
Energy Measurements of High Performance Computing Systems:
From Instrumentation to Analysis

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Thomas Ilsche

Gutachter:
Prof. Dr. rer. nat. Wolfgang E. Nagel
Technische Universität Dresden

Prof. Dr. rer. nat. Martin Schulz
Technische Universität München

Tag der Einreichung:
3. März 2020

Tag der Verteidigung:
7. Juli 2020

This work is licensed under a “CC BY 4.0” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Abstract
Energy efficiency is a major criterion for computing in general and High Performance Computing

(HPC) in particular. When optimizing for energy efficiency, it is essential to measure the underlying

metric: energy consumption. To fully leverage energy measurements, their quality needs to be well-

understood. To that end, this thesis provides a rigorous evaluation of various energy measurement

techniques. I demonstrate how the deliberate selection of instrumentation points, sensors, and analog

processing schemes can enhance the temporal and spatial resolution while preserving a well-known

accuracy. Further, I evaluate a scalable energy measurement solution for production HPC systems

and address its shortcomings.

Such high-resolution and large-scale measurements present challenges regarding the management of

large volumes of generated metric data. I address these challenges with a scalable infrastructure for

collecting, storing, and analyzing metric data. With this infrastructure, I also introduce a novel persis-

tent storage scheme for metric time series data, which allows efficient queries for aggregate timelines.

To ensure that it satisfies the demanding requirements for scalable power measurements, I conduct

an extensive performance evaluation and describe a productive deployment of the infrastructure.

Finally, I describe different approaches and practical examples of analyses based on energy mea-

surement data. In particular, I focus on the combination of energy measurements and application

performance traces. However, interweaving fine-grained power recordings and application events

requires accurately synchronized timestamps on both sides. To overcome this obstacle, I develop a

resilient and automated technique for time synchronization, which utilizes crosscorrelation of a specif-

ically influenced power measurement signal. Ultimately, this careful combination of sophisticated

energy measurements and application performance traces yields a detailed insight into application

and system energy efficiency at full-scale HPC systems and down to millisecond-range regions.

1

Contents

List of Figures 5

List of Tables 6

1 Introduction 7

2 Background and Related Work 11
2.1 Basic Concepts of Energy Measurements . 11

2.1.1 Basics of Metrology . 12

2.1.2 Measuring Voltage, Current, and Power . 13

2.1.3 Measurement Signal Conditioning and Analog-to-Digital Conversion 16

2.2 Power Measurements for Computing Systems . 17

2.2.1 Measuring Compute Nodes using External Power Meters 20

2.2.2 Custom Solutions for Measuring Compute Node Power 21

2.2.3 Measurement Solutions of System Integrators . 22

2.2.4 CPU Energy Counters . 24

2.2.5 Using Models to Determine Energy Consumption 24

2.3 Processing of Power Measurement Data . 28

2.3.1 Time Series Databases . 29

2.3.2 Data Center Monitoring Systems . 32

2.4 Influences on the Energy Consumption of Computing Systems 35

2.4.1 Processor Power Consumption Breakdown . 35

2.4.2 Energy-Efficient Hardware Configuration . 36

2.5 HPC Performance and Energy Analysis . 38

2.5.1 Performance Analysis Techniques . 38

2.5.2 HPC Performance Analysis Tools . 40

2.5.3 Combining Application and Power Measurements 41

2.6 Conclusion . 43

3 Evaluating and Improving Energy Measurements 45
3.1 Description of the Systems Under Test . 45

3.2 Instrumentation Points and Measurement Sensors . 46

3.2.1 Analog Measurement at Voltage Regulators . 47

3.2.2 Instrumentation with Hall Effect Transducers . 47

3.2.3 Modular Instrumentation of DC Consumers . 48

3.2.4 Optimal Wiring for Shunt-Based Measurements 49

3.2.5 Node-Level Instrumentation for HPC Systems . 50

2

3.3 Analog Signal Conditioning and Analog-to-Digital Conversion 50

3.3.1 Signal Amplification . 50

3.3.2 Analog Filtering and Analog-To-Digital Conversion 51

3.3.3 Integrated Solutions for High-Resolution Measurement 52

3.4 Accuracy Evaluation and Calibration . 53

3.4.1 Synthetic Workloads for Evaluating Power Measurements 53

3.4.2 Improving and Evaluating the Accuracy of a Single-Node Measuring System . 54

3.4.3 Absolute Accuracy Evaluation of a Many-Node Measuring System 60

3.5 Evaluating Temporal Granularity and Energy Correctness 61

3.5.1 Measurement Signal Bandwidth at Different Instrumentation Points 62

3.5.2 Retaining Energy Correctness During Digital Processing 67

3.6 Evaluating CPU Energy Counters . 71

3.6.1 Energy Readouts with RAPL . 72

3.6.2 Methodology . 72

3.6.3 RAPL on Intel Sandy Bridge-EP . 73

3.6.4 RAPL on Intel Haswell-EP and Skylake-SP . 76

3.7 Conclusion . 77

4 A Scalable Infrastructure for Processing Power Measurement Data 79
4.1 Requirements for Power Measurement Data Processing 79

4.2 Concepts and Implementation of Measurement Data Management 81

4.2.1 Message-Based Communication between Agents 82

4.2.2 Protocols . 86

4.2.3 Application Programming Interfaces . 87

4.2.4 Efficient Metric Time Series Storage and Retrieval 88

4.2.5 Hierarchical Timeline Aggregation . 89

4.3 Performance Evaluation . 94

4.3.1 Benchmark Hardware Specifications . 95

4.3.2 Throughput in Symmetric Configuration with Replication 96

4.3.3 Throughput with Many Data Sources and Single Consumers 98

4.3.4 Temporary Storage in Message Queues . 100

4.3.5 Persistent Metric Time Series Request Performance 100

4.3.6 Performance Comparison with Contemporary Time Series Storage Solutions . 102

4.3.7 Practical Usage of MetricQ . 106

4.4 Conclusion . 107

5 Energy Efficiency Analysis 109
5.1 General Energy Efficiency Analysis Scenarios . 109

5.1.1 Live Visualization of Power Measurements . 109

5.1.2 Visualization of Long-Term Measurements . 110

5.1.3 Integration in Application Performance Traces . 111

5.1.4 Graphical Analysis of Application Power Traces 112

3

5.2 Correlating Power Measurements with Application Events 114

5.2.1 Challenges for Time Synchronization of Power Measurements 115

5.2.2 Reliable Automatic Time Synchronization with Correlation Sequences 116

5.2.3 Creating a Correlation Signal on a Power Measurement Channel 116

5.2.4 Processing the Correlation Signal and Measured Power Values 118

5.2.5 Common Oversampling of the Correlation Signals at Different Rates 120

5.2.6 Evaluation of Correlation and Time Synchronization 121

5.3 Use Cases for Application Power Traces . 125

5.3.1 Analyzing Complex Power Anomalies . 125

5.3.2 Quantifying C-State Transitions . 131

5.3.3 Measuring the Dynamic Power Consumption of HPC Applications 134

5.4 Conclusion . 136

6 Summary and Outlook 137

A Bibliography 141

B Abbreviations 155

C Glossary 158

D List of Software Contributions 159

4

5

List of Figures

1.1 The base and turbo frequencies of an Intel Xeon Platinum 8180 processor. 7

2.1 Different combinations of voltage and current measurement devices 14

2.2 Overview of power transmission and conversion within a computing system. 19

2.3 Partial display of a power dashboard for the Cory system based on OMNI [Bau+19]. 34

2.4 Classification of performance analysis techniques (based on [Juc12]). 38

2.5 Overview of the Score-P architecture. 40

2.6 Timeline presentations from combined application and power measurement. 42

3.1 Different instrumentation approaches used in apollo and artemis. 47

3.2 The setup for absolute verification of artemis measurements 55

3.3 Relative differences between the 12 V per-package measurements on artemis com-

pared with the reference measurement. 56

3.4 Relative discrepancies between the sum of DC shunt measurements and the AC

reference measurement on artemis. 57

3.5 Relative discrepancies between the sum of DC Hall effect measurements and the

AC reference measurement on apollo. 58

3.6 Relative differences between the sum of VR power measurements and the shunt-

based DC 12 V measurement. 59

3.7 The absolute and the relative differences between the HDEEM measurement and

the reference measurement before and after calibration. 60

3.8 Observing the power consumption during short idle phases in a parallel benchmark. 62

3.9 Variations in the power consumption observed with different measurements. 64

3.10 Power measurements of binary white noise on ariel. 65

3.11 The PSD of a binary white noise input signal and a power measurement signal on ariel. 66

3.12 Information processing with internal sampling and external readouts. 68

3.13 Different power measurements of a regular dynamic workload. 69

3.14 The job energy of a high/low FIRESTARTER workload based on different measurements. 70

3.15 Verification of RAPL on different generations of Intel processors. 75

4.1 Overview of a measurement data infrastructure using distributed services and a

message broker. 81

4.2 The exchanges and message paths within the RabbitMQ configuration of MetricQ. . 84

4.3 The components of the MetricQ C++ API, the Python API, and used third-party

libraries. 87

4.4 Retrieving an aggregate timeline for an arbitrary request interval and a given resolution. 91

4.5 Computing an efficient aggregate over arbitrary request intervals. 92

6 List of Tables

4.6 The total effective end-to-end metric throughput for a single data source and

consumer at different requested per-channel metric rates. 96

4.7 Throughput characteristics for different replication levels and consumer modes. . . . 97

4.8 Drain performance for retrieving temporarily stored metric data at a given incoming

metric rate and duration of recording. 100

4.9 Query latencies for different query types, targets, and query time intervals. 102

4.10 Value insertion rates for InfluxDB for different number of bulk load workers. 103

4.11 End-to-end query response latencies for InfluxDB and the HTA implementation. . . . 104

5.1 A heat map of the live power consumption of taurus. 110

5.2 A dashboard with timeline charts of one month of power measurements on ariel. . . 111

5.3 A post-mortem workflow for combining application traces and power measurements. 112

5.4 An example visualization of an application power trace with Vampir. 113

5.5 A workflow for automatic time synchronization of power measurements. 116

5.6 The relationship between the correlation sequence, correlation signal, and power

measurement signal during the correlation interval. 118

5.7 A comparison of the synthetic correlation signal and the measured power consump-

tion after applying the time correction. 122

5.8 A crosscorrelation between the recorded correlation signal and the measured power. 123

5.9 A correlation of system events using the automatic time synchronization. 125

5.10 An observation of a Powernightmare with an external power measurement and

non-intrusive event tracing. 128

5.11 A violin-plot of the full-system power consumption of diana for different configura-

tions of workloads and mitigation strategies [Ils+18a]. 130

5.12 A trace of power consumption during C-state transitions. 132

5.13 An application power trace with HDEEM measurements of 1024 taurus nodes [Ils+18c]. 135

List of Tables

2.1 Comparison of different energy measurement approaches. 18

3.1 System specifications for the single-node systems under test. 46

3.2 System specifications for the HPC multi-node systems under test. 46

3.3 Comparison of the error introduced by different wirings of power measurements

for diana and ariel main power domains (processor + DRAM) 49

3.4 Overview of the analog measurement signal ranges. 51

3.5 The maximum discrepancies between RAPL readouts and the measured reference

power under a VR efficiency model. 76

7

1 Introduction

In the Information Age, scientific computing has become an essential resource for discovery. Simu-

lations with increasing accuracy and size continue to push the tremendous demand for hardware

resources, and thus the need for High Performance Computing (HPC) systems. Traditionally, perfor-

mance is the main criterion for HPC systems. In the more recent past, however, energy efficiency

has emerged as another crucial measure in this context. “The Energy and Power Challenge” was first

identified as a major limiting factor for increasing performance by the ExaScale Computing Study:

Technology Challenges in Achieving Exascale Systems [Kog+08].

On a large scale, facility operators struggle to realize increasing and highly variable power demands

to their data centers [Bat+14]. At a much smaller scale, the power consumption of processors limits

their delivered performance [Sch+16b; Hac+15]. Moreover, this trend is motivated by the increasing

environmental awareness and electricity costs [Auw+14]. To that end, energy efficiency research

strives to improve the ratio of delivered performance to consumed energy. Figure 1.1 illustrates the

impact of energy efficiency on processor performance. On this exemplary contemporary processor,

the achievable frequencies range from 1.7 GHz to 3.8 GHz depending on the executed workload

and number of active cores. The limiting factor for the frequency is power consumption and the

resulting heat dissipation. Hence, contemporary processors use complicated control systems to achieve

maximum performance under constrained power consumption [GSS15, pp. 53–56].

Energy efficiency research and power capping have one thing in common: They rely on accurate energy

measurements. An optimization that saves 4 % energy becomes meaningless if the measurement

error exceeds this improvement. For power capping, measurement accuracy even affects performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Number of Active Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y
(G

H
z)

Turbo Frequency

Non-AVX

AVX 2.0

AVX-512

Base Frequency

Non-AVX

AVX 2.0

AVX-512

Figure 1.1: The base and turbo frequencies of an Intel Xeon Platinum 8180 depending on the number
of active cores and the workload. The underlying data is documented in [Int17b].

8 1. Introduction

Considering a processor whose power consumption must never exceed a specific limit for safe

operation, if the measurement to observe this limit had an uncertainty of 10 %, the mechanism would

need an equal margin. This margin translates to a significant loss of performance even if the measured

value was accurate. Moreover, it is not sufficient for a measurement to be accurate on average or for

a limited set of scenarios.

Conventional power monitoring used in computing systems does not provide the necessary quality

for energy efficiency research [Hac+13a]. Although metrology offers well-established solutions for

energy measurement in general, the specific properties of computing systems have to be considered.

A core challenge of measuring computing systems is the high variability of executed workloads. In

consequence, the power consumption exhibits an almost arbitrary signal, impeding the definition

of assumptions for measurements. Furthermore, understanding the impact of short-time workload

changes requires a measurement with a high temporal resolution.

Another distinct characteristic of computing systems is the diversity of components with their individual

power consumption and the resulting complex power delivery. For energy efficiency research it is vital

to isolate specific components, e.g., processor and memory. In particular, bottom-up energy models

require a deep understanding of the different components. Therefore, energy measurements should

have a high spatial resolution. When instrumenting a computing system with an energy measurement,

the choice of measurement point and sensor affect the possible temporal and spatial resolution.

Moreover, High Performance Computing concerns systems with thousands of computing nodes,

challenging the scalability of energy measurement solutions. Notably, the vast amount of data

generated by high-resolution energy measurements from large-scale systems creates demanding

performance requirements for further data handling. This includes data collection, processing, and

consumption, but also persistent storage and retrieval as well as analysis. While scalable data center

monitoring solutions are available, they typically operate at temporal resolutions of one second or

longer [Pel+15; Age+14; Bra+09].

Finally, all measurements and data processing are of no avail without an analysis that yields insight

and knowledge. Depending on the specific use case, there is a wide range of options to analyze

the measurements. For example, energy measurements alone can be plotted in charts to show the

variation over time. Nonetheless, a combined analysis of energy measurements with application or

system events can leverage more information. The connective factor for this combination is time.

However, the energy measurements and application events typically originate from separate systems

with different clocks, which, at high temporal resolutions, can create ambiguity.

This thesis addresses the three challenges for energy measurements of HPC systems: 1) implementing

accurate and high-resolution measurements, 2) processing the large volume of measurement data,

and 3) leveraging the measurements for energy efficiency analysis. To begin, Chapter 2 provides an

overview of the existing research on the different aspects of this topic.

Chapter 3 then delves into the proposed improvements for energy measurements. The investigation

puts a particular focus on increasing the temporal resolution while retaining a well-known accuracy.

As the results reveal, the choice of the measurement point and sensor has a significant impact on

the achievable resolution. Chapter 3 further includes a thorough evaluation of a scalable energy

measurement solution embedded in a production HPC system as well as a detailed discussion on

using CPU energy counters as alternatives to dedicated measurements.

9

Subsequently, Chapter 4 describes the design and implementation of a scalable solution for processing

metric data. A key element of this infrastructure is the concept of Hierarchical Timeline Aggregation

(HTA), a novel storage scheme for time series metric data that enables both continuous insertion

at high data rates and efficient retrieval of aggregate values and timelines. The discussion of this

infrastructure includes a comprehensive performance evaluation, which demonstrates that it satisfies

the specified performance requirements of large-scale, high-resolution energy measurements.

Based on power measurement data from the proposed measuring systems and processing infras-

tructure, Chapter 5 introduces different ways to analyze energy measurements. The focus is set on

application power traces, a combination of energy measurements and monitored application and

system events, which retains full temporal information. To that end, this thesis contributes a reliable

technique to correlate power measurements and application events. This technique uses synthetic

workload kernels and power measurements to create a hidden channel between the system under

test, which executes the application, and the energy measuring system. The presented method then

performs a crosscorrelation on recorded information from both systems, which provides the basis for

synchronizing the different timestamps. A set of specific use cases demonstrate the practical applica-

bility of the contributions of this thesis. These use cases include an investigation of a power anomaly

that prevented processors from using energy-efficient sleep states. This investigation eventually led

to a fix in the officially released version of the Linux operating system kernel that saves ≈ 10 % of the

idle power consumption on affected server systems. Finally, Chapter 6 gives a summary and discusses

future work.

10 1. Introduction

11

2 Background and Related Work

With the ExaScale Computing Study [Kog+08], the energy consumption and hence energy measure-

ments of HPC systems have entered the focus of scientific research. Energy measurement, in general,

has a long and established tradition, which I discuss in Section 2.1. In Section 2.2, I then survey a

range of approaches to determine the energy consumption of computing systems with a focus on HPC

systems and their components. Section 2.3 covers concepts and software for processing and storage

of measurement data. Subsequently, Section 2.4 describes factors that impact the power and energy

consumption of computing systems and efforts to improve their energy efficiency. In Section 2.5, I

discuss common techniques for performance analysis and present ways to combine them with power

measurements. Finally, in Section 2.6, I provide a summary of the related work and the aspects that

this thesis addresses and improves.

2.1 Basic Concepts of Energy Measurements

Electrical energy is equivalent to the integral of power over time:

E =

∫︂

P(t)dt (2.1)

Conventional electricity meters use electromechanical induction to facilitate the integration of power

over time [Ler12, Sec. 8.3]. This approach is not applicable to modern systems that strive for a

detailed recording of energy consumption over time. Therefore, electrical energy is not measured

directly but digitally calculated as the integral over a series of power measurements. In turn, power

is computed from voltage and current measurements [Ler12, Sec. 11.10]:

E =

∫︂

V (t) · I(t)dt (2.2)

While there is no strict distinction, this thesis uses the term energy measurement when there is a focus

on obtaining an accurate energy value for a given time interval, and power measurement if the focus

is on the dynamic of power consumption over time. As I discuss in Section 2.1.3 and Section 3.5.2,

determining an accurate energy value requires more than just accurate power samples.

Traditional electrical components, such as ohmic resistances or electric motors, have well-understood

properties concerning the dynamic properties of the measurement signal. In contrast, the power

consumption of computer components can change at the scale of 10 µs depending on the executed

workload [Ils+15a]. The arbitrary dynamic power consumption patterns hinder general assumptions

that would simplify the measurement and need to be considered throughout the measurement chain.

12 2. Background and Related Work

2.1.1 Basics of Metrology

Terminology

The International Vocabulary of Metrology (VIM) [JCG12] describes the fundamental terminology

of metrology. Formally, it defines a measurement as the “process of experimentally obtaining one or

more quantity values that can reasonably be attributed to a quantity”. Moreover, the measurand is

the “quantity intended to be measured” and the measurement result comprises the “set of quantity

values being attributed to a measurand together with any other available relevant information”. The

central outcome of a measurement is the “quantity value representing a measurement result” referred

to as measured quantity value or short measured value.

A sensor is an “element of a measuring system that is directly affected by a phenomenon, body, or

substance carrying a quantity to be measured”. A transducer is a “device, used in measurement, that

provides an output quantity having a specified relation to the input quantity”. The sensor is a part

of the transducer. Moreover, the measurement signal refers to the temporal behavior of a physical

quantity within the measuring system [Par10].

Extending on this vocabulary, this thesis uses the term metric similarly to measurand (see also

Section 4.2). In layered measuring systems, in which the measured value is processed further, readout

value refers to the measured value that is available to the user or analysis as opposed to measured

values that are used internally in a measuring system.

Error and Uncertainty

There are different approaches to formally describe the correctness of measured values. The traditional

error approach assumes a single true value to which a measured value differs by a measurement error.

This error can be distinguished into a systematic error, which remains constant or predictable across

replicate measurements, and a random error that varies unpredictably across replications. In practice,

an upper limit of the observed error is sometimes referred to as uncertainty [JCG12]. A criticism of

this approach is that the error of a measurement is unknowable in practice. Corrections for known

effects, e.g., calibration, contribute to the error in ways that are difficult to quantify. Further, there

may even be a distribution of true values due to insufficient definitions of the measurand.

Contrary, the uncertainty approach offers a formalized definition of uncertainty as well as a process to

determine it. The Guide to the expression of uncertainty in measurement [JCG08] defines uncertainty

as “parameter, associated with the result of a measurement, that characterizes the dispersion of

the values that could reasonably be attributed to the measurand”. In the formulation stage of an

uncertainty evaluation, the measurand (Y) is defined and all quantities on which it depends (X i)

are identified. Moreover, a measurement model, which relates the measurand to the input quantities

(Y = f (X1, . . . , XN)) is developed. Then, probability distributions are assigned to the input quantities.

In the subsequent calculation stage, the model is used to propagate the probability distributions from

the input quantities to the measurand. This calculation results in the standard uncertainty as well as

a coverage interval with a specified coverage probability. An uncertainty evaluation can either be

based on statistical analysis of a series of observations (Type A evaluation) or on other information,

e.g., known uncertainty of input quantities (Type B evaluation) (see [JCG08; JCG09]).

2.1. Basic Concepts of Energy Measurements 13

2.1.2 Measuring Voltage, Current, and Power

This thesis focuses exclusively on digital measuring systems, which are based on capturing a voltage

with an analog-to-digital conversion. This means that only the voltage as a measurand can be

measured directly, but all other quantities must be converted to a voltage before an analog-to-digital

conversion [Mal11, p. 122]. Therefore, a current signal is converted to a voltage signal using a

current transducer, both voltage signals are captured digitally, and power is computed digitally from

both [Web04, pp. 3–11].

