204 research outputs found

    Energy consumption measurement of C/C++ programs using clang tooling

    Get PDF
    The green computing has an important role in today's software technology. Either speaking about small IoT devices or large cloud servers, there is a generic requirement of minimizing energy consumption. For this purpose, we usually first have to identify which parts of the system is responsible for the critical energy peaks. In this paper we suggest a new method to measure the energy consumption based on Low Level Virtual Machine (LLVM)/Clang tooling. The method has been tested on 2 open source systems and the output is visualized via the well-known Kcachegrind tool.This work is financed by the ERDF European Regional Development Fund through the OperationalProgramme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-01671

    Rapid and accurate energy models through calibration with IPMI and RAPL

    Get PDF
    Energy consumption in Cloud and High Performance Computing platforms is a significant issue and affects aspects such as the cost of energy and the cooling of the data center. Host level monitoring and prediction provides the groundwork for improving energy efficiency through the placement of workloads. Monitoring must be fast and efficient without unnecessary overhead, to enable scalability. This precludes the use of Watt meters attached per host, requiring alternative approaches such as integrated measurements and models. IPMI and RAPL are subject to error and partial measurement, which may be mitigated. Models allow for prediction and more responsive measures of power consumption, but require calibrating. The causes of calibration error are discussed, along with mitigation strategies, without overly complicating the underlying model. An outcome is a Watt meter emulator that provides hosts level power measurement along with estimated power consumption for a given workload, with an average error of 0.20W

    Energy Measurements of High Performance Computing Systems: From Instrumentation to Analysis

