivo assessment of the growth potential, showing about 2-fold enhanced neurite growth compared to sham animals. ES increased the percentage of neurons with neurites >100um, but there was no change in the percentage of neurite bearing neurons, indicating that the effect on growth is due to enhanced elongation and not initiation. Longer duration stimulation (7h) also enhances growth by 67 ± 25%, as well as repeated stimulation for 7 days (55 ± 24%). The pattern of growth and timeline is similar to a CL, suggesting a similar or a partial overlap in the mechanism. Growth effects of 1h ES were also assessed in vivo in a model of spinal cord injury, together with cell transplantation of BMSCs (bone marrow stromal cells) at 4 weeks post-injury. Stimulated fibers were labeled by sciatic nerve injection of the transganglionic tracer Cholera toxin B (CTB). Animals with ES for 1h showed significantly increased axonal regeneration into the spinal cell graft within the lesion compared to sham animals. Repeated stimulation with chronic electrodes showed a similar effect, but also a slight influence from chronic electrode implantation in chronic sham animals. Dieback of axons was not modified in any of the conditions. To evaluate possible side effects that may interfere with clinical applicability, I also tested pain-like behavior, showing a lack of allodynia or thermal hyperalgesia after ES. This further highlights the translational potential of this strategy in combinatorial approaches such as cell transplantation. In parallel, I investigated the mechanisms underlying the observed neuronal activity-mediated increases in neurite growth. Using in vitro depolarization of DRG neurons as a model, my data show that neurite growth is influenced depending on the duration of the depolarization and the delay between stimulation and measurement. Since depolarization induces calcium influx, I examined in a separate set of experiments calcium signaling, showing that blocking nuclear calcium signaling with recombinant calmodulin-binding proteins reduces growth in DRG cultures at 72h by 50 ± 10%. However, a cytoplasmic block enhances growth by 35 ± 11%, and has similar effects in vivo after adeno-associated virus gene transfer into lumbar DRGs. This differential effect of nuclear and cytoplasmic calcium signaling provides an explanation for previous reports, which have shown stimulation or reduction of growth following neuronal activity. Furthermore, I investigated HDAC5 (histone deacetylase 5), showing export from the nucleus in DRGs (92 ± 5% nuclear before and 14 ± 1% after depolarization). These in vitro experiments suggest that neuronal activity-mediated effects on axon growth could involve epigenetic mechanisms, dependent on calcium/calmodulin signaling. To follow up on these experiments, RNA sequencing was performed to investigate differential gene expression at 1 day and 7 days after ES, compared to sham animals, naive animals and animals that underwent a peripheral lesion, collecting 30M SE reads/sample on a HiSeq2000. As expected CL induces and represses an extensive number of genes compared to naïve animals. ES induced/reduced expression of a much lower number of genes relative to sham animals with smaller changes in gene expression. Several genes and pathways could be identified that are known to play a role in regeneration, suggesting that ES-mediated effects on axon regeneration are likely a summation of several activated pathways that overlap only partially with CL. Taken together, my results reveal the capacity of neurons to modulate their growth response depending on their activity in vivo. Electrical stimulation is shown to be an effective means to increase axonal regeneration in a central lesion, and could provide a feasible therapeutic approach either alone or in combination with other strategies such as cell transplantation
    corecore