Current Transducers

In order to convert the current signal to a voltage signal, a transducer is used. There are two commonly

used principles to implement current transducers1. Shunts are resistors with a low, calibrated value

that are inserted between the component under test and its power supply. The current going through

the resistor causes a voltage drop proportional to the value of the current. The resistance of the shunt

presents a compromise: Small resistances result in a small voltage drop and thus limit the achievable

precision from the voltage measurement. Larger resistances cause higher heat dissipation and thus

the resistance changes with a rising temperature. Furthermore, the measured component must still

function properly with the reduced voltage (see also [Web04, p. 2-5]). The current at a shunt is

computed by the following equation:

I =
Vshunt

Rshunt
(2.3)

Hall effect sensors use the magnetic field to transduce current. In principle, they can operate without

contact to the measured system. This property is utilized in contact-less current clamps. In integrated

Hall effect transducers, magnetic shielding is used to increase accuracy. These integrated components

are inserted between the power supply and the measured component similarly to shunts. To compute

the measured current, Hall effect sensors come with a documented response given in V/A. The

advantage of Hall effect sensors over shunts is that they have less influence on the measured system

and provide galvanic isolation. Integrated Hall effect sensors require an active power supply for

amplifying the signal. In return they provide a higher voltage signal that is easier to capture than the

low voltage drop of shunts. Further, Hall effect sensors respond differently to high frequencies (see

also [Web04, p. 2-10]).

DC Power Measurement

There is a general distinction between measuring direct current and alternating current. Direct current

(DC) is commonly defined to be “a current that flows only in one direction” [AA02, p. 96]. However,

it is often also assumed that in a DC circuit, both the current and the voltage do not vary over time,

at least with respect to the timeframe for determining the power consumption [Web04, p. 3-1].

By contrast, alternating current (AC) is “a current which periodically reverses its direction, varying

sinusoidally with time about a mean value of zero” [AA02, p. 6].

1Current transducers are also referred to as current sensors.

14 2. Background and Related Work

Vs

A
Im

Ra

Va

Vl

Il

VVm Rv

Iv

Current Measurement

Voltage Measurement

(a) Power measurement with proper measurement of load current and
source voltage

Vs

A
Im

Ra

Va

Vl

Il

VVm Rv

Iv

Current Measurement

Voltage Measurement

(b) Power measurement with proper measurement of load voltage and
source current

Figure 2.1: Different combinations of voltage and current measurement devices

DC power can be measured by multiplying measured voltage and current values:

P = V × I (2.4)

However, since both voltage and current measurements have an influence on the circuit, their impact

on each other should be considered. Figure 2.1 shows the two ways to apply voltage and current

measurements with their replacement circuits. These two ways focus on either a proper current or a

proper voltage measurement. For the circuit in Figure 2.1a, the source power Ps and load power Pl

can be computed as follows:

Ps = Vm Im +
V 2

m

Rv
(2.5)

Pl = Vm Im − I2
mRa (2.6)

Similarly, for the circuit in Figure 2.1b, power is computed as:

Ps = Vm Im + I2
mRa (2.7)

Pl = Vm Im −
V 2

m

Rv
(2.8)

2.1. Basic Concepts of Energy Measurements 15

These equations show, that there is a discrepancy between the source or load power and the measured

power that only considers measured voltage and current values, i.e.,

Pm = Vm Im (2.9)

This difference, referred to as insertion error, depends on which circuit is chosen and which power is

to be measured. Ideally, the insertion error is negligible, so the simple computation for Pm can be used

in practice. Generally, for setups with high voltage and low current, proper current measurement is

preferred, whereas for high current and low voltage, proper voltage measurement of is more accurate.

The optimal solution depends on the measured voltage and current as well as the impedance of the

measurement devices (see [Mal11, pp. 141 sq.], [Web04, pp. 3-1 sq.]).

AC Power Measurement

The above discussion relates to the power consumption in DC circuits. For varying voltages and

currents, the function

P(t) = V (t)× I(t) (2.10)

yields the instantaneous power. For AC circuits, the active power, which is the mean power of one

period T is defined as:

P =
1
T

∫︂ T

0

P(t)dt (2.11)

For digital measurements, sampling wattmeters use discrete instantaneous power samples to compute

average the power as per:

Pavg =
1
N

N−1
∑︂

k=0

P(k) =
1
N

N−1
∑︂

k=0

V (k)I(k) (2.12)

For AC measurements, N is the number of samples in one period and X (k) is the k-th sample

of one period (see [Web04, pp. 3-3, 3-11]). Power measurements for AC and constant DC offer

simplified measurement approaches (e.g., [Ler12, p. 143]). Computing the power consumption of

(non-sinusoidal) variable current can be done similarly to AC with (2.10) for instantaneous power

values or (2.11) and (2.12) for average power values with respect to a timeframe T . However, as

discussed in the following, the sampling approach must be appropriate for the specific variability of

the analog signal.

16 2. Background and Related Work

2.1.3 Measurement Signal Conditioning and Analog-to-Digital Conversion

In order to accurately capture measurement signals, it can be necessary to condition the analog signal.

Moreover, the analog-to-digital conversion highly depends on the characteristics of the signal.

Signal Amplification

When using shunts as current transducers, the voltage drop is often very small. Capturing this voltage

directly can have a negative impact on accuracy. Measurement amplifiers scale the measurement

signal proportionally to a higher amplitude. The following properties are important for a measurement

amplifier [Ler12, p. 171]:

• low feedback on the measurand,

• linearity,

• low noise and low distortion at high amplitudes,

• sufficient bandwidth,

• load independent output signal.

There are further analog signal processing techniques such as to determine certain characteristics

or statistics in the analog domain. However, this thesis focuses on digital measurement processing,

which nowadays enables complex transformations without dedicated hardware.

Anti-Aliasing Filters

The Nyquist–Shannon sampling theorem states that the sampling rate must be larger than two times

the maximum frequency contained in the analog signal:

fs > 2B (2.13)

This criteria ensures that the original continuous signal can be perfectly reconstructed from the samples.

An actual reconstruction is typically not implemented by processing software and a digital system

cannot represent a time-continuous signal. Nevertheless, the criterion ensures that measured power

allows a correct computation of energy given a duration with sufficient sample count. Violations of the

criterion cause the aliasing effect, which prevents a signal reconstruction and thus the average power

or energy consumption cannot be determined accurately. To ensure a sufficient sampling rate and

prevent aliasing, an analog low-pass (anti-aliasing) filter is often applied before the analog-to-digital

conversion (see [Ler12, pp. 331, 435 sqq.]).

Analog-to-Digital Conversion

After the analog processing, the measurement signal is converted to a digital series of values. There

are various different ways to implement analog-to-digital conversion aimed at different sampling

2.2. Power Measurements for Computing Systems 17

rates and precision [Ler12, p. 360]. There are integrated data acquisition solutions that provide the

measurement values to a computer. This approach allows for digital measurement processing in

software without developing digital hardware and drivers.

An example of such a data acquisition device is the National Instruments NI-6255 [Nat16b]. It

can sample up to 80 input channels with an maximum aggregate sampling rate of 750 kSa/s at a

value resolution of 16 bits. The device specification includes a detailed equation for accuracy which

is split into gain error (relative to the measured value), offset error (relative to the measurement

range), and noise uncertainty. The accuracy also depends on temperature and on regular calibration.

The high amount of channels in this device is achieved through multiplexing one analog-to-digital

converter between multiple channels. This multiplexing introduces a settling error for multichannel

measurements [Nat16a; Nat16b]. Another data acquisition card is the NI-6123 [Nat15]. This device

has 8 independent differential input channels with a maximum sampling rate of 500 kSa/s for each

channel. Both the NI-6255 and NI-6123 are available as PCI devices for mounting in a standard

PC and PXI for integration in modular laboratory instruments. The NI-6255 is also available as

USB device. It illustrates that there are many aspects to consider when choosing a solution for data

acquisition. Further interfaces that can be used for capturing digital measurement data are described

in [Ler12, pp. 515–640]. Details for building automated measurements systems based on computers

and data acquisition hardware are discussed in [Par10, pp. 185–190].

2.2 Power Measurements for Computing Systems

Measuring the energy consumption of computing systems has always been a prevalent topic for

mobile systems where battery life is essential. With the growing importance of energy efficiency and

limitations due to power consumption, energy measurements have now also become an important

aspect of HPC and other data center systems. Together with my co-authors, I discussed a comparison

of existing approaches for measuring energy in HPC systems in [Ils+15a, Sec. II] and [Ils+18c, Sec. 2].

This includes a list of five key criteria for evaluating and comparing power measurement techniques:

1. Temporal resolution. The power consumption of a processor highly depends on the executed

task, which can change in short time intervals in the order of microseconds. To accurately

analyze the impact of such short workloads on energy consumption, it is necessary to provide

a high temporal resolution. As discussed in Section 2.1.3, a high sampling rate is already

necessary for accurate energy values. However, the frequent samples are not always available

as external readout values, but rather used internally to achieve a high accuracy. The typical

temporal granularity of measurements for computer systems is between 1 s and 1 ms. A detailed

discussion of temporal measurement granularity is given in Section 3.5.

2. Spatial resolution. In order to understand the power consumption of a system during a workload

in detail, it is often beneficial to measure components in the system separately. For instance,

distinguishing the power consumption of the CPU and memory subsystem will yield additional

insight about the resource utilization of an analyzed workload. Section 3.2 provides a detailed

discussion of instrumentation points on different systems under test.

18 2. Background and Related Work

Table 2.1: Comparison of different energy measurement approaches.

Measurement Type T. Resolution Spatial Resolution Accuracy Scalability Cost

External Power Analyzers at AC Input
LMG450 [ZES] 50 ms node 0.07 %+0.04 %a (–) (–)
LMG600 (A1) [ZES16] 50 ms node 0.015 %+0.01 %a,b (–) (– –)
WT1800E [Yok16] 50 ms node 0.05 %+0.05 %a,c (–) (– –)

Custom Solutions
PowerPack [Ge+10] < 1 s components “verified” (+) 9 nodes (o)
PowerMon2 [Bed+10] 1 ms components 6.8 % (I) (+) $150
PowerInsight [LPD13] 1 ms components avg. 1.8 % (I) (+) 104 nodes (o)
ArduPower [Dol+15] 0.17 ms components < 1.5 % (+) €100
PowerSensor 2 [RV18] 0.116 ms GPU 3.7 % (I) (o) (o)
DiG[Bor+18; LBB18] 1 ms / 20 µsd node < 1 % (σ) (+) 45 nodes $90

Integrated Measurement Solutions
PDU (typical) [Hac+13a] 1 s node heavy aliasing (++) (+)
Cray XC30 [MK14] 100 ms node, GPU aliasing (++) (+)
Cray XC40 [MRK15] 100 ms node, components calibrated (++) (+)
IBM AMESTER [IBM18] 0.25 ms node, components undocumented (++) (+)
Atos HDEEM [Ils+18c] 1 ms / 10 ms node, CPU, DRAM 3 % (++) 1456 nodes (+)

CPU Counters
AMD’s APMe [Hac+13a] 10 msf per socket systematic errors (+) (++)
RAPL SNB [Hac+13a] 1 msf cores, mem, pkg systematic errors (+) (++)
RAPL HSW+ [Hac+15] 1 msf cores, mem, pkg no systematic errors (+) (++)

a reading + range
b additional terms apply, see (2.14)
c additional terms apply for current ranges above 5 A, see (2.15)
d 1 ms available in centralized monitoring, 20 µs available for internal edge analysis at the embedded monitoring nodes
e tested on the Bulldozer processor generation
f in-band readouts are typically not performed in minimal intervals due to imposed perturbation

3. Accuracy. It is important to have a clear understanding about the accuracy of energy mea-

surements. Otherwise any analysis and conclusions based on the measurements carries the

unknown uncertainty. I evaluate the accuracy of several measuring systems in Section 3.4

4. Scalability. An energy measurement solution for parallel workloads running on HPC systems

or in large data centers, needs to be scalable. Instrumentation for scalable measurements is

introduced in Section 3.2.5. The necessary infrastructure to process the high measurement data

rates is presented in Chapter 4.

5. Cost. A low cost makes energy measurements more accessible to a wide range of users and

thus increases the chance for reproducibility of experiments. Further, cost also influences the

scalability — an expensive solution may be feasible for individual systems, but hardly for a

production-scale HPC system with thousands of compute nodes.

Table 2.1 summarizes different energy measurement approaches according to these criteria. A critical

aspect for any measurement solution is the selection of a measurement domain which also involves

choosing an appropriate point of instrumentation. As shown in Figure 2.2, the power distribution

within a computing system forms a graph in which power conversion units (e.g., power supply unit

(PSU) and voltage regulator (VR)) are nodes and cables or other electric connections are edges.

There are many possible points of instrumentation within that graph. The power consumption of a

2.2. Power Measurements for Computing Systems 19

12 V

230 V

Power

Supply

Unit

12 V

CEE 7/4

Plug

VR

VR

~1.1 V

1.5 V

CPUSocketMolex

Plug

(Board) DRAMDIMMAC

Power Grid

FANMolex

Figure 2.2: Simplified overview of power transmission and conversion for selected components of an
exemplary computing system (see also [Ils+15a]).

computing system as a whole, as measured outside of the PSU, is typically characterized as AC and

thus measured accordingly2. In contrast, the power consumption of components within a computing

system is typically DC at lower voltages. Specifically, the involved voltages, supplied by a PSU or VR,

vary only in a limited range, but the current varies arbitrary. While this constitutes a DC measurement,

the varying nature of the current and power needs to be considered.

Certain power conversion devices have internal measurements and provide them as digital or analog

interfaces, e.g., the ON Semiconductor NCP8125 Voltage Regulator includes an analog output current

signal [ON 15]. Edges can be instrumented with special measurement adapter cables or riser cards

for sockets, e.g., Adex Electronics3 manufactures a range of riser cards that include current shunt

options. In general, instrumenting closer to the component provides a better spatial resolution and a

more narrowed down measurement domain. However, since only a small part of components are

captured with each instrumentation point, more instrumentation points are needed to get a holistic

view of the system. While an instrumentation close to the component offers more insight into the

inner energy usage of the components, a more coarse grained instrumentation closer to the power

supply provides better information about the actual energy costs of the system.

Hsu [HP11] lists possible measurement domains from the point of view of a large HPC center:

a) a site,

b) an HPC facility,

c) an HPC machine,

d) a cabinet (or server rack),

e) a server (compute node),

f) components inside a server.

In the context of the Jaguar supercomputer, the site and facility levels are used for revenue metering

and PUE monitoring. Measuring at the HPC machine level can cover large-scale systems with little

effort, but does not provide a fine-grained resolution. Measurements at the level of cabinets and

compute nodes level can utilize capabilities of modern PDUs, e.g., Megware ClustSafe [Meg], without

requiring additional instrumentation. Some PSUs also provide measurement capabilities, for example

through the standardized PMBus interface [Sys15]. This thesis focuses measurements at the level of

compute nodes and discusses different approaches for them in the following sections.

2Large HPC systems use more complex power delivery schemes and may supply multiple compute nodes with DC power.
3Adex Electropnics, Bus Extenders and Risers: https://www.adexelec.com/extenders.htm

https://www.adexelec.com/extenders.htm

20 2. Background and Related Work

2.2.1 Measuring Compute Nodes using External Power Meters

There is a wide range of external power meters that are often used at the power inlet of a compute

node. Commodity devices such as the “Watts Up? Pro”4 are popular due to its low price and ease

of use and were particularly often used when energy efficiency became an important topic for HPC,

but specialized solutions were not yet available [HP11; Ge+10; Dol+10; Jia+10; Gra+17]. This

entry level device provides a temporal resolution of at best 1 s and an accuracy of ±1.5%+ 3× value

resolution [Ver15]. However, below 60 W the accuracy further decreases and the minimum measurable

power is 0.5 W at which the accuracy is given at ±0.3 W. The device is also limited to 120 V, 60 Hz

AC input with up to 1.8 kW5. Consequently, such a device cannot be used in data centers with DC

power input.

More professional power meters provide improved accuracy and capabilities. For example the Yoko-

gawa WT1800E series [Yok16] specifies the following accuracy for typical AC power measurements:

accuracyWT1800E = ± [0.05% of reading+ 0.05% of range+ 2µA× V] (2.14)

The ZES Zimmer LMG600 series offers even more accurate readings with the corresponding L60-CH-A1

channels. For typical AC readings using the internal sensors, its accuracy is specified as follows:

accuracyLMG600,≥10A = ±
�

0.015% of reading+ 0.01 % of range+
30µA

A2 × I2
t rms × Vt rms

�

(2.15)

For current ranges below 5 A, the last term disappears:

accuracyLMG600,≤5 A = ± [0.015% of reading+ 0.01% of range] (2.16)

For both the WT1800E and the LMG600, this excellent accuracy is coupled to a number of conditions.

The voltage and current input should be a sine wave, the temperature needs to be around 23 °C and

the device needs to be calibrated in regular intervals. For higher frequency input waveforms, the

accuracy drops significantly or even ceases to be specified (see [Yok16; ZES16]). These conditions

can be satisfied for the AC input of compute nodes. However, it is also possible to apply these

devices to various DC measurement domains within a compute node. The dynamic nature of compute

workloads can result in almost arbitrary waveforms at the DC measurement sensors, making it much

more difficult to satisfy the conditions for a high accuracy. Section 3.5 evaluates the effect of dynamic

workloads on the actual power consumption signal at different DC measurement domains.

The WT1800E uses an internal sampling rate of approximately 2 MSa/s. The rate can be switched

between three values to avoid aliasing [Yok16, pp. 8–9]. However, the readout values in “High Speed

Data Capturing” mode are only provided at 20 Sa/s [Yok16, p. 16-1]. The LMG600 uses internal

sampling rates of up to 1.21 MSa/s. In normal operation, it measures in cycles of at least 30 ms

(331
3 Sa/s), but it also provides a scope mode to access the measured values at its internal sampling

rate. The possibility to continuously record a power trace at microsecond-resolution makes this

device particularly well suited for analyzing the influence of short compute workloads on power

4This particular product is discontinued.
5There is an international versions with different voltage and frequency specifications.

2.2. Power Measurements for Computing Systems 21

consumption. In Chapter 3, I use a LMG670 device with six L60-CH-A channels. Both the WT1800E

and LMG600 devices include different filter configurations that can be used on the input signal. The

LMG600 family further offers a DualPath mode, which allows to simultaneously capture the input

signal with two analog-to-digital converters: One wideband signal that contains the full dynamics and

frequency spectrum and one filtered narrowband signal that uses an anti-aliasing filter for ensuring

accuracy [ZES15]. The L60-CH-A channels uses a wideband sample rate of 1.21 MSa/s at an unfiltered

bandwidth of 10 MHz or with an optional 145 kHz analog anti-aliasing filter. The narrowband signal

is sampled with 151.51 kSa/s and uses an unconditional anti-aliasing filter with a bandwidth of

14.5 kHz [ZES16].

While the external power analyzers can provide an excellent accuracy, the cost for professional devices

is high, and it does not offer scalable solutions for HPC systems. High-end devices can work either on

AC or DC measurement points, so the spatial resolution depends on the specific implementation.

2.2.2 Custom Solutions for Measuring Compute Node Power

There are several products and research projects that provide power measurements of compute

nodes that have no or insufficient power measurement support on their own. Typically small add-on

components are used such that the additional hardware is integrated into the standard compute

nodes.

PowerMon2 [Bed+10] uses a form factor that fits into a 3.5 ” hard drive slot. This can be applied to

general purpose server designs that feature a hard drive bay, but is not easily applicable for denser,

specialized HPC nodes. Measurements are taken at a rate of up to 1024 Sa/s for a single channel or

up to 8 measurement channels at a shared rate of 3072 Sa/s. The accuracy is documented at ±0.9 %

for voltage measurements and −6.6 % / 6.8 % as worst-case for current. Its predecessor PowerMon

costs less but only provided a maximum sampling rate of ∼ 50 Sa/s and used a larger form factor. The

measurement units can be fabricated at a cost of less than $150 per device which makes it feasible to

apply them to larger systems. In the exemplary measurements of a commodity system, six channels

are measured: two 12 V, one 5 V, one 3.3 V channel from the power supply unit as well as a 12 V

and 5 V rail from a hard disk. Measurement data is transferred to the compute node under test itself

using USB.

PowerPack [Ge+10] is a more abstract framework for power measurement. It describes a set of tool

kits including hardware and software with support for various measurement devices and a user-level

API. An implementation of PowerPack uses “Watts Up? Pro” power meters for AC power and shunt

resistors in combination with National Instruments data acquisition hardware for measuring DC

power within the compute node. This implementation would inherit the limitations of external

measurements in terms of scalability and cost. While redundant sensors are used to verify each other,

no specific accuracy is documented for the exemplary implementation. Examples for PowerPack show

a resolution of≪1 s, but no specific information about sampling rate is provided.

Penguin Computing provides a commercial HPC compute node power measurement device called

PowerInsight [LPD13]. A BeagleBone board is used as the core for PowerInsight, providing a full

Linux with floating point computing capability, basic ADCs, as well as good connectivity. A carrier

board — the PowerInsight cape — provides additional ADCs and a total of 15 connectors to sensor

modules. Different harnasses (sensor modules) can be connected to the carrier board, e.g., a standard

22 2. Background and Related Work

motherboard connector or PCIe risers. Sensor modules contain a Hall effect sensor and a voltage

divider for each channel. The validation of this works only shows average errors for current and

voltage of 1.8 % and 0.3 %, respectively. The effective sampling rate is limited by the software

overhead to ∼ 1 kSa/s. Both, USB communication with the compute node under test, as well as a

global LAN interface are available.

The ArduPower [Dol+15]wattmeter uses an Arduino Mega 2560 board as base and adds an ArduPower

sensing shield on top of it. ArduPower offers a sampling rate up to 5880 Sa/s and 16 channels. Each

channel uses an ACS713 Hall effect sensor with an error of ±1.5 %. Further verification is performed

using an external precision power analyzer. While the power traces match visually, no quantitative

evaluation of the total error is performed. With a low production cost of approximately €100, the

ArduPower can be used in medium to large-scale systems analogous to PowerMon2.