    Get PDF
    Energy efficiency is a major criterion for computing in general and High Performance Computing in particular. When optimizing for energy efficiency, it is essential to measure the underlying metric: energy consumption. To fully leverage energy measurements, their quality needs to be well-understood. To that end, this thesis provides a rigorous evaluation of various energy measurement techniques. I demonstrate how the deliberate selection of instrumentation points, sensors, and analog processing schemes can enhance the temporal and spatial resolution while preserving a well-known accuracy. Further, I evaluate a scalable energy measurement solution for production HPC systems and address its shortcomings. Such high-resolution and large-scale measurements present challenges regarding the management of large volumes of generated metric data. I address these challenges with a scalable infrastructure for collecting, storing, and analyzing metric data. With this infrastructure, I also introduce a novel persistent storage scheme for metric time series data, which allows efficient queries for aggregate timelines. To ensure that it satisfies the demanding requirements for scalable power measurements, I conduct an extensive performance evaluation and describe a productive deployment of the infrastructure. Finally, I describe different approaches and practical examples of analyses based on energy measurement data. In particular, I focus on the combination of energy measurements and application performance traces. However, interweaving fine-grained power recordings and application events requires accurately synchronized timestamps on both sides. To overcome this obstacle, I develop a resilient and automated technique for time synchronization, which utilizes crosscorrelation of a specifically influenced power measurement signal. Ultimately, this careful combination of sophisticated energy measurements and application performance traces yields a detailed insight into application and system energy efficiency at full-scale HPC systems and down to millisecond-range regions.:1 Introduction 2 Background and Related Work 2.1 Basic Concepts of Energy Measurements 2.1.1 Basics of Metrology 2.1.2 Measuring Voltage, Current, and Power 2.1.3 Measurement Signal Conditioning and Analog-to-Digital Conversion 2.2 Power Measurements for Computing Systems 2.2.1 Measuring Compute Nodes using External Power Meters 2.2.2 Custom Solutions for Measuring Compute Node Power 2.2.3 Measurement Solutions of System Integrators 2.2.4 CPU Energy Counters 2.2.5 Using Models to Determine Energy Consumption 2.3 Processing of Power Measurement Data 2.3.1 Time Series Databases 2.3.2 Data Center Monitoring Systems 2.4 Influences on the Energy Consumption of Computing Systems 2.4.1 Processor Power Consumption Breakdown 2.4.2 Energy-Efficient Hardware Configuration 2.5 HPC Performance and Energy Analysis 2.5.1 Performance Analysis Techniques 2.5.2 HPC Performance Analysis Tools 2.5.3 Combining Application and Power Measurements 2.6 Conclusion 3 Evaluating and Improving Energy Measurements 3.1 Description of the Systems Under Test 3.2 Instrumentation Points and Measurement Sensors 3.2.1 Analog Measurement at Voltage Regulators 3.2.2 Instrumentation with Hall Effect Transducers 3.2.3 Modular Instrumentation of DC Consumers 3.2.4 Optimal Wiring for Shunt-Based Measurements 3.2.5 Node-Level Instrumentation for HPC Systems 3.3 Analog Signal Conditioning and Analog-to-Digital Conversion 3.3.1 Signal Amplification 3.3.2 Analog Filtering and Analog-To-Digital Conversion 3.3.3 Integrated Solutions for High-Resolution Measurement 3.4 Accuracy Evaluation and Calibration 3.4.1 Synthetic Workloads for Evaluating Power Measurements 3.4.2 Improving and Evaluating the Accuracy of a Single-Node Measuring System 3.4.3 Absolute Accuracy Evaluation of a Many-Node Measuring System 3.5 Evaluating Temporal Granularity and Energy Correctness 3.5.1 Measurement Signal Bandwidth at Different Instrumentation Points 3.5.2 Retaining Energy Correctness During Digital Processing 3.6 Evaluating CPU Energy Counters 3.6.1 Energy Readouts with RAPL 3.6.2 Methodology 3.6.3 RAPL on Intel Sandy Bridge-EP 3.6.4 RAPL on Intel Haswell-EP and Skylake-SP 3.7 Conclusion 4 A Scalable Infrastructure for Processing Power Measurement Data 4.1 Requirements for Power Measurement Data Processing 4.2 Concepts and Implementation of Measurement Data Management 4.2.1 Message-Based Communication between Agents 4.2.2 Protocols 4.2.3 Application Programming Interfaces 4.2.4 Efficient Metric Time Series Storage and Retrieval 4.2.5 Hierarchical Timeline Aggregation 4.3 Performance Evaluation 4.3.1 Benchmark Hardware Specifications 4.3.2 Throughput in Symmetric Configuration with Replication 4.3.3 Throughput with Many Data Sources and Single Consumers 4.3.4 Temporary Storage in Message Queues 4.3.5 Persistent Metric Time Series Request Performance 4.3.6 Performance Comparison with Contemporary Time Series Storage Solutions 4.3.7 Practical Usage of MetricQ 4.4 Conclusion 5 Energy Efficiency Analysis 5.1 General Energy Efficiency Analysis Scenarios 5.1.1 Live Visualization of Power Measurements 5.1.2 Visualization of Long-Term Measurements 5.1.3 Integration in Application Performance Traces 5.1.4 Graphical Analysis of Application Power Traces 5.2 Correlating Power Measurements with Application Events 5.2.1 Challenges for Time Synchronization of Power Measurements 5.2.2 Reliable Automatic Time Synchronization with Correlation Sequences 5.2.3 Creating a Correlation Signal on a Power Measurement Channel 5.2.4 Processing the Correlation Signal and Measured Power Values 5.2.5 Common Oversampling of the Correlation Signals at Different Rates 5.2.6 Evaluation of Correlation and Time Synchronization 5.3 Use Cases for Application Power Traces 5.3.1 Analyzing Complex Power Anomalies 5.3.2 Quantifying C-State Transitions 5.3.3 Measuring the Dynamic Power Consumption of HPC Applications 5.4 Conclusion 6 Summary and Outloo