PowerSensor 2 [RV18] is a similar project with the goal of providing power measurements for GPUs

with a high temporal resolution at a low cost. It uses a PCIe riser card, ACS712 Hall effect current

sensors, and an Arduino Leonardo. The current measurement has a documented uncertainty of 3.7 %,

but the authors further report that “with proper calibration, our measurements are typically within

1 % of built-in GPU power meters and lab equipment”. The accuracy of power consumption is further

limited since the voltage is not measured. PowerSensor 2 provides instantaneous power samples at

8620 Sa/s.

DiG (Dwarf in a Giant) [LBB18] leverages a custom power monitoring system for HPC systems based

on BeagleBone Black embedded boards. The system can use different configurations of the power

sensing module. One configuration uses a current mirror in combination with a shunt resistor for

measuring current whereas a voltage divider conditions the voltage level. This configuration is used

in the 45-node cluster D.A.V.I.D.E. [Bor+18]. An alternative configuration uses Hall effect sensors and

voltage dividers. The authors recognize that ”due to the high operating frequencies of HPC nodes, the

power consumption is highly dynamic, and therefore an anti-aliasing filter is required“ [LBB18]. In

fact first-order low-anti-aliasing filters are used before analog-to-digital conversion by the BeagleBone

Black. The internal sampling rate is 800 kSa/s, which is averaged down to 50 kSa/s in hardware. The

measurement software further aggregates measurement data before being it sends it to a message

broker at 1 kSa/s and 1 Sa/s for two separate data queues. Since the BeagleBone Black itself is an

open platform, it can perform any kind processing on the measurement data at the intermediate

50 kSa/s. The authors demonstrated this by performing FFTs to create power spectral density and

Continuous Wavelet Transform plots from high-resolution power measurements.

2.2.3 Measurement Solutions of System Integrators

Several system integrators have adopted power measurement as a system feature. Since the XC30

architecture, Cray provides dedicated power monitoring facilities that are available to users both in-

band through sysfs-files as well as out-of-band using the Power Management Database (PMDB) [MK14].

There is also the application library pm_lib, which is based on these sysfs-files [Har+14]. On XC30

systems, the implementation is limited to the granularity of nodes and accelerators (i.e., GPU and

MIC) and values are updated at 10 Sa/s. In [Har+14], I have shown that the initial implementation

is affected by aliasing, which limits the accuracy. With the Cray Advanced Platform Monitoring and

Control (CAPMC) [MRK15] for XC40, the power measurement has been improved significantly. By

2.2. Power Measurements for Computing Systems 23

using a 12-bit ADC instead of an 8-bit ADC, the accuracy was increased. Additionally, hardware

averaging over 1 kSa/s prevents aliasing issues [Mar+17]. The XC40 power measurements also

include data from VRs which increases the spatial resolution. Measurements for all 12 voltage

lanes are available using the out-of-band data collection whereas in-band access provides two new

aggregated measurement domains for CPU and memory in addition to total compute node power

and accelerator power.

IBM provides sophisticated power measurements with their recent POWER9 systems [IBM18]. The

measurements are controlled by the On Chip Controller (OCC), specifically by AMESTER (Automated

Measurement of Systems for Temperature and Energy Reporting). AMESTER allows a fine-grained

collection of sensor data, including power measurements at 250 µs intervals. An optional Analog

Power Subsystem Sweep (APSS) module further provides sophisticated power measurements at the

voltage rails. The OCC interface features derived sensors which accumulate power readings to energy

and include an update tag that counts the number of values in the accumulation.

In their Bull supercomputer systems, Atos offers an energy measurement infrastructure named

HDEEM (High Definition Energy Efficiency Monitoring) [Hac+14; Ils+18c]. HDEEM was created

in a cooperation between Atos (formerly Bull) and TU Dresden. Throughout Chapter 3, I describe

HDEEM in detail, evaluate it, and discuss improvements based on the evaluation.

All integrated vendor solutions are generally scalable to the size of the full system. The scalability

of HDEEM has been specifically demonstrated on a 1456-node production system with a detailed

application-power-trace from a run on 1024 nodes (see Section 5.3.3). The power measurement

features from vendor solutions are typically included in the purchase of such systems at no explicit

cost. However, additional calibration may be necessary and impose additional cost. As an exemplary

cost estimation, the Cray XC40 power measurement uses two embedded Texas Instrument devices,

a LM5056A and a LM5066I, which are available for approximately €5 each. Consequently, it can

be assumed that the additional hardware cost less than €100 per compute node, even for a high

quality power instrumentation. This does, however, not account for the cost of development as well as

including calibration in the manufacturing process. The Cray XC40 architecture leverages a per-unit

factory-calibrated power measurement chip within the IVOC to perform a run-time-calibration of the

other power measurement device on a compute node (see. [Ils+18c, Sec. 5.2], [Mar+17]).

The aforementioned solutions are specialized and typically use vendor-specific interfaces such as

libraries, device drivers, or sysfs-files. An established interface to provide generic access to node-

level power measurements is IPMI (Intelligent Platform Management Interface) [Int+13]. Power

measurements are only a small part of IPMI, it is used for other kinds of measurements such as

temperatures and fan speeds as well as control purposes. A wide range of servers support IPMI, not

only in HPC and there are freely available libraries and tools for accessing IPMI devices. However, the

generic interface comes with limitations that I discuss in Section 3.5.2. The Redfish Scalable Platforms

Management API [DTM18] was specified as a standard to supersede IPMI. Redfish provides a very

generic interface using JSON for data. In contrast to IPMI, the JSON format allow for higher precision

values and timestamps on metric values. However, the verbose text format makes it unsuitable for

scalable measurements at high update rates. Due to the relatively recent introduction and adoption,

the practical experience with Redfish for energy measurement is limited.

24 2. Background and Related Work

2.2.4 CPU Energy Counters

With the growing power consumption of processors, power measurements become relevant within

individual processors. Therefore contemporary CPUs use measurements for power limiting and

also expose them to the user. This new possibility provides distinct advantages: Those power or

energy values are readily available — even on commodity systems — without requiring additional

measurement hardware or costs. Especially for x86-processors, the homogeneity of processors results

in a good availability of particular energy counters across a wide range of desktop, workstation, server,

and high-performance systems. This low entry threshold has made CPU energy counters very popular.

Intel’s RAPL (Running Average Power Limiting) provides not only controls for power limiting, but

also MSRs containing the consumed energy [Dav+10; Rot+12]. For each processor package, RAPL

offers four measurement domains (see also Section 3.6). This spatial resolution is another advantage

compared to many other measurement approaches. Desktop and mobile systems since the Skylake

generation include a platform (PSys) measurement domain which covers the system on chip [Wea18].

For server systems, no measurement domain covering the entire compute node is available.

In the Bulldozer processor family, AMD introduced Application Power Management (APM) [Adv13,

Sec. 2.5.2.1.1], which consists of Core Performance Boost and TDP limiting. This also includes a MSR

that provides the “current amount of power being consumed by the processor” [Adv13, p. 574]. “APM

monitors core activity at the ApmSampleTimer rate”, which defaults to 10.24 µs on an Opteron 6274.

On this processor, the power is then averaged for a total of ≈ 10.5 ms. For the Zen microarchitecture,

AMD switched form APM to RAPL, establishing compatibility with Intel x86 processors.

AMD’s APM as well as early generations of RAPL were based on a model, which caused systematic

inaccuracies for different workloads, HyperThreading usage, and C-state configuration [Hac+13a].

Since the Haswell-EP processor generation, RAPL is based on physical measurement and no longer

affected by theses systematic errors [Hac+15]. DRAM measurements of RAPL have an error of up to

20 % [DPW16]. In Section 3.6, I present an in-depth evaluation of the accuracy of RAPL.

2.2.5 Using Models to Determine Energy Consumption

An alternative way to determine the energy consumption of computer systems is modeling. For this

thesis, I classify energy models into two types based on their primary purpose: On the one hand,

models for estimation are designed to substitute or complement measurements on existing systems. They

estimate the energy consumption of an actual execution through indirect measurements and can

provide power and energy values without additional costs of instrumentation. As an enhancement to

physical measurement, models can go beyond the spatial or temporal resolution of what is feasible

with direct measurements. Estimation models are often based on measurements of architectural/per-

formance events. On the other hand, models for prediction help to determine the energy consumption

of future systems. They are often part of, or based on, more complex performance models of these

systems. Prediction models are particularly useful in co-design to improve the energy efficiency by

evaluating design alternatives, when measurements are not possible. With such models, it is also

possible to predict the energy consumption of existing systems under new configurations without

actually running them in these configurations. In the following, I primarily discuss estimation models

as a possible substitute to energy measurements.

2.2. Power Measurements for Computing Systems 25

A model is described as an alternative to experimenting with the actual system. The model is built “as

a representation of the system and [studied] as a surrogate for the actual system” [Law06]. In the

context of energy estimations, I consider quantitative mathematical models that lead to a numerical

result, similarly as a measurement of an actual system would.

A central method for building models from observation is regression analysis. Regression is used to

predict or estimate the value of a dependent variable y based the values of J independent variables x j .

The general form of the estimated value ŷ is as follows:

ŷ = f (x1, ..., x j , ..., xJ) (2.17)

The most basic form of regression is a simple linear regression with one independent variable that

uses the following model:

ŷ = b0 + b1 x (2.18)

A standard approach to estimate the regression parameters b is the method of least squares. Regression

can use different model formulations and optimization techniques as discussed for example in [Bac+08,

pp. 51 sqq.] and [Rya08].

There is no single distinct criteria for evaluating the quality of models. A core metric in statistical

modeling is the coefficient of determination defined as

R2 =

∑︁

i (ŷ i − y)2
∑︁

i (yi − y)2
(2.19)

where yi is the observed data, yî the modeled value, and y the mean of the observed data. R2

represents the fraction of the variability within the observed values that can be explained by the

model. It is an indicator for the goodness of fit for a regression model. However, it depends on the

use case what value of R2 would constitute a good or bad fit [Rya08, pp. 14 sq.]. While R2 indicates

the fit for the approximation, it does not attest whether the model was specified correctly in the first

place. A model based on an insufficient training set may not have a statistical significant correlation

despite a high R2. To avoid this, more sophisticated analysis is required [Bac+08, pp. 71 sqq.].

Due to the large numbers of individual residuals, average errors are often used to quantify the overall

quality of a model in a single number. The mean absolute percentage error (MAPE) is commonly

used in literature. There is also the mean absolute error (MAE) which is more susceptible to different

scales as well as the mean squared error (MSE) and root mean squared error (RMSE) that are more

heavily influenced by outliers [Rya08, p. 274]. This focus on averages is in contrast to measurements,

which often use an upper bound or distribution of the measurement error (compare Section 2.1.1).

Averaging quality metrics prevents conclusions about worst-case performance of a model.

For regression models, there are several common undesirable patterns of the residuals such as

heteroscedasticity and autocorrelation. A scatter plot of the residuals and the predicated or true value

can help to identify such issues, select the appropriate regression model, and verify the respective

assumptions [Bac+08, pp. 80 sqq.].

26 2. Background and Related Work

Approaches to Modeling Computing Systems

There are two opposite ways to build a model: One approach is to build it based on a large number

of observations of the system as a whole — this is called a black-box or top-down model. The other

approach is to use an understanding of the interior mechanisms within the system, or to compose

smaller models of system components — this is called a bottom-up model [Ber+12; Wal+17].

The top-down approach is inherently limited to existing systems and therefore used to build models

for estimation. The system is mostly treated as black box, and only observations of inputs and outputs

are used. Statistical methods or machine learning techniques build the model based on measurements

and very general assumptions. Bottom-up approaches do not require existing hardware, but can be

used from a design specification. They make use of design-space exploration frameworks such as

McPAT [Li+09]. This approach often combines models of individual components within a system.

The choice between bottom-up and top-down models is not binary: For example, a bottom-up

approach can use specific inner knowledge of a system to formulate a general model but then train

it as a whole, or a top-down approach can utilize expert knowledge for selection of regressors. To

avoid ambiguity regarding in classifying energy models, I will focus on describing how much expert

knowledge is utilized in creating a particular model and how much the model reflects the internals of

a computing system.

Energy Estimation based on Performance Metrics

The early work by Bellosa [Bel00] has established event counters as basis for an energy accounting

model called Joule Watcher. As target system, a Pentium II PC with a single core and no DVFS was used.

The model maps closely to this relatively simple architecture. Counters of retired microinstructions,

floating point operations, L2 cache references, and main memory references are used as inputs for

the model. Separate micro-benchmarks are executed at different configurations for each event. A

simple multimeter measuring the entire system with a 1 W resolution is used for calibration, i.e.,

determining the model coefficients. The resulting model uses fixed energy values for each of the

operations. Scatter plots confirm the linear correlation between operation rate and power. On this

system, the event rates correlate linearly with the power consumption resulting in an approximate

energy cost for each event. The paper provides only a vague verification describing the results as

“within the resolution of our external multimeter for both synthetic and real-world applications”.

While initial work was focused on the CPU itself, Economou et al. [Eco+06] introduced a full-system

power modeling approach. Their model is based on more system components, i.e., memory, disk and

network in addition to CPU. It is trained for total system power as measured with an AC power meter.

While the model calibration is performed using a workload that stresses the different components, the

optimization with a “linear program” chooses the model parameters to minimize a prediction error.

For one of the two analyzed systems, the off-chip memory access count is multiplied with a negative

factor. This is a clear contradiction to the assumption of having independent variables that represent

separate system components, which cannot consume a negative amount of power. A verification was

done with a different set of workloads. The errors are reported as average for all samples within each

workload as well as a 90th percentile error. One particular 90th percentile error was above 20 %, the

average errors range up to 15 %.

2.2. Power Measurements for Computing Systems 27

Bircher and John [BJ07] presented a systematic approach for full-system power estimation, which

models each subsystem separately. Again, this model is based on detailed architectural knowledge

and subsystem-specific workloads for regression. In the model, five subsystems are considered:

memory, chipset, I/O, disk, and microprocessor. Performance events that are propagated between the

subsystems, are used as model parameters. The authors make the important observation, that “it is

necessary to have sufficient variation within the workload for training of the models”. For generating

training data, the authors separately measured each subsystem using shunt resistors at 10 kSa/s.

Mean absolute percentage errors for each combination of subsystem model and workloads are given

with a worst-case of 17.51 %. When averaged over all workloads, the error is below 9 % for each

subsystem. With growing complexity of microprocessors, bottom-up power models also increased in

complexity as highlighted by the model by Bertran et al. [Ber+10].

A more recent bottom-up approach is presented by Goel et al. [GM16]. They focus on the CPU,

but model core and uncore separately as well as dynamic and static power. The latter distinction

makes the model easily aware of dynamic voltage and frequency scaling. However, turbo boost

and simultaneous multithreading are not supported. For static power, temperature is included as

a variable and even varied using a hot-air gun. Dynamic core power is further split into memory,

non-memory, and L2 cache components. Expert knowledge about the architecture is gained from

experimentation and used in the model, e.g., the fact that the uncore component on this system

is neither clock-gated nor power-gated in idle. The performance events as independent regression

variables are also chosen using expert knowledge. The level of architectural detail considered for

the model makes it one of the most sophisticated bottom-up power estimation models. Training is

performed separately for the individual components using especially created microbenchmarks. Each

model fit is carefully analyzed both using R2 and scatter-plots. The evaluation is performed for a

varying number of threads and frequencies. While a wide range of benchmarks are used for validation,

only mean errors and standard deviation are given for each combination of benchmark group, thread

count and frequency. The worst configuration has an average error of ≈ 6 %, the average error over

all configurations is 3.14 %. Due to the wide range of tested configuration, the use of many variables,

and the relatively low error, this presents significant advancements over previous work.

Variable selection for counter-based energy models has primarily been based on expert knowledge.

With increasing complexity of performance monitoring events on modern systems, it has become a

significant challenge to select the right events - a process that has to be repeated for each architecture.

Walker et al. [Wal+17] introduced a statistical event selection algorithm. They follow a forward

selection approach [Nor98], which has been criticized because it only considers a small subset of

possible combinations thus not providing an optimization guarantee [Rya08, p. 270]. The performance

monitoring event selection algorithm of Walker et al. incrementally selects the event leading to the

highest R2 of the intermediate model. In order to quantify multicollinearity, they evaluate the variance

of inflation (VIF) for added performance monitoring events. The VIF is computed by building a

different model that estimates the added independent variable from the variables already considered

for the primary model. The resulting R2 is used in the formula for the VIF:

VIF=
1

1− R2
(2.20)

28 2. Background and Related Work

The VIF indicates whether the added variable is independent (VIF= 1) or whether multicollinearity

is an issue (VIF> 5). The authors argue that multicollinearity decreases the stability of the resulting

models by making it overly sensitive to changes in the input. In consequence, they apply a manual

transformation to the selected events, e.g., subtracting two events to create an independent input

variable, hence reducing multicollinearity. For the final run-time power estimation, they include a

platform-specific voltage model. This combination of generic statistical methodology for variable

selection and low-level expert knowledge offers an improved accuracy and stability.

In [Wal+17], Walker et al. applied this methodology to embedded ARM Cortex-A7 and Cortex-A15

CPUs which results in an average error of 3.8 % and 2.8 % respectively. The model is trained with 20

diverse workloads and evaluated with 60 workloads. The authors offer detailed statistical results

including a maximum error of 13 %. In [Cha+17], my co-authors and I adapted the model proposed

by Walker et al. to x86 systems. We showed that the accuracy of this modeling approach on the Intel

platform is worse with an average error of 7.54 %.

2.3 Processing of Power Measurement Data

Most digital power measurement instruments have integrated displays showing the measurement

result. A range of digital signal processing techniques can expose more specific information, e.g.,

filters or Fourier transforms [Ler12, p. 436]. This processing can be implemented in a power analyzer

along with more sophisticated analysis functions such as harmonic measurements or motor evaluation.

Further, modern power analyzers provide remote control software to operate the device from a PC.

This software can enable additional analyses such as CE conformity testing (see [ZES16; Yok17]).

For more specific analyses, however, the fixed functionality of measurement devices is not always

sufficient. Consequently, the measurement results must be available through an application interface.

Such an interface is the basis for combining energy measurements with application and system

monitoring data. Moreover, monitoring large-scale HPC systems requires many instruments whose

data needs to be aggregated. Given that measurements at high resolution and large scale involve

large volumes of data, their processing can be challenging.

LabVIEW is a popular software package by National Instruments, which allows the design of virtual

instruments. It interfaces with a variety of measurement components and provides a graphical

programming environment to process and visualize them [Ler12, pp. 651–655]. Keysight VEE and

DIAdem are similar systems focused on measuring systems [Par10, pp. 206–207]. With the addition

of a Data Acquisition Toolbox and Instrument Control Toolbox, the numerical computing platform

Matlab can also be used for processing measurement data [Ler12, pp. 657–659].

With respect to management, storage, and retrieval of data from sophisticated power measurements,

there is a large overlap with general monitoring data. The distinction between measurement and

monitoring data is not always clear: In this work I refer to monitoring if the focus is a continuous

observation of a readily available metric, whereas measurement is used for the process of obtaining

the value. As I show in Chapter 5, the use cases for power measurements are diverse. In general,

energy efficiency research leverages time-delimited experiments, while operational data analytics

requires continuous monitoring. In practice, there are many intermediate scenarios for both power

measurement goals.

2.3. Processing of Power Measurement Data 29

One particular aspect of handling measurement results is persistent storage for continuous recording.

Power analyzers themselves are typically limited to recordings of short experiments in proprietary

binary or CSV files (e.g., [ZES16; Yok17]).

2.3.1 Time Series Databases

General purpose database management systems and relational databases are not suitable to efficiently

handle large volumes of metric data. In contrast, time series databases, also referred to as time series

management systems, are specifically tailored towards sequences of data points with a corresponding

and monotonically increasing time (see [JPT17]).

Nowadays, several advanced time series database solutions are in widespread use. This includes

open-source systems, such as InfluxDB, KairosDB, OpenTSDB, and TimescaleDB as well as commercial

solutions, such as Kdb+ [sol19]. Some multi-model databases also include time series databases as

secondary models, e.g., IBM Informix6. The focus on time series data allows databases to make certain

trade-offs: For instance, existing data is rarely updated or deleted — restricting this functionality

allows for a better query and write performance. Furthermore, new data usually carries recent

timestamps. This ascending order can be exploited to improve performance for the majority of

inserts [Inf19a, InfluxDB design insights and tradeoffs]. In the following, the widely popular InfluxDB

serves as an example to discuss typical techniques and aspects of modern time series databases.

Time Series Storage Concepts

Logically, data in InfluxDB is organized by measurements, which are identified by strings. Each data

record (point) for a measurement is further identified by a set of tags, containing metadata as strings.

A point comprises a single timestamp and a set of fields, each with a key and value. The tags and field

keys can be freely chosen for each new point, making InfluxDB a schemaless database. A series of

data is a sequence of values defined by the measurement, tag set, and field key. Moreover, InfluxDB

separates data into shards by coarse grained blocks of time to facilitate efficient deletes of older data.

The Time Series Index (TSI) allows efficient access to high-cardinality data, i.e., large number of time

series.

Primarily, InfluxDB uses a simple text-based line protocol for inserting or updating data points.

Moreover, it supports the protocols of CollectD, Graphite, OpenTSDB, and Prometheus. The Influx

Query Language (InfluxQL) is a SQL-like language for retrieving data and metadata from InfluxDB.

InfluxDB uses a storage engine based on Time-Structured Merge Trees (TSMs), similar to Log-

Structured Merge Trees (LSM-trees) [ONe+96]. New or modified data points are collected in a write

ahead log (WAL), which is persistent but does not support reads. In parallel, incoming data points are

kept accessible in an in-memory cache for reads. When the WAL exceeds the maximum size, its data

is flushed to the actual TSM files. The flushed data points are partitioned by non-overlapping time

ranges across multiple TSM files, which provide read-only indexed access. Every TSM file consists

of multiple blocks of ordered data, each with separate storage for timestamps and values. Regular

background compaction processes are responsible for merging several TSM files of one level to one

larger TSM file of the next level of the tree. Following the assumptions about time series workloads,

6https://www.ibm.com/products/informix

https://www.ibm.com/products/informix

30 2. Background and Related Work

this storage scheme provides efficient append-only insertion using the WAL while retaining older data

in the compressed and indexed TSM files. However, changes to older data or retroactive inserts are

costly as they require rewriting of TSM files (see [Inf19a]).

TimescaleDB follows a different approach, by storing time series data on top of the established

relational database management system (RDBMS) PostgreSQL. The most significant difference is to

split logical tables (called hypertables) into chunks that are implemented as actual PostgreSQL tables.

This approach exploits the property of temporal locality of data points. The smaller index structures

of active chunks can fit into memory more easily, thus speeding up inserts and queries. From the user

perspective, only the logical table is visible. By relying on a traditional RDBMS, TimescaleDB inherits

features such as a fully featured query language with joins and user management (see [Fre17]).

Multiresolution Databases

Another prevalent management system for time series databases is RRDtool. This solution has

pioneered the use of round robin buffers, hence the name Round Robin Database, to limit the amount

of required disk space for time series data. RRDtool aggregates multiple primary data points into

consolidated data points by applying a consolidation function. Possible consolidation functions are

average, minimum, maximum, and the last value. For computing averages, RRDtool assumes that

all values are rates. The different aggregation levels in RRDtool, called round robin archive, are

individually defined by the user. There is a constant number of values within a round robin archive,

which are overwritten in a circular fashion. A significant limitation of RRDtool for high-resolution

measurements is the use of timestamps of one-second granularity (see [Oet17]).

Serra et al. [LVE16] introduced a formalism for a time series database that uses concepts similar to

RRDtool. Their approach is to organize the data in an aggregated way such that a time series is stored

at different temporal resolutions, hence they name this aspect multiresolution. This acts as a lossy

storage solution. The emphasis of this formal model is to offer a high degree of generality and also

consider irregular samples in time series. In addition to the formalism, which is based on relational

algebra, they offer a reference implementations in Python. A library named pytsms implements the

basic concepts and another library named roundrobinson implements the multiresolution time

series model. However, neither libraries are actively maintained7.

Andersen et al. [AC16] designed a storage system for time series data named BTrDB. The key data

structure of BTrDB is a time-partitionend, multiresolution, version-annotated, copy-on-write (COW)

tree. Each node in the tree includes statistical aggregates which enables efficient statistical queries

over arbitrary request intervals. Data in BTrDB is ordered by streams, which are identified by a UUID.

BTrDB allows unordered insertion and coalesces incoming data points before being merged in the

COW tree. The COW tree guarantees consistency of both raw streams and derived analytics without

the need for journaling. The data of the COW tree itself is compressed block-wise and stored in a Ceph

storage pool. The authors demonstrate this concept with an implementation in Go on a demanding

use case of synchrophasor telemetry. This use case comprises a deployment of 35 microsynchrophasor

devices, each providing 12 streams of power measurements at 120 Sa/s. The system satisfies statistical

queries on one year worth of collected data, i.e., 2.1 trillion data points, in less than 200 ms. With an

additional throughput benchmark, the authors show that an instance of BTrDB on a four-node cluster
7https://github.com/allusa/tesi/tree/master/src, no commits since October 2015

https://github.com/allusa/tesi/tree/master/src

2.3. Processing of Power Measurement Data 31

can handle up to 53 million inserted values per second. The authors provide their “quasi-production

implementation” as free software, however development appears to stagnate8.

InfluxDB also supports automatic downsampling in order to limit storage requirements [Inf19a,

Downsampling and data retention]. On the one hand, a continous query periodically aggregates data

from one measurement to another with a lower temporal resolution. On the other hand, retention

policies define a duration after which data points of a database are deleted automatically. However,

this has to be manually defined for each measurement and the retention policy and down-sampled

measurement identifier has to be chosen manually in queries. TimescaleDB uses special precomputed

views named continuous aggregates to speed up aggregate queries with similar restrictions [Tim19,

API reference, Continuous Aggregates].

Time Series Compression Methods

Pelkonen et al. [Pel+15] introduced Gorilla9, an in-memory time series database that scales to billions

of unique time series and implements advanced compression techniques. For timestamps, the authors

observed that the majority of data points arrive at fixed intervals, affected by a limited amount of

jitter. Hence, timestamps are encoded as delta-of-delta, i.e., D = (tn − tn−1)− (tn−1 − tn−2). This

yields the jitter values, which are stored with a variable-length encoding that uses less storage for

smaller values. However, Gorilla only supports second-precision timestamps, which can be encoded

very efficiently but limit the applicable use cases. For values, Gorilla uses double-precision floating

point numbers and applies another encoding scheme. This scheme exploits common cases where the

exponent and the first few bits of the mantissa of successive values are identical.

Other databases have adopted part of this encoding approach for compression. InfluxDB, for example,

uses the same encoding for floating point values, while timestamps are encoded with a combination

of delta encoding and scaling [Inf19a, In-memory indexing with TSM]. BTrDB uses a similar encoding

based on delta-of-delta applied to the timestamps as well as separately handling the exponent and

mantissa of floating point values [AC16, Sec. 5.4].

Approximate Query Processing

Requests that cover large amounts of data, such as computing the average of a high-resolution

time series over a long period of time, can be difficult to answer efficiently. To overcome this per-

formance challenge, several techniques for approximate query processing (AQP) have emerged.

Executing queries on samples of the full data set can speed up the processing at the cost of reduced

accuracy [Ach+99; BCD03]. Chakrabarti et al. [Cha+01] suggested to use wavelets to build an ap-

proximate representation of large data sets that can provide more accurate approximate answers than

sampling. Time series data is a good candidate to apply such signal processing techniques [Cha+11].

Perera et al. [Per+15] described a general architecture that uses models of time series data for AQP.

Their models allow for average and sum queries with given error bounds and include aggregation

over time.

8http://btrdb.io/, https://github.com/BTrDB/btrdb-server, no commits since February 2019
9Later, Gorilla was renamed to Beringei.

http://btrdb.io/
https://github.com/BTrDB/btrdb-server

32 2. Background and Related Work

2.3.2 Data Center Monitoring Systems

Persistent storage is only one part of managing power measurement data. Leveraging measurement

data for a comprehensive analysis also requires data collection, reporting, processing and visualization.

In that regard, power measurements are similar to metric data monitoring in general and data center

monitoring in particular. Data center monitoring serves as a foundation for operational data analytics

and often includes distributed power measurements.

Prevalent Open-Source Monitoring Solutions

The InfluxDB software ecosystem leverages the TICK stack comprising Telegraf, InfluxDB, Chronograf,

and Kapacitor. Telegraf is an agent for collecting and reporting metric data centered around computing

systems. Due to its plugin architecture, it can collect a wide range of metrics with a particular

focus on statistics of server software. Kapacitor provides functionality for real-time data processing

such as anomaly detection and alerting. Finally, Chronograf serves as a front-end for visualization

(e.g., real-time dashboards) and configuration (e.g., setup of monitoring and alerting) of the TICK

stack (see [Inf19b]).

Prometheus10 is another widely-used open-source monitoring toolkit. In a Prometheus system,

Exporters expose metrics from within server applications. Each measurement point contains a

millisecond-resolution timestamp and a double-precision floating point value. The central Prometheus

server regularly pulls metrics from Exporters via a text-based protocol on top of HTTP. A push model

is indirectly supported by the use of Pushgateways. Prometheus includes a local on-disk time series

database, but can also use other dedicated time series databases such as InfluxDB or TimeScaleDB.

The community around Prometheus also develops an enhanced set of components called Thanos11,

which adds support for automatic down-sampling to Prometheus. Based on the pulled metric data,

the Prometheus server can push alerts to an Alertmanager. Stored data is accessed via the Prometheus

Query Language (PromQL), which also enables the Prometheus web UI as well as visualization with

Grafana.

Grafana12 is an open-source platform for analyzing and visualization of monitoring data. It can be

extended with data source plugins that leverage many different databases, e.g., InfluxDB or Graphite.

Grafana is used for metric data visualization, in particular for building dashboards by many of the

monitoring solutions mentioned in the following paragraphs.

Custom Monitoring Solutions and Use Cases with Research Focus

Libri et al. [LBB18] described a monitoring solution called DiG (Dwarf in a Giant) (see also Sec-

tion 2.2.2). They aim to provide scalable high-resolution monitoring for data center analytics,

automation and control. As discussed in Section 2.2.2, DiG leverages sophisticated node-level power

measurements. DiG provides out-of-band data collection of power measurements and other telemetry.

By performing analysis functions within the data collection nodes itself, DiG reduces the data volume

that needs to be passed to centralized monitoring. This edge analytics is demonstrated by performing

10Prometheus — From metrics to insight: https://prometheus.io
11Thanos — Open source, highly available Prometheus setup with long term storage capabilities: https://thanos.io/
12Grafana — The open platform for analytics and monitoring: https://grafana.com/

https://prometheus.io
https://thanos.io/
https://grafana.com/

2.3. Processing of Power Measurement Data 33

a Fourier analysis as an example of feature extraction. DiG leverages ExaMon [Lib+18a; Ben+17]

for node-level data collection and centralized data analytics. ExaMon includes a collector daemon

that covers CPU performance and energy counters. These node-level metrics, and pre-analyzed

measurements from the DiG agents are published to MQTT message brokers. An MQTT subscriber

implementation then inserts data into a KairosDB time series database on top of Cassandra. In

the D.A.V.I.D.E. cluster, this centralized monitoring solution collects a total of 14940 metrics at an

aggregate rate of ≈ 47 kSa/s [Bor+18]. The ExaMon software is available under an open-source

license13.

Netti et al. proposed the concept and implementation of DCDB (Data Center Data Base) [Net+19].

DCDB includes data sources on compute nodes and from facility sensors. Pushers collect measurements

and publish them via MQTT. Collect Agents subscribe to these measurements and write them to Storage

Backends based on Apache Cassandra databases. Regarding performance, the authors focused on

evaluating the impact of the in-band data collection overhead on compute nodes. For the Collect

Agent performance, the authors reported a CPU usage of 900 % in a scenario with an aggregate

sensor reading rate of 500 kSa/s (50 pushers reporting data for 10 000 sensors at 1 Sa/s each). These

numbers are based on a synthetic pusher plugin and do not include persistent data storage. In addition

to publishing the measurement data, Pushers also provide a REST API through HTTPS. This REST API

can be used to access local sensor caches and configure the pushers. The authors further described

a DCDB installation at the Leibniz Supercomputing Centre (LRZ) and a use cases for evaluation of

the data center cooling system. In this installation, sophisticated infrastructure sensors are collected

out-of-band and then refined into aggregated metrics using virtual sensors. These system-level metrics

provide information about the total efficiency of heat removal in the liquid-cooled HPC system. DCDB

is publicly available as open-source software14.

Bautista et al. introduced OMNI (Operations Monitoring and Notification Infrastructure) [Bau+19].

OMNI is deployed at the National Energy Research Scientific Computing (NERSC) center at Lawrence

Berkeley National Laboratory and uses RabbitMQ, Logstash, Elasticsearch, and Grafana to process and

visualize metric data from a heterogeneous set of distributed sources. The authors described that the

system can currently ingest data up to an aggregate rate of 25 kSa/s. The OMNI installation at NERSC

provided valuable insight for multiple use cases. One such use case was the provisioning of power

infrastructure for a future HPC system based on long-term recordings of actual power requirements.

Figure 2.3 shows an example Grafana Dashboard based on OMNI.

Vazhkudai et al. showcased GUIDE (Grand Unified Information Directory Environment) [Vaz+17]

and its deployment at the Oak Ridge Leadership Computing Facility (OLCF). GUIDE ingests metric

data and syslog streams from storage systems, schedulers, the interconnect, and compute nodes of

HPC systems. In a pre-processing stage, logs are cleansed and metric data is statistically analyzed

and categorized. The variety of data is then ingested in a central Splunk instance, which provides

federated storage, indexing, querying, and visualization. The authors described the operational

impact by the means of several use cases covering storage systems, resiliency, scheduling, interconnect

usage, and archival storage.

13https://github.com/EEESlab/examon
14https://dcdb.it/

https://github.com/EEESlab/examon
https://dcdb.it/

34 2. Background and Related Work

Figure 2.3: Partial display of a power dashboard for the Cory system based on OMNI [Bau+19, Fig. 6].

Dataheap [KHN12] is a distributed system for processing metric data. While Dataheap is aimed at

general performance data from computer systems, it can also handle measurements from physical

instruments — such as power-meters. Dataheap is capable of handling metric data in the order of

millions of updates per second and persistent storage as well as access libraries to expose live and

historic data to general purpose programming languages. Derived metrics can be defined in the

system, allowing combinations such as GFLOP/s per watt from current and voltage measurements as

well as application-based performance data. A fundamental limitation of Dataheap comes from the

use of timestamps in millisecond resolution. Among many others, the author of this thesis was also

involved in the development of Dataheap.

Applicability of Time Series Databases and Monitoring Solutions for Power Measurements

On the one hand, OMNI and GUIDE represent site-specific configurations and combinations of generic

software. On the other hand, DCDB, ExaMon, and Dataheap are publicly available monitoring software

frameworks that build on existing open-source software. All of the discussed custom monitoring

solutions are used in part for processing data from power measurements — even DCDB, which is more

focused on in-band node-level measurements. These HPC data center monitoring solutions, as well

as the more general open-source monitoring frameworks and time series databases, all demonstrate

that they can handle a high cardinality of data. The predominant monitoring use case requires

large numbers of measurands, typically in the range of tens of thousands or even up to billions with

Gorilla. However, none of the readily available solutions actively address the processing and storage

of high-resolution measurements beyond 1 Sa/s. For example Prometheus only supports timestamps

at millisecond resolution and its pull-based architecture is not well-suited for collecting continuous

high-resolution sensor data. Other solutions support high-resolution measurement in general, but

are limited by performance. As an exception, BTrDB is specifically designed for higher-resolution

measurements at 120 Sa/s and demonstrates efficient insertion and queries. However, BTrDB is not

widely adopted or actively developed.

2.4. Influences on the Energy Consumption of Computing Systems 35

2.4 Influences on the Energy Consumption of Computing Systems

Performing computations with as little energy as possible has challenged system designers, operators

and researchers for a long time. A classic example are all forms of mobile computers that have to

make due with batteries where a reduced power consumption translates to a longer device operation.

With increasing frequencies, energy efficiency has also become an important aspect for the design and

operation of high performance systems. There is a strong link between the energy-efficient operation

of computer systems and their energy measurement and monitoring. Optimized execution needs

metrics to identify inefficient operations and as confirmation feedback for tuning. The increasing focus

on energy efficiency, energy proportionality, and adaptivity yields complex, sophisticated systems

with interactions that are challenging to understand and model accurately.

2.4.1 Processor Power Consumption Breakdown

A fundamental model for CMOS processor power consumption is given by Weste and Harris in [WH11,

Sec. 5]. The total processor power comprises dynamic and static power:

Ptotal = Pdynamic + Pstatic (2.21)

Dynamic power is dissipated by the switching of transistors and short phases of short circuit during

the transition:

Pdynamic = Pswitching + Pshort circuit (2.22)

The switching power depends on the total load capacitances C that need to be charged and discharged

during switching. However, not all transistors are always switching with the frequency f . Thus an

activity factor α between 1 (a clock) and 0 (a clock-gated circuit) is introduced:

Pswitching = αCV 2 f (2.23)

Most notably, switching power scales quadratically with voltage — this is a strong incentive to

keep voltage minimal for reducing power. Many factors impact the value of α for active compute

components in a system, e.g., the types of executed instructions, the location for data transfers, and

even the number of bits within processed values [Mol+10; Sch+19]. Additional dynamic power is

dissipated due to phases of short-circuits, which is normally less than 10 % of dynamic power.

Pshort circuit = Ishort circuitV (2.24)

Static power is dissipated independently of the frequency and switching activity. It comprises different

leakage currents (subthreshold, gate, and junction) as well as the contention current in ratioed

circuits.

Pstatic = (Ileak + Icontention)V (2.25)

This breakdown serves as a basis for reducing processor power consumption as discussed in the

following section.

36 2. Background and Related Work

2.4.2 Energy-Efficient Hardware Configuration

Different techniques for reducing the energy usage in contemporary systems tackle the different

components of dynamic and static power (2.21). The following coarse classification in sleeping,

power, performance, and throttling states is given by the Advanced Configuration and Power Interface

(ACPI) standard [Uni16]. The different kinds of states typically align with certain power reduction

techniques.

G-states Global system states include different power-off states that remind us that it is always an

option to turn off a computer when not in use. However, all state is lost in G2/G3 off states and a

large latency is required to return to a working state. Reducing transition (boot) times may facilitate

to shut down a computer more often.

S-states Sleeping and soft-off states are global to the system and provide a very coarse grained

control to stop operation of a computer without necessarily losing all context. S-states drastically

reduce power consumption by powering off many components in a system. There is overlap between

G-states and S-states in terms of the soft off state G2/S5. Sleep states or power-off states can by used

by high-performance clusters that use resource managers that can put unused compute nodes to sleep

and wake them up accordingly [Sch19; Pur+18; Mai+18]. The energy savings can be improved by

consolidating idle resources and powering down unneeded rack-level components [PC11].

C-states Processor power states provide a more fine-grained control. C-states are used when

individual cores of a multi-core system are not actively used for certain periods of time. Resuming

the active operation from C-states is fast, i.e., in the order of 1 µs to 100 µs. C-states reduce dynamic

power by disabling the frequency connection for parts of a chip (clock gating). Some C-states further

reduce static power by disabling the power input for parts of a chip (power gating). In order

to use C-states efficiently, and model them in terms of performance and power consumption, one

needs to know the power consumption of the processor during the states and during transitions as

well as the latency for transitions. Schöne et al. [SMW14] showed that practical latencies differ

significantly from the specifications. While ACPI defines C0 (active) and C1 through C3 (inactive

with increasing latency and decreasing power consumption), contemporary processors offer more

C-states and distinguish between core C-states and package C-states [GSS15]. The latter are used

when all cores of a processor package are idle and provide increased power savings. The specific used

package C-state depends on the lowest of its core C-states. Particularly for contemporary systems,

core C-states and package C-states provide vastly reduced power when a processor or individual cores

are not in use. In Section 5.3.1 I analyze an anomaly in which an incorrect use of C-states causes

a significant increase in energy consumption. Exploiting C-states is important as many processors

do not always have work scheduled in practice. Even in parallel HPC applications, tasks can wait

on communication, on other tasks during load-imbalances, and on I/O. Due to the transition cost,

C-states are not applicable to very short inactivity times, e.g., less than 1 µs for a core waiting for

data from memory.

2.4. Influences on the Energy Consumption of Computing Systems 37

P-states Processor and device performance states control performance and power consumption of

active processors, processor cores, or devices. ACPI P-states are defined to be generic for devices —

examples include the monitor brightness level and the maximum audio volume. The most significant

P-states are those for processors. Processor performance levels are implemented using dynamic

voltage and frequency scaling (DVFS). This technique reduces power consumption as per (2.21) by

changing frequency and voltage. The necessary minimum voltage for stable operation depends on

the selected frequency. Therefore typically only the frequency is actively varied while the appropriate

voltage is selected by the firmware.

DVFS is widely used to improve the energy efficiency of applications, and is also the underlying

technique for GPU P-states [GSS15]. P-states are used when a processor is continuously active,

thus C-states are not applicable, but the full performance is not necessary. A common use case are

memory-bound workloads on systems with a frequency-independent memory performance [SHM12].

In this case, reducing the processor frequency through P-states does not decrease performance, but

reduces power consumption and thus consumed energy. Due to the quadratic impact of voltage on

dynamic power (2.23), the fastest performance state often uses disproportionately more power given

their performance. Thus, slower performance states often require less total energy to complete a task.

As with C-states, contemporary systems have more complex P-states than specified by ACPI. P-states

are selected for individual cores or hardware threads, but some processors will apply the lowest of all

per-core P-states to the entire processor package. Hackenberg et al. [Hac+15] described the change

from per-package to per-core P-states in the Intel Haswell processor generation. While per-core

P-states allow more flexibility, they introduced a significantly increased variable latency for P-state

transitions. Contemporary processors also expose uncore P-states, which the frequency that is applied

to shared resources and for instance affects shared cache and memory performance [KHL18].

Originally, P-states are used to select processor frequencies between the nominal and minimum

frequency. Contemporary processors, however, also allow frequencies above the nominal frequency,

e.g., with Intel’s Turbo Boost Technology or AMD’s Turbo Core. In these turbo modes, an internal

controller dynamically decides on the actual frequency based on a number of factors. The actual

frequency is chosen to not exceed the TDP, except for a short time, although there may be further

exceptions. Further, the maximum possible frequency depends on the number of active cores, i.e., in a

certain C-state. Beginning with the Haswell-EP microarchitecture, high-performance Intel processors

further use different sets of frequencies depending on the usage of AVX instructions [Int17a]. For

example, an Intel Xeon Platinum 8180 uses a nominal frequency of 2.5 GHz. For AVX-512 workloads,

however, the guaranteed frequency is as low as 1.7 GHz, while the turbo frequency for non-AVX

workloads on up to two active cores goes up to 3.8 GHz (see also Figure 1.1). Another impact of this

development affects large clusters of processors that execute a parallel application: Manufacturing

variability that previously caused power variations at constant performance, now lead to a variation

in performance at constant (peak) power [Sch+16b].

In particularly power constrained environments, DVFS can also be used to limit the power consumption

below the TDP. Power limiting is controlled via the RAPL interface (see also Section 2.2.4) rather than

P-states. This can be exploited to achieve good performance for hardware that is over-provisioned

with respect to power consumption [Pat+13]. The Global Extensible Open Power Manager (GEOPM)

provides global rebalancing of power budgets within globally power-limited HPC systems [Eas+17].

38 2. Background and Related Work

Performance Analysis Layer Performance Analysis Technique

Data Acquisition Sampling
Event-based

Instrumentation

Data Recording

Data Presentation

Tracing

Timelines

Logging

Profiling

Summarization

Profiles

Figure 2.4: Classification of performance analysis techniques (based on [Juc12]).

T-states Processor throttling states present an additional mechanism to reduce processor power

consumption during active operation. T-states are typically implemented using clock modulation. With

clock modulation, the effective clock signal is partially disabled in repeating intervals. In [Sch+16a],

my co-authors and I provide an in-depth evaluation of T-state implementations on contemporary

processors. A particular finding is that certain processors can use DVFS rather than clock modulation

to implement T-states. Further, we provide a detailed breakdown of the transitions and states for

active clock modulation.

2.5 HPC Performance and Energy Analysis

Performance analysis is a crucial aspect of High Performance Computing to ensure that expensive

hardware is used efficiently. It is essential to consider the existing approaches for performance analysis

in order to best exploit the information from energy measurements.

2.5.1 Performance Analysis Techniques

The following section uses the classification of performance analysis techniques that I have proposed

together with my co-authors in [Ils+15b]. An overview of the techniques along theses stages is given

in Figure 2.4. The core process of performance analysis consists of three stages: data acquisition, data

recording, and data presentation [Jai91].