    Energy-Aware Data Management on NUMA Architectures

    Get PDF
    The ever-increasing need for more computing and data processing power demands for a continuous and rapid growth of power-hungry data center capacities all over the world. As a first study in 2008 revealed, energy consumption of such data centers is becoming a critical problem, since their power consumption is about to double every 5 years. However, a recently (2016) released follow-up study points out that this threatening trend was dramatically throttled within the past years, due to the increased energy efficiency actions taken by data center operators. Furthermore, the authors of the study emphasize that making and keeping data centers energy-efficient is a continuous task, because more and more computing power is demanded from the same or an even lower energy budget, and that this threatening energy consumption trend will resume as soon as energy efficiency research efforts and its market adoption are reduced. An important class of applications running in data centers are data management systems, which are a fundamental component of nearly every application stack. While those systems were traditionally designed as disk-based databases that are optimized for keeping disk accesses as low a possible, modern state-of-the-art database systems are main memory-centric and store the entire data pool in the main memory, which replaces the disk as main bottleneck. To scale up such in-memory database systems, non-uniform memory access (NUMA) hardware architectures are employed that face a decreased bandwidth and an increased latency when accessing remote memory compared to the local memory. In this thesis, we investigate energy awareness aspects of large scale-up NUMA systems in the context of in-memory data management systems. To do so, we pick up the idea of a fine-grained data-oriented architecture and improve the concept in a way that it keeps pace with increased absolute performance numbers of a pure in-memory DBMS and scales up on NUMA systems in the large scale. To achieve this goal, we design and build ERIS, the first scale-up in-memory data management system that is designed from scratch to implement a data-oriented architecture. With the help of the ERIS platform, we explore our novel core concept for energy awareness, which is Energy Awareness by Adaptivity. The concept describes that software and especially database systems have to quickly respond to environmental changes (i.e., workload changes) by adapting themselves to enter a state of low energy consumption. We present the hierarchically organized Energy-Control Loop (ECL), which is a reactive control loop and provides two concrete implementations of our Energy Awareness by Adaptivity concept, namely the hardware-centric Resource Adaptivity and the software-centric Storage Adaptivity. Finally, we will give an exhaustive evaluation regarding the scalability of ERIS as well as our adaptivity facilities

    Measuring IT Carbon Footprint: What is the Current Status Actually?

    Full text link
    Despite the new Corporate Sustainability Reporting Directive from the European Union, which presses large enterprises to be more transparent about their GHG emissions, and though large technology- or advisory firms might peddle otherwise, there are plenty of challenges ahead when it comes to measuring GHG emissions from IT activities in the first place. This paper categories those challenges into 4 categories, and explains the current status, shortcomings and potential future research directions. These categories are: measuring software energy consumption, server overhead energy consumption, Energy Mix and emissions from embodied carbon. Next to that, various non-profit and open-source initiatives are introduced as well as a mathematical framework, based on CPU consumption, that can act as a rule-of-thumb for quick and effortless assessments.Comment: 16 pages, no figure

    Measurement, Modeling, and Characterization for Power-Aware Computing

    Get PDF
    Society’s increasing dependence on information technology has resulted in the deployment of vast compute resources. The energy costs of operating these resources coupled with environmental concerns have made power-aware computingone of the primary challenges for the IT sector. Making energy-efficient computing a rule rather than an exception requires that researchers and system designers use the right set of techniques and tools. These involve measuring,modeling, and characterizing the energy consumption of computers at varying degrees of granularity.In this thesis, we present techniques to measure power consumption of computer systems at various levels. We compare them for accuracy and sensitivityand discuss their effectiveness. We test Intel’s hardware power model for estimation accuracy and show that it is fairly accurate for estimating energy consumption when sampled at the temporal granularity of more than tens ofmilliseconds.We present a methodology to estimate per-core processor power consumption using performance counter and temperature-based power modeling and validate it across multiple platforms. We show our model exhibits negligible computationoverhead, and the median estimation errors ranges from 0.3% to 10.1% for applications from SPEC2006, SPEC-OMP and NAS benchmarks. We test the usefulness of the model in a meta-scheduler to enforce power constraint on a system.Finally, we perform a detailed performance and energy characterization of Intel’s Restricted Transactional Memory (RTM). We use TinySTM software transactional memory (STM) system to benchmark RTM’s performance against competing STM alternatives. We use microbenchmarks and STAMP benchmarksuite to compare RTM versus STM performance and energy behavior. We quantify the RTM hardware limitations that affect its success rate. We show that RTM performs better than TinySTM when working-set fits inside the cache and that RTM is better at handling high contention workloads

    Towards a green ranking for programming languages

    Get PDF
    While in the past the primary goal to optimize software was the run time optimization, nowadays there is a growing awareness of the need to reduce energy consumption. Additionally, a growing number of developers wish to become more energy-aware when programming and feel a lack of tools and the knowledge to do so.In this paper we define a ranking of energy efficiency in programming languages. We consider a set of computing problems implemented in ten well-known programming languages, and monitored the energy consumed when executing each language. Our preliminary results show that although the fastest languages tend to be the lowest consuming ones, there are other interesting cases where slower languages are more energy efficient than faster ones.This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundacao para a Ciencia e a Tecnologia within project POCI-01-0145-FEDER-016718. The second author is also sponsored by FCT grant SFRH/BD/112733/2015
    corecore