Data Acquisition

The first step for performance analysis is to acquire information about the execution of an application

or a running system. This data acquisition can be done in two ways: event-based instrumentation and

sampling.

With (event-based) instrumentation, an application is modified to emit certain events during its

execution. These events can be generic such as function calls and returns, or specific such as

communication or I/O operations. The specific events often carry additional semantic information, e.g.,

2.5. HPC Performance and Energy Analysis 39

communication partners. There are different levels at which the instrumentation can be applied. Some

instrumentation techniques require recompilation of an application while others work dynamically

during execution. Event-based instrumentation is also applicable at a system level, e.g., to expose

system calls or power state changes.

Contrary, sampling exposes the state of an application or system at specific intervals. On the one hand,

sampling intervals can be time-based, e.g., one sample every 10 ms. On the other hand, sampling also

uses fine-granular countable events, e.g., one sample every 1 million executed instructions. Sampling

typically considers the current instruction pointer or call-path as an exposed state from applications.

At the system level, hardware performance counters or state such as the current processor frequency

is typically collected during a sample.

While instrumentation exposes every occurrence of a certain state change, sampling only provides a

statistical aspect of the state. However, the overhead of instrumentation depends on the actual rate

of events that are occurring. This event rate is intrinsic to the observed workload itself. Sampling, in

contrast, allows a predictable and controllable overhead by means of selecting the sampling interval.

Data Recording

Logging is a data recording approach that preserves the full information when recording performance

data. In addition to the event or sampled state, the log also includes a timestamp. Logging at a high

event rate requires either a substantial amount of memory or causes disk I/O that can perturb the

execution.

Instead of collecting all events and samples, the exposed information can also be recorded in a

summarized form. For example, summarization counts the number of times a function has been

entered, the total time it was executed, or the number of times it was on the call-stack during a sample.

Summarization requires less memory for collecting the reduced information during execution.

Data Presentation

For presenting the recorded data to a user, there are also two basic variants. Timeline displays use

a linear time axis, typically the x-axis, at which the collected events and samples are displayed.

There are many variants to display events and samples alongside the time axis. For example, the

executed functions can be shown color-coded with the y-axis being used for either the call-stack

or level of parallelism. Timeline displays can also show metric data with quantitative y-axes or as

value-color-coded heat maps. Due to the variety of displayed information, timeline charts often have

multiple y-axes.

Alternatively, basic profiles show summarized information with no temporal context. For example, a

profile can display the number of invocation or the execution time grouped by functions within an

application. More sophisticated variants of profiles allow grouping by the call path and include metric

information. At a system level, a profile can, for example, list the residency times of each C-state.

On the one hand, timelines require logging for data recording. This combination is referred to as

tracing. On the other hand, summarization always results in a profile. Hence, summarization is often

simply referred to as profiling. However, a profile can also be generated from logging by summarizing

the data during the presentation step or a post-execution analysis step.

40 2. Background and Related Work

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based

parallelism

(CUDA, OpenCL,

OpenACC)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles

(CUBE4, TAU)

Online

interface

Process-level

parallelism

(MPI, SHMEM)

Thread-level

parallelism

(OpenMP,

Pthreads)

Source code

instrumentation

(Compiler, PDT,

User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity

Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

Figure 2.5: Overview of the Score-P architecture, interfaces, and connection to tools for data presen-
tation (adapted from [RWT+19]).

2.5.2 HPC Performance Analysis Tools

There are numerous tools available that implement the previously mentioned techniques, often as a

combination of several methods. The following performance analysis tools focus on HPC use cases.

Therefore, all of these tools support parallel applications using shared memory and message passing,

at least with OpenMP and MPI, respectively.

TAU (Tuning and Analysis Utilities) [SM06] implements all stages of performance analysis. TAU

primarily uses instrumentation but also supports a hybrid data acquisition mode that combines

sampling and instrumentation [Mor+10]. While TAU primarily uses summarization, it can also create

traces. ParaProf supports the visual analysis of TAU profiles. The Extrae15 software package also

implements several instrumentation techniques as well as sampling based on interval timers and

hardware counter overflows. To enhance the resolution of information about repeated code regions,

Servat et al. [Ser+12] suggested folding of samples from multiple instances of a code region. Traces

collected by Extrae can be visualized with Paraver16. HPCToolkit [Adh+09] leverages sampling with

refined stack unwinding to collect information from parallel applications. It focuses on profiling but

also supports tracing, each with a respective interactive visualization tool [Tal+11].

Another performance monitoring infrastructure with a wide range of applications is Score-P [Knü+12].

Figure 2.5 shows the modular design of Score-P, which allows various instrumentation techniques and

passes all events to logging for traces, to summarization for call-path profiles, or both. Score-P also

supports sampling based on PAPI or perf overflow interrupts as well as collecting metric information

from several interfaces. On the one hand, the Vampir [Knü+08] visualization tool provides interactive

visualization of the OTF2 traces generated by Score-P both as timelines and as profiles. On the other

hand, CUBE [Sav+15] can visualize the call-path profiles that are generated by Score-P itself.

15https://tools.bsc.es/extrae
16https://tools.bsc.es/paraver

https://tools.bsc.es/extrae
https://tools.bsc.es/paraver

2.5. HPC Performance and Energy Analysis 41

To complement the existing tools, I developed lo2s(Linux Otf2 Sampling) together with my co-

authors. Lo2sprimarily leverages the perf infrastructure of the Linux kernel, which provides sampling

capabilities and exposes a wide range of system-level events. In general, the Linux kernel logs the

exposed information independently into a user-provided memory buffer. Given sufficient hardware

support, the processor itself performs the logging. This shift from the logging in userspace to the

kernel or processor helps to reduce the perturbation of monitoring. Whenever the memory buffers

are full, lo2sflushes the collected traces to OTF2. Thus, lo2scan be used in conjunction with OTF2

compatible trace visualization tools, in particular, Vampir. Contrary to the other discussed tools,

lo2soperates only on a node level. While it supports thread or process parallelism, it is not aware

of OpenMP or MPI. However, lo2sadds the crucial system aspect to performance analysis that is

not well supported by other tools. For instance, lo2scan natively record the selection of C-states

and P-states by the operating system (OS), which, as I described in Section 2.4, has a significant

influence on computing system power consumption. Other system-oriented tools lack parallel logging

mechanisms and scalable visual analysis (see [Ils+17]).

In Chapter 5, I leverage Score-P and lo2sfor combining energy measurement and application moni-

toring as well as Vampir for visualizing resulting traces. Together, these tools cover a comprehensive

range of performance analysis scenarios of massively parallel application to sophisticated system

event logging. Further, both monitoring frameworks are extensible to integrate power measurements.

OTF2 as a format and Vampir for visualization support storage and analysis of generic metric data

and, therefore, power measurements.

2.5.3 Combining Application and Power Measurements

Section 2.2 discussed how power measurements are commonly used in an isolated form, often in terms

of logging and plotting timeline charts. The combined information from application performance

recordings and power measurements can yield more insight.

Grant et al. [Gra+17] classified HPC related power measurements on different levels. Level 1

describes a summarization on a job-level granularity without any insight into the temporal variations.

Further, they classify isolated periodic sampling of power consumption and timelines with only power

consumption as level 2. At level 2, phases in the power consumption can be identified but not easily

correlated with non-power information. An important distinction is whether the sampling is performed

in-band or out-of-band. In-band sampling on the system under test itself can negatively impact the

system performance and energy consumption. Due to synchronization within parallel applications,

even a small local impact can cause more significant overall slowdowns. Level 3 leverages application

instrumentation — either manually or by leveraging automated tools. At each event triggered by

the instrumentation, power or energy measurements are collected. This approach can exhibit a high

overhead if the instrumented regions are short. Finally, level 4 combines and correlates information

from the previous levels. This level includes logging power consumption samples out-of-band while

recording application events in-band and correlating the two logs by timestamps.

In [Ils09], I categorized three different approaches to include external power measurements in

application traces. This work is based on an existing, sophisticated application monitoring system

and then integrates power measurement samples. In particular, I use VampirTrace [Knü+08] for

application monitoring and Dataheap [KHN12] for managing power measurement data, but the

42 2. Background and Related Work

(a) Trace from PowerPack [Ge+10]. (b) Trace from PowerSensor 2 [RV18].

Figure 2.6: Timeline presentations from combined application and power measurement.

classification is general. The pull technique follows the typical approach for reading hardware

performance counters whenever the monitoring system records an event in the application. With the

push technique, incoming power values are sent to the measuring system asynchronously for being

recorded into the trace. The post-mortem approach buffers measured values in an intermediate system

and transfers the recorded power measurement after the experiment. The latter approach has several

advantages over the others: Most importantly, by fully leveraging out-of-band measurement and

data recording, there is no additional computation on the system under test during the experiment.

Thus, there is no perturbation that scales with the amount of measurement data. Only the post-

mortem approach allows high measurement sampling rates without compromising the accuracy of the

application measurements. The push and pull approaches often utilize the clock of the system under

test for adding timestamps to power measurements. This delayed timestamping introduces an error

due to network latency and jitter (push and pull) and the age of the most recent measurement (pull).

With post-mortem integration, timestamps from the power measuring system are used, which requires

synchronization of the respective clocks (see also Section 5.2). In terms of the classification by Grant

et al., the push and post techniques correspond to level 3, while post-mortem corresponds to level 4.

Dolz et al. [Dol+15] presented timeline charts recorded with ArduPower, although they refer to it as

power profiles. Their charts include multiple power measurements of components of a computing

system on a shared power-axis. In these charts, coarse-grained executed applications, which run

in regular intervals, are marked. As shown in Figure 2.6, both PowerPack [Ge+10] and PowerSen-

sor 2 [RV18] allow similar timeline power charts but augment them with application phases. With

custom APIs, users can manually instrument application code in order to expose the application

phases for logging. PowerSensor 2 collects GPU power measurement results in-band by logging

time and power consumption to an ASCII file. Contrary, PowerPack logs power data out-of-band to

avoid perturbing the system under test. The application events are collected in a separate log. A

post-mortem data analysis software merges both logs with the help of the collected timestamps. The

authors also use data collected with PowerPack to create Energy profiles grouped by different process

configurations and degrees of parallelism. PMLib [Alm+18] further leverages Extrae for automated

application instrumentation. Using the trace visualization tool Paraver [Pil+95], users can create

combined timelines, which include application events and power samples.

2.6. Conclusion 43

2.6 Conclusion

In summary, the challenge of measuring the energy consumption of HPC systems can be approached

from two sides. On the one hand, there are well-established practices for power measurements

and metrology in general. However, the general measurement approaches do not consider the

specific properties of computing components as power consumers. On the other hand, contemporary

measurement approaches specific to HPC systems and their components provide only limited resolution

and are often not well understood in terms of their uncertainty.

With this dissertation, I address this gap by designing energy measurement solutions with a particularly

high temporal resolution. In Chapter 3, I use these measurements to reveal the properties of the power

consumption signal at different possible instrumentation points. This understanding is crucial for the

design of new power measurement solutions for computing systems and validating assumptions about

existing ones. I target both measurements of single nodes as well as a scalable HPC measurement

solution. To further strengthen the quality of HPC energy measurements, I provide a rigorous

evaluation of all discussed measurements.

With respect to processing and storing measured values, existing infrastructures and time series

databases are well-suited for high-cardinality data, i.e., many different measurands. High-resolution

measurement data, however, is not well supported. In addition to ingesting a high rate of measured

values, the retrieval of information covering long time intervals presents a performance challenge for

contemporary monitoring infrastructures. Approximate query processing techniques can improve

performance but reduce accuracy. Consequently, in Chapter 4, I present a novel infrastructure for

processing power measurement results, which I designed for both high-resolution and large-scale

measurements of HPC systems. This infrastructure includes a time series database that allows efficient

ingestion and retrieval. For this database, I exploit a new hierarchical storage concept that improves

on existing techniques for down-sampling.

The state of research offers established concepts for performance analysis of HPC applications and

systems alongside a range of tool implementations. These concepts provide a solid foundation for

introducing energy measurements. However, the temporal resolution and scalability of current

solutions is limited. Moreover, current approaches for combined application and power measurement

often require manual application instrumentation. Hence, in Chapter 5, I leverage existing tools

for application performance analysis and integrate power measurements to provide fine-grained

and scalable energy efficiency analysis. In this context, I focus on tracing rather than profiling, as it

preserves the crucial temporal information and benefits particularly from high temporal resolutions.

44 2. Background and Related Work

45

3 Evaluating and Improving Energy Measurements for
Computing Systems

Energy measurements are a crucial prerequisite for energy efficiency analysis, energy-efficient opera-

tion, energy accounting, and power limiting. All of these use cases rely on the accuracy of provided

energy and power values. Particularly, energy-optimization decisions, both at run-time and design

time, may be wrong if the underlying measurements are flawed. In this chapter, I present a systematic

approach to evaluate energy measurements for computing systems along various aspects. For each

aspect, I discuss improvements over the state of the art and present practical results.

In Section 3.1, I introduce various systems under test, ranging from single node server systems to a

large-scale production HPC system. These systems are instrumented with different energy measuring

systems, which I describe and evaluate throughout this chapter. I discuss the different aspects for

measurements roughly following the measurement signal from analog instrumentation to digital

analysis. Section 3.2 describes the first parts — possible instrumentation points and sensors for

energy measurements of the aforementioned systems under test. The next step, processing of the

analog power measurement signal and its digitization, is covered by Section 3.3. In Section 3.4, I

present an in-depth accuracy evaluation of the different measuring systems covering theoretical as

well as practical aspects. Section 3.5 discusses various aspects of enabling a high temporal resolution

for power measurements. Such a high resolution increases the information detail in measurement

results and reveals dynamic behavior of computing systems down to tens of microseconds. Temporal

resolution of measurements is also closely related to the question whether a power measurement can

be used to compute accurate energy values. Finally, in Section 3.6 I discuss and evaluate CPU energy

counters, specifically RAPL, as an alternative to dedicated power measurements.

3.1 Description of the Systems Under Test

I discuss the different aspects of energy measurements on the basis of various systems under test. All

of the systems under test use x86-64 processors and are focused towards high performance, either

as single node server systems, or being HPC clusters. The hardware specifications of the different

systems are listed in Table 3.1 and Table 3.2 for the single-node and HPC systems respectively.

My contribution to the different measuring systems are as follows. The measuring system for apollo

and artemis was developed by a third party whereas I present an in-depth evaluation regarding

accuracy and temporal behavior of the different sensors. My experiences with apollo also influenced

the design of the follow-up measuring system artemis for which I specified the requirements and

instrumentation points, while the assembly of instrumentation harnesses and measurement amplifiers

was done by a contractor. I initially published the description and evaluation of both apollo and

artemis in [Ils+15a] and [Ils+18c]. The modular measuring system of artemis was further transferred

46 3. Evaluating and Improving Energy Measurements

Table 3.1: System specifications for the single-node systems under test.

apollo artemis diana ariel

Processor Model AMD Opteron 6274 Intel Xeon E5-2690 Intel Xeon E5-2690v3 Intel Xeon Gold 6154
Microarchitecture Bulldozer Sandy Bridge-EP Haswell-EP Skylake-SP
Processor TDP 115 W 135 W 135 W 200 W
Cores 3× 16= 48a 2× 8= 16 2× 12= 24 2× 18= 36
Memory 48 GiB 64 GiB 256 GiB 384 GiB

a Since one of the four hardware sockets was damaged, the system is running in a thee-socket configuration.

Table 3.2: System specifications for the HPC multi-node systems under test.

taurus (phase 1) taurus (Haswell)

Processor Model Intel Xeon E5-2690 Intel Xeon E5-2680v3
Microarchitecture Sandy Bridge-EP Haswell-EP
Processor TDP 135 W 120 W
Cores per Node 2× 8= 16 2× 12= 24
Memory per Node 32 GiB to 128 GiB 64 GiB to 256 GiB
Nodes 270 1456

to a new measuring system — diana. Therefore, some of the evaluations for this measuring system

are performed on artemis, while others are performed on diana. The most recent system under

test is ariel, for which I designed the measurement harnesses. A workshop at TU Dresden built the

harnesses to my specification and the sensors and digitization are part of an integrated commercial

power analyzer.

The High Definition Energy Efficiency Monitoring (HDEEM) project is a vendor collaboration between

BULL (now part of Atos) and TU Dresden to enable high quality energy measurements for production

HPC systems. HDEEM is available on the taurus HPC system deployed at TU Dresden. The taurus

phase 1 was an earlier smaller system which employed Intel Sandy Bridge generation processors and

less sophisticated energy measurement capabilities. While taurus, as a whole, includes phase 1 and

also other types of specialized nodes, references to taurus in this chapter refer to its Haswell nodes

with full HDEEM capabilities unless noted otherwise. My contribution to HDEEM is in designing,

implementing, conducting, and analyzing the measurement evaluation. This includes accuracy, energy

correctness, and functional aspects that were also part of the procurement acceptance test. Further,

my evaluation and specific feedback enabled the vendor to incrementally improve the measurement

solution. I described the initial prototype and general approach in [Hac+14], whereas I covered

HDEEM and its production implementation in [Ils+18c].

3.2 Instrumentation Points and Measurement Sensors

A fundamental choice for any measurement is the point of instrumentation in the power conversion

chain (see also Figure 2.2). The choice of the instrumentation point also implies the measurement

domain and has some influence on the applicable power measurement sensors. While the theoretical

background is given in Section 2.1.2, I describe the practical aspects of several instrumentation

approaches in the following sections. First, Sections 3.2.1 through 3.2.3 consider custom single-node

instrumentation with a focus on high temporal resolution, while Section 3.2.5 describes HDEEM as

an example of a scalable instrumentation solution for many-node production systems.

3.2. Instrumentation Points and Measurement Sensors 47

(a) Instrumentation at VRs (b) Hall effect sensor board (c) Shunt-based harness

Figure 3.1: Different instrumentation approaches used in the apollo and artemis systems under test.

3.2.1 Analog Measurement at Voltage Regulators

The apollo system uses two levels of instrumentation described in this and the following section

respectively. The first level is close to the consuming components and utilizes the voltage regulators

of the mainboard. Instrumenting at the level of voltage regulators allows access to more fine-grained

power domains, i.e., core, northbridge, and DRAM for each processor package as well as one power

input that is shared across packages. However, not all consumers are covered by this measurement

approach, e.g., on-board Ethernet and DRAM termination voltage are not measured.

The mainboard uses several different voltage regulators1 that are supplied by the 12 V input and

provide lower voltages to the components, e.g., 1.5 V for memory. Theses chips use internal current

measurements over an inductor to perform their function. Each voltage regulator consists of multiple

circuits that are responsible for one phase. These phase circuits provide a shared output signal to a

control circuit that corresponds to the total current. For the apollo measurements, the summary signal

of each voltage lane is captured and used for the external measurements. While the calculation for

power is described in the datasheet of the IC [Int], the accuracy is not documented. The measurement

is performed on the consumer side and does not include the losses of the voltage regulator circuits,

which are also typically non-linear [Haj+16, Sec. 1.2.3.2]. Depending on the goal of the measurement

this can be an advantage — when targeting power of a specific component, or a disadvantage —

when optimizing total system power.

This instrumentation approach is extremely specific to a particular system. It also requires detailed

knowledge of the wiring on the mainboard to locate the right points for instrumentation. Adding

the probes for the current sensing and component voltage signals is an intricate process. Figure 3.1a

shows the mainboard with attached probes and wires. With the probe wires connected, the sensing

signals are susceptible to electromagnetic interference, which can affect the operation of the system.

3.2.2 Instrumentation with Hall Effect Transducers

The mainboard of the apollo system uses ATX input voltages (12 V, 5 V, 3.3 V) supplied by the PSU2.

This connection constitutes the other instrumentation point of this system. Since the 12 V lane covers

a majority of total power consumption, and is also the most variable, it is of primary interest. However,

this instrumentation point provides only a coarse grained resolution with most components of interest

1IR3521 control IC with IR3529 phase IC and ISL6566 controller
2In addition to the standard ATX plug, there are three additional 8-pin connectors supplying 12 V to the mainboard. In

the following, I consider the combined 12 V lane from all connectors.

48 3. Evaluating and Improving Energy Measurements

summed up — similarly to a full-system measurement. The other two voltage lanes are measured for

completeness and comparison with AC power measurements.

The PSU is connected to the board with very short ATX cables. In order to enable the instrumentation,

the connecting cables were cut and rerouted to pass them through a sensor board with three Hall

effect transducers3. The sensor board, shown in Figure 3.1b, provides a connector with the current

and voltage signals. This connector also supplies the operating voltage for the Hall effect transducers.

3.2.3 Modular Instrumentation of DC Consumers

For the instrumentation of the artemis system, the design goal was portability in the sense that the

instrumentation can be transferred to another system. This helps keeping up with advancements

in energy-efficient hardware development without the need to regularly build new instrumented

systems. Further, the instrumentation should allow separate measurement of components at least at

the level of processor packages. All DC consumers with a separate connection to the PSU were used

as measurement domains, i.e.,

• two separate 8-pin 12 V connectors, where each connector supplies power to one of the two

processor packages and its memory,

• the ATX mainboard power supply with the 12 V, 5 V, and 3.3 V lanes,

• the 12 V and 5 V lanes of a SATA power connector,

• the 12 V power supply for all fans in the system at a 4-pin connector,

• a joint measurement of two 6-pin 12 V auxiliary power connectors as additional power supply

for a graphics processing card,

• the 12 V and 3.3 V lanes of a PCIe card — this power domain is already included in the respective

voltages of the main ATX power supply,

• the main voltage lane of one DDR3 memory module — this power domain is already included

in the respective 8-pin 12 V package power input.

Most of the power connectors use widely adopted Molex plugs. This allows an instrumentation by

using Molex extenders with an embedded shunt. One such shunt is shown in Figure 3.1c. In addition,

the main PCIe power as well as the DDR3 DIMM power is measured using riser cards. Those riser

cards contain small measurement shunts and allow access to the voltage drop (current) signal and

the component voltage.

While the modular measuring system was initially used with the artemis system, it was later moved

to the more recent diana system. This shows that, by using removable, standardized connectors for

instrumentation, the measurement setup can be easily migrated to other systems under test. However,

some server systems, particularly compact rack-mounted devices, use proprietary connectors, so

mainly workstations or desktop computers can benefit from the portability.

3LEM LA 100-TP for 12 V and LEM HXS 20-NP for 5 V and 3.3 V lanes

3.2. Instrumentation Points and Measurement Sensors 49

Table 3.3: Comparison of the error introduced by different wirings of power measurements for diana
and ariel main power domains (processor + DRAM)

Proper Load Current Wiring Proper Load Voltage Wiring
System Load Vs (V) Il (A) Pl (W) Pe absolute (W) Pe relative (%) Pe absolute (W) Pe relative (%)

diana full 12 17 204 5.8× 10−1 2.8× 10−1 7.2× 10−10 3.5× 10−10

diana idle 12 1.3 15.6 3.4× 10−3 2.2× 10−2 7.2× 10−10 4.6× 10−9

ariel full 12 17 204 2.9 1.4 3.0× 10−5 1.5× 10−5

ariel idle 12 0.5 6.0 2.5× 10−3 4.2× 10−2 3.1× 10−5 5.2× 10−4

For the ariel system, I followed a similar approach of instrumenting Molex connectors. The measure-

ment domains are therefore similar. However, shunts are no longer included in the adapters. For

each measurement domain, the adapters expose three measurement connectors with 4 mm test leads.

The adapter allows passing the current of each measurement domain through a power analyzer with

internal shunts. The third measurement connector provides ground reference for measuring voltage.

3.2.4 Optimal Wiring for Shunt-Based Measurements

As introduced in Section 2.1.2, there are two different ways to connect voltage and current measure-

ments of a power measurement such that either voltage or current is measured correctly. Depending

on the selected wiring, there is a specific error between measured power4 and actual load power

consumption: Pe = Pm − Pl . To understand which wiring results in the smaller error, and to estimate

the magnitude of the introduced error, I evaluate the choices for a selection of practical measure-

ment domains. The examples given are for the per-package measurements of diana (including

DRAM) and ariel (excluding DRAM). For the custom-built measurements of diana, the resistance

of the shunt is Ra = 2mΩ and the input impedance of the amplifiers for the voltage measurements

is Rv = 200GΩ [Lin]. The integrated measuring system for ariel specifies the resistive impedances

as Ra = 10mΩ and Rv = 4.59MΩ [ZES16]. For each measurement domain, I use full load and idle

workloads to cover the full range of operations. This calculation considers only direct current and

resistive impedances. In practice, the voltage is regulated, but there can be variations in the current.

Table 3.3 shows a comparison of the error of load power measurement for different wirings as

presented in Figure 2.1. The error of load power with proper load voltage wiring is orders of

magnitude lower than the error for proper load current wiring in all configurations. Given the high

currents and low voltages in compute node DC measurements, this conclusion can be expected. For

the artemis/diana measuring system, however, one goal was to measure source power correctly for a

PSU efficiency evaluation. Thus, proper load current wiring was chosen. The resulting relative error

for load power measurement of at most 0.28 % remains smaller than other sources of uncertainty

as I show in Section 3.4.2. For ariel, I configured the connectors to use proper load voltage wiring

although they can be reconfigured just by re-plugging. At scales of 0.0005 % relative / 30 µW absolute

in all configurations, the resulting error does not contribute significantly to the overall uncertainty of

the load power measurement.

4I consider measured power as computed by Pm = Vm Im. The actual load power can be computed as per (2.5) and (2.7).
This does, however, require precise quantities of the involved resistances.

50 3. Evaluating and Improving Energy Measurements

3.2.5 Node-Level Instrumentation for HPC Systems

Like the instrumentation of the apollo test system, HDEEM is also applied on two levels. A full-node

measurement uses a dedicated power and current monitoring chip at the DC/DC conversion of the

compute nodes5. This measurement domain is referred to as “blade” by the vendor, even though there

are two separately-measured nodes per physical blade. The monitoring circuit provides an analog

current and power signal. Moreover, six power domains are measured at the voltage regulators (VRs):

two processor packages and four groups of DRAM modules. These measurement domains are referred

to as “CPU0” and “CPU1” as well as “DDR AB” through “DDR GH” by HDEEM. In contrast to the

apollo VR measurements where the analog current signal is captured, in HDEEM the VRs provide the

measurement signal digitally. Together with co-authors from the vendor, I described further details of

HDEEM in [Ils+18c].

3.3 Analog Signal Conditioning and Analog-to-Digital Conversion

Analog measurement signals are typically conditioned with amplifiers and low-pass filters. The next

step after the conditioning is the analog-to-digital conversion, in which the analog signal is captured

digitally (see Section 2.1.3). In the following, I discuss the analog signal conditioning and analog-to-

digital conversion aspects of the presented measurement setups. For the measurements on apollo and

artemis, I consider the entire measurement chain. Contrary, for the integrated measurement systems

of ariel (ZES LMG670) and taurus (HDEEM), some aspects are not publicly documented.

3.3.1 Signal Amplification

As described in the previous sections, the measuring systems for apollo and artemis/diana feature

several different sensors. Table 3.4 shows a summary of those sensors and their various analog

output signal characteristics. The analog signal from the voltage regulators of apollo has a relatively

low-voltage measurement signal, which is also not isolated from the operating of the VRs. These

signal properties need to be considered for data acquisition. Further, the load voltages at the VR are

around 1 V. The Hall effect sensors provide higher and isolated current measurement voltages. At

their measurement points, the load voltages are up to 12 V. Shunt-based measurements, as shown in

diana, can have even lower current measurement voltages than the the signal from voltage regulators.

These low voltages are difficult to acquire, requiring the sophisticated signal amplification. Higher

measurement voltages from shunts with larger resistance, however, are not feasible as this would

significantly reduce the voltage available to the consumer. For example, the processor and DRAM

connector is supplied with 12 V from the PSU. At the maximum current of 17 A, the available load

voltage is reduced by 34 mV or 0.28 % (the measurement voltage). ATX specifies a tolerance of ±5 %

for 12 V voltage rails [Int13]6. This voltage drop is within tolerance, larger resistors would increase

this voltage drop and could start to affect system stability. The PSU may introduce a variance that has

to be accounted for in the tolerance. Further, a larger measurement voltage would imply a higher

power measurement error as well as thermal dissipation that could increase uncertainty.

5The compute nodes use an input voltage of 54 V DC supplied by PDUs in the rack.
6The P8 12 V package connectors are not included in the ATX specification, tolerances refer to other 12 V rails.

3.3. Analog Signal Conditioning and Analog-to-Digital Conversion 51

Table 3.4: Overview of the analog measurement signal ranges.

System Sensor Type Measurement Domain Voltage (V) Currenta (A) Measurementb (mV)

apollo VR core 1.0 120 230
apollo VR northbridge 1.2 23 220
apollo VR DRAM 1.5 8.7 8

apollo Hall effect board 12.0 42 692
apollo Hall effect board 5.0 3.1 386
apollo Hall effect board 3.3 0.9 56

diana shunt processor + DRAM 12.0 17 34
diana shunt board 12.0 0.8c 10
diana shunt board 5.0 1.2c 7
diana shunt board 3.3 0.2c 1
diana shunt GPU 12.0 20d 24
diana shunt PCIe 12.0 6.5d 65
diana shunt PCIe 3.3 2.0d 20
diana shunt SATA 12.0 0.3 15
diana shunt SATA 3.3 0.4 2
diana shunt fan 12.0 0.6 30

a maximum of load current as measured under sustained full load unless noted otherwise
b voltage of the current measurement at maximum load current
c in a configuration without GPU
d estimated maximum based on specification

The current measurement voltages given in Table 3.4 represent values for maximum load. During

typical workloads, and especially for idle configurations, the measurement voltages are lower. This

poses the challenge to capture both stable voltages of up to 12 V as well as highly varying voltages

in the order of 1 mV. To address this, the measuring system for apollo and artemis/diana uses

programmable precision instrumentation amplifiers of type LT1167 [Lin], which can be configured

dynamically for an amplification factor between 0.05 and 400. This ensures that all signals can be

digitally captured with a common voltage range of ±10 V.

3.3.2 Analog Filtering and Analog-To-Digital Conversion

As discussed in Section 2.1.3, it is important that the sampling rate matches the analog signal

bandwidth. The measuring system for apollo and artemis/diana uses a flexible data acquisition with

two National Instruments cards. For the best temporal resolution, the NI PCI-6123 card captures up

to four measurement domains (eight channels with for each of the voltage and current signals) at

500 kSa/s. This high-resolution sampling is used for highly variable measurement signals such as

the per-socket power domains of the diana system. The majority of channels is covered by the NI

PCI-6255 card, which offers 80 signal inputs at a maximum aggregate sampling rate of 1.25 MSa/s

(see also Section 2.1.3). However, to avoid cross-talk between signals from different measurement

domains, a lower sampling rate of 7 kSa/s per channel (560 kSa/s aggregate) is used in practice.

With a configuration covering a lower number of measurement domains, the sampling rate per

channel can be increased while retaining the aggregate sampling rate. To accompany this flexible data

acquisition setup, the amplifier boards for this measuring system include a low-pass filter. This filter

is configurable in order to allow a high temporal resolution measurement when using the respective

measurement channels while ensuring accuracy when using lower sampling rates.

52 3. Evaluating and Improving Energy Measurements

The LMG670 measurement device for the ariel system uses a sampling rate up to 1.21 MSa/s per

channel with static as well as configurable anti-aliasing filters (see also Section 2.2.1). This setup

allows to push the boundaries of sampling rate and temporal resolutions for measuring compute

power. Moreover, these sophisticated single-node measuring systems can utilize dedicated computing

resources posing no limitation of measurement data rate.

Contrary, for a full-scale integrated system with no external hardware to support the measurement,

the processing capability can limit the sampling rate. Furthermore, cost has to be considered for

scalable production systems with thousands of nodes. The HDEEM infrastructure utilizes an FPGA,

which allows end-to-end sampling rates up to 1 kSa/s without compromising node performance. A

second-order low-pass filter at 600 Hz is applied to the analog signal. Since this filter does not have

an ideal cutoff, the bandwidth for considering the Nyquist criteria is actually higher than 600 Hz.

Thus, to ensure accuracy, the sampling rate is 8 kSa/s. The digital signal is immediately processed

with another anti-aliasing filter and downsampled to 1 kSa/s. This approach enables the observation

of dynamic power close to the readout rate (see also Section 3.5.1, Figure 3.9e) while retaining high

accuracy due to internal oversampling. The reduced readout rate of 1 kSa/s relaxes the requirements

for further digital processing and enables longer recordings are in the limited memory of the BMC.

The measured HDEEM values at VR level are provided digitally by the VRs at a rate of 1 kSa/s. These

signals are also digitally filtered and downsampled to 100 Sa/s.

3.3.3 Integrated Solutions for High-Resolution Measurement

The custom solutions of the energy measuring system for apollo and artemis/diana use external cabling,

plugs, and screw terminals to connect power lines, sensors, amplifiers, and data acquisition. This

poses practical challenges regarding outside interference and long-term stability. For the measurement

of the ariel system, I selected the following contemporary integrated measurement solution that

combines sensors, signal conditioning, and data acquisition in one device. Going with an integrated

device reduces the outer complexity of the measurement setup significantly.

The LMG670 power analyzer [ZES16] with six L60-CH-A1 power measurement channels offers a

sampling rate of 1.21 MSa/s per channel (see also Section 2.2.1). A crucial feature is the possibility

to read measurements at full resolution from the device. This possibility enable high-resolution

energy measurements of computing systems. In the scope mode, measurements can be read remotely

through the gigabit network interface from both the narrowband and wideband channels at full

resolution7. This data collection can operate continuously rather than just collecting a fixed number

of samples on the device for a limited time. Overall, these features enable the use case of application

power traces (see Section 5.1.3).

The aspects of choosing instrumentation points and adapters for instrumentation still apply. For

ariel, I designed similar DC-Molex adapters as the ones discussed in Section 3.2.3. Other aspects

of the measurements are handled by the device itself. Each channel uses internal shunts that are

configurable for different current ranges up to 32 A. The different aspects of analog processing are

also covered by the device, e.g., configurable filters of the DualPath signals and their data acquisition.

7When using all channels simultaneously, the sampling rate is limited by the network bandwidth.

3.4. Accuracy Evaluation and Calibration 53

3.4 Accuracy Evaluation and Calibration

Verifying the accuracy of energy measurements of computing system is particularly challenging for

several reasons: Firstly, the true value of a measurement is unknowable [JCG08]. The uncertainty

approach discussed in Section 2.1.1 provides a systematic way to discuss accuracy in the absence of

the true value. Creating the required measurement model, however, requires detailed knowledge

about all components of the measurement that contribute to the error. But certain aspects of the

discussed measurements are black boxes for this evaluation. Secondly, the actual power consumption

of a computing system cannot be precisely controlled for successive measurements. The dispersion

of the true value of a measurand are significant and may dominate the dispersion of measurement

results, even for repetitions over a short period of time. Therefore, the repeatability conditions

for measurements that are integrated in compute systems cannot be guaranteed. This limits the

applicability of a type A (statistical) uncertainty evaluation. Consequently, only the error approach

remains feasible.

For evaluating the error of the custom-built and integrated measuring systems, I use measured values

from a calibrated LMG450 power meter as substitute for the true value (see also Section 2.2.1). The

wide range of possible operating points of computer systems with respect to power consumption also

presents a challenge to for the reference measurements. While the range of values is known, it is not

trivial to induce a set of diverse operating point across this range. Moreover, the signal may contain

high frequencies and is neither pure DC nor limited to sinusoidal shape. Effectively, computer systems

can exhibit almost arbitrary patterns of power consumption (see Section 3.5.1). Therefore I use the

worst documented uncertainty8 of the reference measurement, which amounts to 0.6 % of measuring

value + 0.5 % of measuring range for active power at up to 20 kHz.

3.4.1 Synthetic Workloads for Evaluating Power Measurements

In the following evaluations, I use different sets of workload generators: Firstly, synthetic workload

kernels provide a specific and diverse utilization of resources, e.g., floating point units or the memory

subsystem [Hac+13a; Bie15]. With a framework around the workload kernels, I varied several kernel

and system parameters, e.g., the core frequency, the number of threads, and the mapping from threads

to hardware threads. Such a variety of workload configurations is important to expose biases of

measurements or models towards certain components (see also [BJ07]). This is particularly relevant

when evaluating CPU energy counters, which may be implemented with models (see Section 3.6).

A general limitation of the quantitative error evaluation stems from differences in the temporal

scope of the evaluated and reference measurement. While the evaluated measurements provide a

readout rate of up to 500 kSa/s, the reference power meter LMG450 only exposes readouts at 20 Sa/s,

even though it internally samples at a much higher rate. Further, at a sub-millisecond time scale,

assigning consistent timestamps to measurements generated by different devices becomes increasingly

difficult (see Section 5.2). To overcome the discrepancy in measurement rate and synchronization,

for comparisons with the reference measurement all workloads were executed for least 10 s in each

configuration. For each time slice, the inner 8 s are used to compute the average power consumption

8The documentation [ZES] specifies a “measuring accuracy”, which I assume to be an upper bound for the measurement
error.

54 3. Evaluating and Improving Energy Measurements

of both the evaluated and the reference measurement. This averaging does hide the impact of

noise (i.e., random error) for the fine granular measurements, but allows an absolute comparison of

accuracy, particularly with respect to energy which relates to average power (i.e., systematic error).

This applies to the evaluation in Section 3.4.2, Section 3.4.3, and Section 3.6.

For evaluating the accuracy of a measuring system in the presence of rapid and sharp load changes

— i.e., the energy correctness evaluation in Section 3.5.2) — I used alternating synthetic work-

load kernels that exhibit particularly low and high power consumption, respectively. In particular,

FIRESTARTER [Hac+13b] is a stress test utility designed to maximize power consumption, but can

also generate regular power alternations with very high amplitude by alternating between tuned

computational parts and idle. A modified version of FIRESTARTER also performs load swings in a

cluster that are synchronized using MPI.

While idle presents a particularly low level of power consumption, the transition from execution to

idle can take hundreds of microseconds (see Section 5.3.2). The temporal granularity evaluation

in Section 3.5.1 required load changes at higher frequencies up to the order of 100 kHz. Thus, I

designed and implemented additional custom workload generators that utilize simpler workload

kernels and require no C-state transition:

• The square root instruction family is known to exhibit a very low power consumption, on some

systems even below the power consumption of idle loops [Mol+10].

• On the Skylake-SP system ariel, the square root instruction performs significantly better, which

causes a higher power consumption. Therefore, I use a PAUSE-loop on this system. The

PAUSE instruction is documented to reduce the power consumption during spin loops [Int18a,

Vol. 2B 4-229]

• A vectorized arithmetic loop with addition and multiplication that operates on a small data set

that fits into caches causes a high power consumption. While there are even higher power work-

loads such as FIRESTARTER, the simpler loop does not depend on memory power consumption

and can easily be controlled to run for a specific fine-grained amount of iterations.

To increase the significance of amplitude changes on the measured power domains, multiple threads

execute these workloads. This requires synchronization either using barriers, e.g., with OpenMP, or

a shared clock. When evaluating measurements, it can be insightful to evaluate specific workload

alternation frequencies, such as the analog-to-digital sampling rate or intermediate readout rates. In

addition to checking known frequencies, I used workloads that allow varying the workload alternation

frequency over time (sweep) or manual interactive selection of workload alternation frequency. The

result from an automatic sweep or manual tuning was then used as parameter of a constant frequency

workload for further evaluation.

3.4.2 Improving and Evaluating the Accuracy of a Single-Node Measuring System

In the following section, I focus on the accuracy of single-node high-resolution power measurements.

For this verification, I utilized the synthetic workload kernels introduced in the previous section

and varied the thread count and thread mapping configuration. All comparisons are with respect to

average power over time slices due to the differences in sampling rate.

3.4. Accuracy Evaluation and Calibration 55

Vs

A
ILMG

A
Im

Pl

VVLMG

VVm

LMG450 reference measurement artemis measurement

Figure 3.2: The setup for absolute verification of artemis measurements, applied to for each of the
two processor packages

Calibration of Amplifiers and Shunts

The measuring system for apollo and artemis/diana was calibrated separately at the level of amplifiers

and shunts [Ils+15a]. Each amplifier use a digital8-bit calibration factor, which is nominally set to

240. This allows a calibration at a precision of ±0.21 %
�

= 0.5
240

�

. To calibrate the amplifiers, a stable

input signal was provided by a signal generator and measured at the input and output with calibrated

reference voltmeters.

For calibrating the shunts, a sliding resistor was used, providing a stable ohmic load during calibration.

The reference measurement is used to gather current and voltage in the setup. The calibration

revealed differences of up to 16 % compared to the specifications of the current sensing resistors. This

can be explained by additional contact resistances of the harness given the small shunt resistances

ranging from 1.2 mΩ to 12 mΩ.

Verification of Shunt-Based DC Measurements for Artemis

The evaluation of artemis focuses on the 12 V per-package power measurements as these power

domains consume the majority of variable power. I applied the reference power meter to the same

power domain as shown in Figure 3.2. In this configuration, both measuring systems covered the same

power domain except for contact resistances and input impedances of both voltage measurements

(see Section 2.1.2 and Section 3.2.4). The resulting difference between reference measurement and

shunt-based package measurement of artemis is shown in Figure 3.3.

The relative error on both packages for all workload configurations is below 1.7 % or 2.3 W absolute.

In this measurement setup, the uncertainty of the reference measurement is significant, particularly

for low power configurations. Any error within the uncertainty can be explained either by the error

of the reference measurement or the error of the evaluated measurement.

56 3. Evaluating and Improving Energy Measurements

0 20 40 60 80 100 120 140

12 V DC Reference Measurement (W)

−3

−2

−1

0

1

2

3
R

el
.

Er
ro

r
of

C
us

to
m

M
ea

su
re

m
en

t
(%

)
package 0

package 1

ref. uncertainty

Figure 3.3: Relative differences between the 12 V per-package measurements on artemis compared
with the reference measurement. The reference uncertainty is included based on the
manufacturer accuracy specification.

Compound Verification of Shunt-Based DC Measurements for Artemis

As listed in Section 3.2.3, all DC consumers within the artemis system are measured individually.

This allows an additional comparison between the sum of all DC power consumption (PDC) and

the total AC input power to the PSU as measured by the reference power meter (PAC). In this case,

however, measurement domains are not identical. Instead, the PSU is between the measurements

of DC consumers and the reference AC power measurement. Nevertheless, the two measurements

should strongly correlate. A general correlation coefficient would yield a quantitative measure of

this correlation, but it does not express the possible error on the measurement scale. Further, the

commonly used Pearson correlation coefficient assumes a linear correlation, which does not apply to

this case. Rank correlation coefficients such as Spearman’sρ only consider the order of values [HEK09]

and cannot detect certain implausible patterns as long as monotony is given. Therefore, I define a

specific measure to quantify the discrepancy for this use case. To account for the differences in power

domains, I model the PSU efficiency. This needs to consider, that the loss of switching mode power

supplies includes quadratic components from conduction [Haj+18, Sec. 1.2.3.2]. The following

quadratic equation was fit on all measurement data by minimizing the squared error.

PAC = M(PDC) = 0.00026W−1 (PDC)
2 + 0.99988PDC + 14.7 W (3.1)

Note that this model is not intended to evaluate the PSU efficiency, but rather to expose noise as well

as workload-dependent errors in the evaluated measurement. It is only used for interpolation rather

3.4. Accuracy Evaluation and Calibration 57

50 100 150 200 250 300 350
PAC (W)

−3

−2

−1

0

1

2

3
δ

D
C

(%
)

ref. uncertainty

idle

busywait

compute

FIRESTARTER

matmul

memread

sine

sqrt

Figure 3.4: Relative discrepancies between the sum of DC shunt measurements and the AC reference
measurement on artemis under assumption of the PSU efficiency model (3.1). The
reference uncertainty is based on the manufacturer accuracy specification.

than extrapolation. Since there are no independent inputs to train the model, the comparison can not

reveal an overall bias or calibration error that is common to all evaluated measurements. Instead,

this metric exposes discrepancies between multiple evaluated measurements by stressing components

differently and shows the random error that remains after averaging the time slices. The absolute

and relative discrepancies (∆ and δ respectively) within the DC domain are then defined as follows:

∆DC = PDC −M−1(PAC) (3.2)

δDC =
∆DC

M−1(PAC)
(3.3)

Figure 3.4 shows the relative discrepancies between the AC reference power and modeled AC power

based on the sum of DC consumers. Due to the AC coupling, the reference power meter is more

accurate as reflected by the reference uncertainty bounds. The worst-case observed absolute and

relative discrepancies are |∆DC| < 1.0W and |δDC| < 0.6 % respectively for all configurations. The

results showed no systematic patterns or biases for certain workloads. Some configurations with high

utilization (FIRESTARTER and matmul workloads) on a single socket show a slightly higher negative

error which is consistent with the package 0 error pattern shown in Figure 3.3. On the other end of

the scale, the idle configuration shows a slightly higher positive error.

58 3. Evaluating and Improving Energy Measurements

100 200 300 400 500 600
PAC (W)

−3

−2

−1

0

1

2

3
δ

D
C

(%
)

ref. uncertainty

idle

busywait

compute

FIRESTARTER

matmul

memread

sine

sqrt

Figure 3.5: Relative discrepancies between the sum of DC Hall effect measurements and the AC
reference measurement on apollo under assumption of the PSU efficiency model (3.4)
The reference uncertainty is based on the manufacturer accuracy specification.

Verification of Hall-Effect-Based DC Measurements for Apollo

In apollo, the DC consumers are measured with Hall effect sensors at the three different voltages

(12 V, 5 V, and 3.3 V). Similarly to the previous setup, I performed a reference measurement and

applied the following PSU efficiency model to the DC power consumption in order to compare it to

the AC reference measurement:

PAC = M (PDC) = 0.00011W−1 (PDC)
2 + 1.0015PDC + 48.3 W (3.4)

Only the sum of all three DC voltages is used input for the model (PDC), even though it is conceivable

that the PSU has different efficiencies at the different voltages. This is to avoid overfitting the model,

and since there are no programmatic means to cause variations in the 3.3 V and 5 V lanes. The

resulting model is consistent in itself, but indicates a significantly lower PSU efficiency than the model

for artemis.

Figure 3.5 illustrates the resulting measurement discrepancy. The random error of this measurement

is significantly higher than the shunt-based measurement for artemis. There are also outliers with

negative errors of more than −1 %, particularly for the busy waiting and FIRESTARTER workloads.

A possible but unconfirmed explanation is a specific characteristic of high frequencies in the power

consumption signal of theses workloads that triggers a non-linear response of the Hall effect mea-

surements. Overall the worst case absolute and discrepancies are |∆DC|< 5.0W and |δDC|< 1.9%

respectively.

3.4. Accuracy Evaluation and Calibration 59

0 100 200 300 400 500
P12 V (W)

−30

−25

−20

−15

−10

−5

0

5
(P

V
R
−P

12
V
)/

P 1
2

V
(%

)
idle

busywait

compute

FIRESTARTER

matmul

memread

sine

sqrt

Figure 3.6: Relative differences between the sum of VR power measurements and the shunt-based
DC 12 V measurement for different workloads.

Verification of Voltage-Regulator-Based DC Measurements for Apollo

The power for the VRs is provided by the 12 V lane. Therefore, I used the 12 V previously evaluated

DC measurements (P12 V) for further investigation of VR-based measurements. In this comparison, the

measurement domains are again different between the evaluated measurements and the reference

measurement. The measurement domains of the VRs are on the consumer side (e.g., 1 V to the

processor). Therefore, they do not include the loss of the VRs itself. Contrary, the 12 V measurement

is located between the VR and PSU. Moreover, some undocumented 12 V might not be included in

the sum of VR measurements.

The resulting differences between the sum of VR and 12 V measurement are plotted in Figure 3.6. In

contrast to the previous comparisons, no efficiency model is used for the visualization. The difference

between measurements is highly correlated with different workloads rather than just random noise.

These different workloads utilize the different power domains for core, northbridge, and DRAM at

different rations. Due to the workload-specific bias, a model on top of the sum of VR power (PVR),

similar to previous models, highly depends on the ratio of workloads used for training. Attempting to

generate a model on top of the separate VR power domains resulted in implausible efficiency factors.

When applying a simple quadratic model for quantifying the discrepancy within the experiment results,

the idle case has the worst |∆VR|= 28.7 W and |δVR|= 75.7 %. For the remaining configuration the

absolute and relative discrepancy remains high at |∆VR|< 18.0 W and |δVR|< 6.3 %.

It can be concluded, that the VR-based measurements suffer from workload-specific nonlinear errors

making them unreliable as basis for quantitative analysis. I observed the best accuracy with shunt-

based measurements, which I also evaluated on identical power domains without applying a corrective

model. The evaluated Hall effect DC measurement is also accurate but exhibits more noise.

60 3. Evaluating and Improving Energy Measurements

50 100 150 200 250 300 350

Reference Measurement (W)

−5

0

5
D

if
fe

re
nc

e
(W

)

50 100 150 200 250 300 350

Reference Measurement (W)

0

2

4

6

8

R
el

at
iv

e
D

if
fe

re
nc

e
(%

)

HDEEM Measurement Before Calibration

HDEEM Measurement After Calibration

Specified Maximum Error

Figure 3.7: The absolute and the relative difference between the HDEEM measurement and the
reference measurement (ZES LMG450) on one node of taurus before and after the in-situ
calibration by the vendor (adapted from [Ils+18c]).

3.4.3 Absolute Accuracy Evaluation of a Many-Node Measuring System

Verifying the absolute accuracy of the HDEEM energy measurements in taurus presented several

challenges. The measurements are an integral part of a large production HPC system. All nodes are

part of integrated, compact chassis — each hosting nine blades with two nodes per blade. While

the integrated measurements are located at the input of each node, it is not feasible to apply an

instrumentation at this point given the closed chassis setup. Therefore, the 54 V input to the chassis

was instrumented at the four connectors to the chassis using custom-built breakout boxes. Further,

due to the number of nodes in the production system, it is not feasible to individually verify every

node. Consequently, two sample chassis for a total of 36 nodes were selected for verification. This

evaluation only concerns the full-node measurements, not the separate voltage regulator-based

measurements which are also part of HDEEM. The latter have a lower specified accuracy and do not

allow a comparative measurement at a similar measurement domain.

Each chassis does not only contain 18 nodes, but also a chassis management module, fans, and

networking components such as an InfiniBand switch. In order to isolate individual nodes, a baseline

was measured at which all nodes were disabled.

In the first evaluation, when comparing with the reference power meter, a number of nodes exhibited

large relative measurement errors, in some cases exceeding 10 %. This particularly affected low-power

states in which small absolute errors result in larger relative errors. The relative error is particularly

relevant given that the vendor specifies a maximum error of 2 % for this measurement point.

Due to the revealed errors in the sampled nodes, the system was not accepted initially. The vendor

performed an in-situ re-calibration, which I further described in [Ils+18c]. This re-calibration used a

3.5. Evaluating Temporal Granularity and Energy Correctness 61

separate measurement setup and was not based on the verification data. After the re-calibration, I

repeated the verification. The second verification also used 36 nodes in two chassis. The two chassis

selected for the second verification included one chassis that was previously evaluated, for direct

comparison of nodes before and after calibration, and one other randomly selected chassis, to ensure

that not only the reported faulty nodes were fixed. After calibration, the difference between reference

measurement and HDEEM for all sampled nodes under all workloads were between −2.76 % and

2.98 %. It has to be noted that these results are also affected by the uncertainty of the reference

measurement which makes it more difficult to provide a very narrow bound on error at low power

states. The improvement from calibration is exemplified in Figure 3.7.

3.5 Evaluating Temporal Granularity and Energy Correctness

There are two main reasons for striving towards a high temporal granularity of computing system

power measurements. On the one hand, a high temporal resolution is required to understand the

dynamic impact of rapid changes in compute workloads and processor states to power consumption.

On the other hand, a sufficient temporal resolution of the power measurement is required in order to

provide a accurate energy values (see also Section 2.1.3).

It is not trivial to say at what temporal granularity the power consumption of a processor changes

when it is executing an application. One might suggest the clock frequency, which is in the order

of 1 GHz or 1 ns. However, instructions are not executed one-after-another but rather in a pipeline.

Additional features of the microarchitecture, such as out-of-order execution and prefetchers, induce a

highly complex interaction between instructions and state of the processor. Thus, an attribution from

consumed energy to individual executed instructions is fundamentally impossible on contemporary

processors. Considering the statistical instruction mix or density, which can be correlated with power

consumption, the time scale of changes vague. The following sections provide an evaluation of

how such changes between active workloads impact power consumption at different time scales.

Since the most impactful changes in power consumption are caused by changes of hardware states,

particularly C-states (see also Section 2.4.2), the time granularity of such changes is of particular

relevance for measuring dynamic power. A wake-up from the most shallow C-state can take from

0.5 µs to 10 µs [SMW14]. An ideal power measurement would be able to accurately observe such a

transition. This is not possible when using power measuring solutions with readout rates from 1 ms

to 1 s (compare Section 5.3.2, Table 2.1).

During early experiments with custom-built power measurements, I have shown that short load

changes do occur in practical applications [Hac+13a]. For example, OpenMP programs9 can exhibit

short sub-millisecond phases of synchronization that cause a significant drop in consumed power. As

shown in Figure 3.8, this can can only be observed with the appropriate power measurement.

In the following, I evaluate the impact of instrumentation points and sensors on temporal resolution.

To understand how short changes in workloads impact the power consumption, I evaluate the shortest

possible transitions in as well as the power signal bandwidth based on binary white noise workloads

in Section 3.5.1. While I introduced the topic of energy correctness for analog-to-digital conversion

in Section 3.3.2, Section 3.5.2 discusses it for digital readouts.

9The examples shown are measurements of the applu benchmark from SPEC OMP.

62 3. Evaluating and Improving Energy Measurements

Figure 3.8: Observing the power consumption during short idle phases (cyan) in a parallel benchmark
with different measurements. The change in power for <1 ms can only be observed with
the bottom-most high-resolution measurement (NI PCI-6255) [Hac+13a].

3.5.1 Measurement Signal Bandwidth at Different Instrumentation Points

Power consumption from transistors does not immediately propagate up the power conversion chain

(see also Figure 2.2). Every conversion implies certain capacitances which introduce a low-pass effect.

Measurements at the AC-input are further limited by the sinusoidal signal at 50 Hz. Capacitances in

the PSU may cause a further limitation of the dynamics in the measurable signal. The DC signal

between PSU and VR provides a measurement opportunity with much higher signal bandwidth. The

ATX standard [Int13, pp. 14 sq.] specifies maximum DC output transients of 60 % with up to 10 kHz

load-changing repetition rate and a load slew rate of 1 A/µs. This gives a coarse notion about the

possible order of magnitude of variability in a DC power consumption signal. The power output

of the voltage regulators can possibly provide an even more dynamic measurement signal than the

DC power signal. Another aspect to consider, is that switching power converters can introduce a

high-frequency signal, which may overlap with the actual power load caused by the application

running on the processor (see. [Haj+16, Sec. 1.2.3.2]).

To demonstrate the limits of 12 V DC and VR based measurements, I create and observe the shortest

possible time for workload changes on artemis, apollo, and ariel. This is complemented by the same

measurements on the 54 V-blade and VR-based CPU sensors on taurus. However, the temporal

limitation on taurus measurements do not result from the measurement points or sensors, but rather

the analog and digital processing and the sampling rates.

A workload kernel that is used to expose the fastest possible transients should cause a high amplitude

change in consumed power over a minimal time. Therefore, I use the synthetic high-frequency

load-changing workloads described in Section 3.4.1, which exhibit known low and high power

consumptions on the system under test.

Evaluation of Individual Transition Patterns

The workload kernels are alternated as follows: First, the low-power workload kernels is executed for

a relatively long time such that its stable amplitude can be clearly determined. Then, the high-power

workload kernel is executed for a short time, followed by the low-power workload for a short time.

After this, the high-power workload kernel is executed for a relatively long time, again to determine its

stable amplitude. Due to the fine temporal granularity, the workload execution time is controlled by

the number of loop iterations rather than using a timer. The workload is configured on a per-system

3.5. Evaluating Temporal Granularity and Energy Correctness 63

basis to run both the low-power and high-power kernels for approximately the same time. This whole

sequence is repeated and the short time is decreased in order to find the lowest time for which the

power consumption reaches approximately the stable power consumption level. The experiments on

apollo and artemis used a configuration with simultaneous sampling at 500 kSa/s. I used 8 threads

on apollo and artemis and 18 threads on ariel for the experiment. On each system, the threads were

pinned to one processor package. This is a compromise between cross-package synchronization jitter

and high amplitude power changes. On taurus, the full 24 cores of both processor packages were

used as there is less relative impact from synchronization at the lower sampling rates of HDEEM.

Figure 3.9 shows the results from the different measuring systems and systems under test at different

time scales. I manually selected the state transitions to show the minimal time (tmin) of equally short

low-power and high-power phases that reach their respective stable power amplitude. Therefore,

the workload time differs for each measurement configuration. Note that tmin is half of a full period

when considering continuous load changes, i.e., the maximum load-changing rate is fmax =
1

2tmin
. As

shown in Figure 3.9a, the VR-based measurements for apollo fully resolve the shortest load change.

This is expected as they measure closest to the actual load of all measuring solutions. Low-power

and high-power load are each tmin ≈ 12µs in duration, which corresponds to a load-changing rate of

fmax ≈ 42kHz. The Hall effect measurements on apollo resolve down to tmin ≈ 140µs (Figure 3.9b).

Both shunt-based measurements on artemis (Figure 3.9c) and ariel (Figure 3.9d) exhibit slightly

different granularity with tmin ≈ 120µs and tmin ≈ 160µs, respectively. Overall all three discussed

measurements on the 12 V PSU output are similar. The resulting fmax ≈ 3.6kHz are also on the same

order of magnitude as the maximal load-changing rate of 10 kHz suggested by the ATX specification.

These results are not exact limits, shorter patterns are resolved by the measurement with a dampened

amplitude. Noise at the high resolution is also a factor for small amplitude changes, particularly with

the Hall effect measurements for apollo. The volatile thread synchronization for these short time

periods also impacts the accuracy of the determined values for tmin. The visual comparison shows

that the patterns for these four different measurements are very similar, despite the different time

scales. This consistency is particularly interesting given that three different sensor types are used as

well as two independent measurement infrastructures with the custom-build amplifiers for artemis

and apollo, and the integrated commercial solution for ariel. The choice between the two different

instrumentation points at the PSU output and the VR output have the biggest impact on the temporal

scale.

The measurements on apollo, artemis, and ariel resolve these short minimal duration load patterns

with sufficient resolution. The maximal discernible load-changing rate depends on the measurement

signal at the instrumentation points, the sensor, and the measuring system. Therefore, it cannot be

trivially determined which of these is the limiting factor. The integrated power meter LMG670, which

is used for ariel, has a bandwidth of 10 MHz and a sampling rate of 1.21 MSa/s with the utilized

wide-band measurements [ZES16]. This provides strong support that the observed load-changing

rate of fmax ≈ 3kHz is in fact limited by the instrumentation point rather than the measuring system.

For comparison, Figure 3.9e and Figure 3.9f, show the blade and CPU0 measurements on taurus,

respectively. In contrast to the previously described measuring systems, the temporal limitations

of HDEEM in taurus arise from the sampling rate and analog and digital processing described

in Section 3.3.2. Therefore, this analysis cannot yield conclusions for their measurement points.

64 3. Evaluating and Improving Energy Measurements

(a) VR-based measurement for apollo (tmin ≈ 12µs)

(b) Hall effect sensor 12 V measurement for apollo (tmin ≈ 140µs)

(c) Shunt-based 12 V measurement for artemis (tmin ≈ 120µs)

(d) Shunt-based 12 V measurement for ariel (tmin ≈ 160µs)

(e) Blade (one compute node) DC measurement for taurus (tmin ≈ 2 ms)

(f) VR-based CPU0 (active processor package) measurement for taurus (tmin ≈ 20 ms)

Figure 3.9: High-frequency variations in the power consumption observed with different measure-
ments. Each chart shows a different time window. The top of each chart shows alternation
of low-power load (green), high-power load (red), and synchronization (cyan). The
bottom shows the power consumption in watt.

3.5. Evaluating Temporal Granularity and Energy Correctness 65

Figure 3.10: Power measurements of binary white noise on ariel. The top part shows low-power
phases in green and high-power phases in red. The minimum, average, and maximum
power is shown in blue, black, and red, respectively.

Still, the results gives insight on the temporal scale of dynamic behavior that can be observed

with these measurements. The minimal observed workloads for blade and CPU measurements are

tmin,blade ≈ 2ms and tmin,vr ≈ 20 ms, respectively. This is close to the limit given by the observable

sampling rates of 1 kSa/s and 100 Sa/s; there are only two samples within each high/low plateau.

This analysis shows that the sampling rate of a measurement alone does not imply the observable

magnitude of temporal granularity, it only represents the upper limit. Hence, well-conceived choices

of instrumentation point, sensor, and processing in addition to a sufficient sampling rate are necessary

to observe short changes in workloads and their impact on power consumption. For sub-second down

to sub-millisecond workloads, DC connections within a system are well suitable instrumentation

points. Anything below ∼ 100 µs requires an instrumentation closer to the consumer, e.g., between a

consumer and its voltage regulators. If the subsequent analog and digital measurement infrastructure

properly handles the high sampling rates, workloads lasting ∼ 12 µs can be observed.

Evaluation of Frequencies within the Power Measurement Signal

To further strengthen the understanding of the measured signal and its bandwidth, I designed a binary

white noise workload. This workload consists of the aforementioned low-power and high-power

kernels configured for a duration of 10 µs each. Which of the two kernels is executed, is randomly

chosen for each period of the workload signal. Therefore, the binary workload signal contains a

maximum square wave frequency of 50 kHz. The workload implementation and its configuration is

tuned to reduce unwanted influences by anything other than the workload kernels. Every 10 kernel

executions, an OpenMP barrier synchronizes the threads. This effectively prevents different threads

to drift apart over time at a limited impact of synchronization, which is typically around 2 µs. For

selecting the kernel, the implementation uses a PCG random number generator [ONe14] due to its

low latency and low memory footprint that could otherwise affect cache of compute kernel data. To

expose the running kernel at any given time, I manually instrumented the workload with Score-P

in a minimal way. For the following analysis, I used the ariel system with single-channel LMG670

measurements at 1.21 MSa/s. I selected this measurement setup because of its well-specified behavior

at high frequencies. This allows me to keep the focus on the properties of the measurement signal at

the instrumentation point, rather than influences of the sensors and analog measurement processing.

The noise workload was executed for 20 s total, a short section of it is shown in Figure 3.10.

66 3. Evaluating and Improving Energy Measurements

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

Frequency (kHz)

−18

−15

−12

−9

−6

−3

0

N
or

m
al

iz
ed

PS
D

(d
B

)

Power Measurement

Binary White Noise

Figure 3.11: The power spectral density (PSD) of a binary white noise input signal (max. 50 kHz)
and a power measurement signal on ariel.

To compare the workload signal with the power measurements, I applied several post-processing

steps: First, I proportionally normalize the measurement signal such that the stable low-power of

92.11 W corresponds to −1 and the stable high-power of 124.92 W corresponds to 1. Initially, the

workload state (high or low) is recorded as trace of events for each transition. To achieve a common

sample rate, the workload state is sampled at the same time points of the power samples. Similar to

the normalized power values, I chose the numerical state values such that the discrete low-power

and high-power states correspond to −1 and 1, respectively. After this processing, there are two

sequences (representing discrete-time signals) corresponding to the same equidistant timestamps:

the normalized power and the discrete workload state. For a theoretical ideal power measurement,

which would allow all frequencies, the normalized power signal and the workload signal would be

identical. I analyze the resulting signal with Welch’s method [Wel67] using the Python package

SciPy [Vir+20] and normalize the power spectral density (PSD) according to the known workload

frequency range and amplitude. Figure 3.11 shows the PSD power of the binary white noise workload

and power measurements. Both signal amplitudes are very similar for frequencies ≲ 2.5 kHz. For

higher frequencies, the measurement signal strength decreases. The half-power cutoff frequency

(−3 dB) is at ≈ 3.7 kHz. This is consistent with the previous observation, which revealed that short

peaks of tmin ≈ 160µs are at the boundary of what can be clearly resolved by this power measurement.

This knowledge about the frequency spectrum of the effective power consumption signal can be used

to chose appropriate sampling frequencies and design analog filters as discussed in Section 3.3.2.

However, basing the sampling rate on the−3 dB cutoff frequency itself would still result in a significant

aliasing error. For example, when considering a permissible attenuation of −20 dB, the observed

power spectral density yields B = 10.5kHz. Thus the minimal sampling rate would be 21 kSa/s.

However, higher oversampling or the use of sharper low-pass filters with a smaller transition band

can further reduce the error (see also [Web04, p. 22-4]).

3.5. Evaluating Temporal Granularity and Energy Correctness 67

3.5.2 Retaining Energy Correctness During Digital Processing

Aliasing issues do not only have to be considered for analog-to-digital conversion, but also during the

digital processing. Further, these issues not only apply to the fine-grained signals at DC and VR level,

but also the AC total system power input. Generally, this common issue arises from a disconnect in the

control flow and results in a loss of information. For example, an internal program, which runs on a

BMC and reads an analog-to-digital converter, has access to the best possible information about the

power consumption and energy. The visualization in Figure 3.12a displays the loss of accuracy due to

limited sampling rates as discussed previously. The best way to preserve the remaining information

would be to use the full trace of measured values and timestamps for all further processing. However,

this is not always feasible. For instance, consumers of power measurement data often require a power

value that is valid right now and implement their own readout routine to read measured values in

peculiar intervals. Typical polling monitoring interfaces do not allow the internal readout to trigger

an external reaction. The consequences of following an external readout interval are shown in

Figure 3.12b. With an external readout rate that is lower than the internal sampling rate, values

get lost, causing or amplifying aliasing issues. Typically, the most recently read value is returned

from an interface, rather than issuing a new readout at the time of the request. Therefore, the actual

(internal) measurement timestamps are lost. Instead external readout timestamps are used, adding a

latency error. These effects can be partially compensated by triggering the readout at a higher rate

than the internal sampling rate. In general, however, that is not feasible or desirable since it can

cause performance issues. Lost samples and lost timestamps result in significant errors, particularly

when attempting to compute an energy consumption.

In [Hac+14], together with my co-authors, I introduced a solution by providing an atomic way to

read an accumulated energy En and the most recent measurement timestamp tn. This approach

works without changing the control flow or using extensive power traces. While some dynamics of

the original trace are lost, this information allows an external consumer to accurately determine the

energy consumed between two measurements points as well as the average power:

Paverage(tn−i , tn) =
En − En−i

tn − tn−i
(3.5)

The described issue regarding loss of timestamp information affects several commonly used interfaces

that are used for power and energy monitoring (see also Section 2.2.3). For instance, in addition to

losing intermediate samples and timestamp information, IPMI suffers from reduced value precision

when using its standardized sensor readings. While IPMI offers a sophisticated set of derived units,

scaling factors, and nonlinear scales, the actual sensor value is contained in only one byte (see [Int+13,

Sec. 36.3, Tab. 35]. The resulting relative value discretization error is 0.5
255 ≈ 0.2 % at the maximum

of a linear scale and proportionally more for lower values. The aforementioned solution using

timestamped accumulated energy values was implemented as IPMI OEM extension.

68 3. Evaluating and Improving Energy Measurements

Time

Po
w

er

True power
Internal power samples
True energy

(a) Internal sampling of an analog signal

Time

Po
w

er

Internal power samples
External power samples
Reported energy

(b) External readout at orange ticks with loss of sampling times and intermediate values

Time

Po
w

er

Internal power samples
Average power
Energy

(c) Using energy difference and associated sampling timestamps to reconstruct average power.
Readouts happen at green ticks.

Figure 3.12: Information processing with internal sampling and external readouts.

3.5. Evaluating Temporal Granularity and Energy Correctness 69

0 10 20 30 40 50

Time (s)

100

105

110

115

120

125

130

135
Po

w
er

(W
)

LMG450 at 20 Sa/s iDRAC at 20 Sa/s LMG450 at 1 Sa/s

Figure 3.13: Different power measurements of a regular dynamic workload (repeating 1 s low-power
and 0.2 s high-power, adapted from [Hac+13a]).

Practical Example of Errors Introduced by Digital Processing

As a concrete example of how these issues impact the accuracy of energy and average power readings,

I use PSU-based measurements on a dual-socket Sandy Bridge Dell R720 system10. This system

utilizes an integrated Dell Remote Access Controller (iDRAC) to provide power measurements via

IPMI. DELL describes a “power monitoring accuracy” of 1 % [Del13, Tab. 19]. Using the IPMI sensor

readout, however, the value resolution is 14 W, which introduces a discretization error of up to 7 W.

In idle, this system consumes ≈ 70 W, resulting in an error of up to 10 %. Moreover, the generic IPMI

sensor value is an average over the last minute, so it does not reveal the dynamic power consumption.

However, access to the instantaneous value is possible with an OEM-IPMI extension, which returns a

multi-byte value with a resolution of 1 W. Still, for idle states, discretization alone causes an error of

up to 0.7 %. The returned value changes once per second and no timestamp is provided.

I used the LMG450 power emeter at the AC measurement for comparison (see Section 2.2.1). In a

comparison of average power for a series of diverse but stable workloads, the maximum difference

between iDRAC and reference measurement was 5 W as detailed in [Hac+13a]. In addition to the

static difference, I evaluated the measurement with a synthetic dynamic workload that alternates

between 1 s low-power (idle) and 0.2 s high-power kernels. As depicted in Figure 3.13, the measured

iDRAC values are significantly affected by aliasing. The reference measurement at 20 Sa/s can clearly

resolve the workload pattern, including a drop right after the high-power phase in which the AC

power consumption is below the stable low-power. Moreover, I computed one-second power averages

(1 Sa/s) based on the reference measurements. The plots of these average power values are not

able to resolve the original pattern and show different patterns: While five values contain a short

high-power phase, the sixth value contains only a low-power phase. Even though dynamic details

are lost, the averaged power values are still correct and a correct energy consumption can be be

computed based on them. In contrast, the iDRAC values show an irregular pattern which completely

misses many high-power phases as well as some low-power phases. Due to this aliasing effect, it is

impossible to compute the accurate average power or energy based on these instantaneous values for

dynamic workloads.

10I use this additional system because none of the other instrumented SUTs provide PSU measurements.

70 3. Evaluating and Improving Energy Measurements

0 1 2 3 4

Job Iteration

0

10

20

30

40

50

60

70

En
er

gy
(k

J)
Node = taurusi1019

0 1 2 3 4

Job Iteration

0

10

20

30

40

50

60

70

Node = taurusi1029

LMG450

Slurm

IPMI-OEM

(a) taurus phase 1, 170 ms high/low interval, 300 s runtime on two different nodes

0 1 2 3 4 5

Job Iteration

0

10

20

30

40

50

60

En
er

gy
(k

J)

Runtime = 300 s

0 1 2 3 4 5

Job Iteration

0

5

10

15

20

25

Runtime = 120 s

LMG450

Slurm

IPMI-OEM

(b) taurus, 270 ms high/low interval, 120 s and 300 s jobs on one nodes, before using HDEEM API

Figure 3.14: The job energy of a high/low FIRESTARTER workload, measured with the LMG450
reference power meter, the Slurm workload manager, and the IPMI-OEM extension.

Accurate Energy Accounting on HPC Systems

During the early development of HDEEM and the acceptance phases of taurus, several issues concern-

ing aliasing and digital processing emerged. Initially, the system used the standardized IPMI sensor

readings, which imposed the aforementioned issues. In order to allow accurate energy readings and

energy accounting, the BMC firmware accumulates all power readings in an energy register which

can be read through an IPMI-OEM extension. Each energy value is accompanied with a measure-

ment timestamp from an NTP-corrected clock, allowing the average power computation as per (3.5).

Contrary, the energy calculation from instantaneous values within the BMC is done based on the

strictly-monotonic internal clock.

In the taurus phase 1 measurements, the BMC reads the values every ≈ 170 ms from a filtered signal.

This allows it to provide low-dynamic but accurate energy values (see also Section 3.3.2). This

interface is used by the Slurm workload manager to provide energy accounting on a per-job basis. I

performed an acceptance test that included jobs that alternate between high-power and low-power

3.6. Evaluating CPU Energy Counters 71

workloads at the BMC sampling interval of 170 ms. Since this is a relatively large time interval, it

was not necessary to use the fine-granular sqrt / compute kernels in this context. Instead, I used

FIRESTARTER [Hac+13b] because it exhibits higher power amplitude differences. I also used this

setup for accuracy tests of taurus to test for end-to-end errors in energy accounting, which are caused

by aliasing errors. In this test, the total job energy consumption reported by Slurm was compared with

the energy computed by the LMG450 reference measurement as well as a manual energy computation

based on separate IPMI OEM readouts and job start/end times. The extensive acceptance test with

various workload frequencies revealed some remaining aliasing at a workload interval of 170 ms.

Figure 3.14a shows the reported and reference job energy consumptions for two nodes and five

repeated iterations of the same job configuration. The error in this configuration is between −5.0 %

and 2.8 %, which is within the specification of the taurus phase 1 system. Values from Slurm and

manual IPMI-OEM measurements are consistent, which indicates that Slurm introduces no additional

error. Further, the energy consumption reported by Slurm varies between repeated job iterations

whereas the energy values from the reference measurement are relatively stable. This results in

varying errors from individual runs and nodes, likely caused by the remaining aliasing effect.

I re-evaluated the fully deployed taurus HDEEM system after the vendor calibrated the measurement

as described in Section 3.4.3. To do so, I analyzed various workload frequencies. While the calibration

reduced the overall error, dynamic workloads showed larger errors, especially for workload intervals of

270 ms. The results in Figure 3.14b show a significantly higher error ranging from −17.0 % to 21.1 %.

This large error was caused by a slow readout interval within the BMC of 270 ms. As described in

Section 3.3.2, the system was designed to allow high-resolution measurements at 1000 Sa/s. Thus, a

digital polling and processing in the BMC at ≈ 3.7 Sa/s is insufficient. After I discovered this issue, the

vendor updated the firmware such that the FPGA preprocesses the measured values at full temporal

resolution. This change allows the BMC to keep an accurate accumulated energy value and exposes it

with the newly designed HDEEM C API. Once Slurm was updated to exploit the HDEEM API instead

of the previous IPMI OEM extension, the aliasing issue is no longer traceable.

3.6 Evaluating CPU Energy Counters

With the introduction of Running Average Power Limiting (RAPL)11, energy values became widely

available without the need for a separate instrumentation. Section 2.2.4 presented a brief introduction

to the available interfaces and related work about the topic. In [Hac+13a], I discussed the principal

interface of RAPL and its first implementation in the Sandy Bridge micro architecture.

On a low level, RAPL is configured and monitored using model specific registers (MSRs). According to

the documentation, the read-only energy value is “updated every ∼ 1 ms” [Int18a, Vol. 3, Sec. 14.9].

Further, the documentation lists several power domains: package, PP0 (“refers to the processor cores”),

PP1 (“may reflect uncore devices”, only supported on client/desktop platforms) and DRAM. While

the documentation states that the DRAM domain is supported only on server segment platforms,

practically it appears to be available even on client segment systems [DPW16]. With the Skylake

architecture, the PLATFORM domain was introduced, but is not available on all systems [Haj+16].

11RAPL was first available in the Intel Sandy Bridge microarchitecture, which was launched in 2011.

72 3. Evaluating and Improving Energy Measurements

3.6.1 Energy Readouts with RAPL

By providing energy readings directly, RAPL does not exhibit the aliasing issues that prevent the

computation of accurate energy values (compare Section 3.5.2). However, this interface still lacks the

temporal information of the measurements. Not only does this lack of information prevent accurate

attribution of consumed energy to a given period of time, it also impacts the accuracy when computing

power. Consider the following example readouts:

t0 = 0 ms, E0 = 0mJ

t1 = 3.5 ms, E1 = 120mJ

Since the true measurement (update) time is unknown, there could be either three or four updates

between the two readouts. The true time difference between measurements ∆t could be either 3 ms

or 4 ms. Consequently, the true average power is either 40 W or 30 W respectively.

There are different ways to mitigate this issue: If fine-granular information is required, one can

oversample the registers, i.e., reading in less than 1 ms intervals. This ensures, that every internal

update is observed, but also causes a high overhead. Since RAPL is typically read in-band on the system

under test itself, this affects the perturbation of the measured application. Hähnel et al. [Häh+12]

described an approach to measure the energy consumption for isolated short code paths. Their

approach is to temporally align the code execution with the expected measurement updates. The

relative error on average power can also be reduced by lowering the readout rate significantly. This

comes at the cost of not being able to observe highly dynamic behavior, while also reducing the

overhead and perturbation.

3.6.2 Methodology

In order to evaluate the accuracy of RAPL for a wide range of workloads, I leverage the methodology

described in Section 3.4.1. The workload generator alternates a set of distinct kernels while varying

the number and distribution of active threads as well as the core frequency. This generates a diverse

set of operating points for a comparison with reference measurements. The comparison uses average

power of of 6 s time intervals such that the error from inaccurate timestamps is negligible.

As a reference for the quantitative comparison of RAPL readouts, I used the modular measuring

system of ariel, but applied it to artemis and ariel (see Section 3.1 for system description). In contrast

to the original measurements of artemis, the ariel measurement separates between processor package

and memory power consumption. This allows an extended analysis compared to my previous work

in [Hac+13a] (Sandy Bridge) and [Hac+15] (Haswell). Moreover, the integrated LMG 670 power

measurements are more accurate than the previous measurements of artemis.

Nevertheless, the power domains of RAPL and the reference measurement are not identical. The

reference measurement is applied to the input of the VRs (at 12 V). Contrary, it is unspecified whether

or not the RAPL domains include the loss of VRs. Therefore, the two values could be different even if

3.6. Evaluating CPU Energy Counters 73

the the RAPL readouts were perfectly accurate12. However, I assume that there is at least a strong

positive correlation between the reference measurement and RAPL output.

As indicated in Figure 3.15a, the reported RAPL power is consistently below the reference measure-

ment. This suggests, that RAPL values, contrary to the reference measurement, do not include losses

of the VRs themselves. Therefore, a direct comparison with the reference measurement would not be

meaningful. Similarly to the evaluation in Section 3.4.2, I apply a VR efficiency model M for each of

the evaluated RAPL power domains. Unless otherwise noted, I used a quadratic fit for modeling the

efficiency. While this enables a quantitative comparison of the workload-specific inaccuracies, the

model also hides any absolute calibration differences between RAPL and the true value at its actual

measurement domain. Thus, I cannot quantify the absolute accuracy of RAPL with the given data.

The following comparison uses the definitions for absolute and relative discrepancy (∆/δ) from (3.2)

and (3.3) respectively. Since δ can be skewed by low values of the idle configuration, I further

introduce δ∗, which excludes the idle measurement point.

3.6.3 RAPL on Intel Sandy Bridge-EP

The Sandy Bridge (SNB) microarchitecture, provides the first implementation of RAPL. Rotem et al.

described this implementation, although they do not refer to RAPL by name:

Sandy Bridge implements architectural power meters. It collects a set of architectural

events from each Intel architecture core, the processor graphics, and I/O, and combines

them with energy weights to predict the package’s active power consumption. Leakage

information is coded into the die and is scaled with operating conditions such as voltage

and temperature to provide the package’s total power consumption. ([Rot+12, p. 22])

The authors further claimed that “the actual and reported power correlate accurately” [Rot+12,

Fig. 3]. This claim refers to a timeline chart, which includes measured and predicted power during

the course of a “combined CPU and graphics workload”. However, such a timeline comparison with

a dynamic mixed workload may average out specific inaccuracies. My methodology offers a more

comprehensive comparison by quantitatively comparing distinct operating points.

Specific Power Connections of the Test System

For evaluating RAPL on the Sandy Bridge architecture, I measured package and DRAM separately on

artemis. The specification of the mainboard describes the mapping of 12 V inputs to CPU packages

and memory DIMMs: Two 12 V inputs separately provide power to the two processor packages (VCPP,

VSA, VPLL, and VTT). The other two 12 V inputs provide power to two groups of four DIMMs each.

However, the DIMM groups are intermixed among the processor packages such that the memory

attached to each processor package cannot be measured separately at the 12 V inputs. The internal

voltages provided to the DIMM groups include voltages for the DIMMs themselves (VDDQ and VTT) as

well as one voltage (VDDR01 or VDDR01) to the CPU package [Int15, Fig. 67]. It is not clear whether

RAPL covers the same load voltages for its DRAM domain. An experimental distinction would require

a full set of DDR3 riser measurement cards, which are not available for this system.

12Assuming perfectly accurate RAPL measurement would also imply that no error is introduced by the power measurement
(compare Section 2.1.2).

74 3. Evaluating and Improving Energy Measurements

Results and Discussion

The measurement results are plotted for comparison in Figure 3.15a. For the package domain, the

correlation between RAPL and reference power is weak and distinct patterns are visible: RAPL readouts

of different workload kernels are consistently higher (e.g., matmul) or lower (e.g., busywait), even

for data points with the same reference power values. This is a contradiction under the assumption

that the VR efficiency does not depend on the workload. For the given workloads with a constant

power consumption this is a reasonable assumption. Note that technically this domain comprises

different internal voltages. To some extend, it is conceivable that the workload stress the internal

voltages differently. In combination with different efficiencies at different voltages, this could explain

some level of discrepancy. In any case, the results show that RAPL introduces significant errors when

considering actual power consumption of the full system, even when accounting for systematic error

and power domain differences.

The comparison for the DRAM power domain paints a different picture: While closely correlated

at higher power consumptions, there is a significant discrepancy for lower-power configurations.

Workloads that do not stress the memory exhibit a constantly low reported RAPL power, while the

reference power varies significantly. For example, for most configurations of the addpd kernel RAPL

reports a power from 3.13 W to 3.18 W, while their respective reference power ranges from 6.83 W

to 12.94 W. Consequently, the absolute RAPL discrepancy for the DRAM domain is lower than for the

package domain, whereas the opposite is true for the relative discrepancy, even without considering

the idle configuration (see Table 3.5). Note that fitting this particular VR efficiency model resulted

in a negative quadratic factor. Thus, I used a more plausible linear model, which also exposed higher

discrepancies.

The comparison of total power consumption (the sum of package and DRAM for both RAPL and

12 V reference measurement) is dominated by the same effects observed for the package domain.

Quantitatively, the discrepancies regarding the total power are very similar to the discrepancies for

the package power. In comparison to the package domain, only the idle case exhibits a significantly

reduced δ due to the added base memory power. In the sum, the high relative discrepancy the DRAM

domain is masked by the larger absolute values. The observation that the absolute discrepancy on

the total power domain is not better than the separated domains, indicates that the covered RAPL

load voltages match the ones used of the 12 V reference measurement. Otherwise, the errors from

different domains would cancel each other.

The exposed discrepancy limits the applications of RAPL as a replacement for measurements. Par-

ticularly the systematic overestimation or underestimation for certain workload kernels prohibits

an accurate evaluation of trace-offs between different algorithms. This also confirms, that RAPL

uses an internal model rather than an actual measurement (see [Rot+12]). Other models based on

performance events show similar characteristics of workload-dependent errors (compare [Bie15]).

Consequently, any model built from RAPL readouts will inherit the errors.

Overall, the observation is consistent with my previous results presented in [Hac+13a]. The separation

into package and DRAM power yields further insight into different individual inaccuracies. The

previous work also highlights specific discrepancies in hyper threading configuration, which are not

covered in this thesis [Hac+13a, Fig. 12].

3.6. Evaluating CPU Energy Counters 75

0 100 200 300 400 500

LMG670 12 V Package Power (W)

0

100

200

300

400

500

In
te

lR
A

PL
Pa

ck
ag

e
Po

w
er

(W
)

0 20 40 60 80 100

LMG670 12 V DRAM Power (W)

0

20

40

60

80

100

In
te

lR
A

PL
D

R
A

M
Po

w
er

(W
)

0 100 200 300 400 500

LMG670 Total 12 V Power (W)

0

100

200

300

400

500

In
te

lR
A

PL
To

ta
lP

ow
er

(W
)

(a) Sandy Bridge-EP (artemis)

0 100 200 300 400 500

LMG670 12 V Package Power (W)

0

100

200

300

400

500

In
te

lR
A

PL
Pa

ck
ag

e
Po

w
er

(W
)

0 20 40 60 80 100

LMG670 12 V DRAM Power (W)

0

20

40

60

80

100

In
te

lR
A

PL
D

R
A

M
Po

w
er

(W
)

0 100 200 300 400 500

LMG670 Total 12 V Power (W)

0

100

200

300

400

500

In
te

lR
A

PL
To

ta
lP

ow
er

(W
)

(b) Skylake-SP (diana)

idle

addpd

busywait

compute

FIRESTARTER

matmul

memread

mulpd

sine

sqrt

memwrite

memcopy

identity

VR efficiency model

Figure 3.15: Verification of RAPL on different generations of Intel processors.

76 3. Evaluating and Improving Energy Measurements

Table 3.5: The maximum discrepancies between RAPL readouts and the measured reference power
under a VR efficiency model.

Package Max. DRAM Max. (Package + DRAM) Max.
SUT |∆| (W) |δ| (%) |δ∗| (%) |∆| (W) |δ| (%) |δ∗| (%) |∆| (W) |δ| (%) |δ∗| (%)

artemis (SNB) 29.6 36.4 15.5 4.0 126.5 59.6 30.1 27.0 15.1
ariel (SKL) 10.2 23.9 5.7 2.8 51.8 7.1 6.1 3.8 3.3

3.6.4 RAPL on Intel Haswell-EP and Skylake-SP

The Haswell-EP processor generation featured an improved implementation of RAPL, as I described

in [Hac+15]. Facilitated by the introduction of fully integrated voltage regulators (IVRs) [Bur+14],

this implementation is based on physical measurements rather than an architectural model.

In the following, I evaluate RAPL on the next Intel high-performance processor generation, Skylake-SP

(SKL). As system under test, I used ariel. The public documentation of its mainboard does not describe

the specific electrical connections of the 12 V inputs, but indicates that there are separate power pins

for the two processor packages the their associated memory [MiT17, Sec. 2.12].

Results and Discussion

Figure 3.15b reveals a more precise correlation between RAPL readouts and measured reference

power, similar to the results on the Haswell system. Table 3.5 quantitatively confirms a significant

improvement compared to Sandy Bridge-EP for all measurement domains. However, the discrepancy

for separate package and DRAM measurements is noticeably higher than for the sum of power

consumptions. This anomaly can be explained by a slight mismatch in how the power consuming

components are split between the two RAPL domains and the respective 12 V pins.

It is noteworthy, that Haj-Yahya et al. [Haj+19], citing [Fay+16], report that Intel Skylake processors

no longer utilize IVRs. However, this statement may only refer to the mobile and desktop variants,

rather than the processors targeting servers. Nevertheless, RAPL continues to show reliable results.

Neither RAPL nor its implementations provide an uncertainty specification, hence the evaluation

with reference measurements is necessary to understand the quality of RAPL readouts. While the

correlation with a reference measurement clearly improved with contemporary RAPL implementations,

this evaluation can not verify their absolute accuracy. Moreover, RAPL does not provide the temporal

resolution of a sophisticated measurement setup as described in this section.

Regardless of the accuracy of energy values, it is always important to make a conscious decision of the

measurement domain. While RAPL offers separate power domains for the processor package, cores,

and memory, it does not provide the full-system power consumption for high-performance systems.

Optimizations with the prevailing goal of reducing total energy consumptions are not possible based

solely on RAPL. Since power measured by RAPL is not strictly proportional to full-system power,

the static consumption from other components outside the covered domains as well as non-linear

efficiency losses have to be considered for energy-efficiency optimizations.

3.7. Conclusion 77

3.7 Conclusion

In this chapter, I described several approaches for measuring the power consumption of computing

systems with a focus on pushing the boundaries of temporal and spatial resolution. In addition to the

instrumentation approaches, I provided rigorous techniques for evaluating uncertainty and actual

temporal granularity.

By the means of four systems under test, I discussed three specific power measurement instrumenta-

tions in detail. This includes the choice of measurement domain and instrumentation point as well as

the possible current sensors. In particular, I designed and implemented several synthetic workload

generators to systematically expose errors and aliasing effects. A workload alternating low-power

and high-power at varying intervals allows a visual inspection of power transitions at the scale of

microseconds. I further introduced a synthetic workload that generates a power consumption signal

containing binary white noise to evaluate the frequency spectrum for measurements at a certain

measurement point.

The results show that shunts and Hall effect sensors deliver good accuracy and can show details in the

order of 150 µs at the spatial granularity of processor packages and memory groups. Measurements

at voltage regulators can increase the resolution to ≈ 12 µs and separate voltages of a processor, at

the cost of higher uncertainty and a more complex instrumentation.

I further characterized and evaluated the scalable measurement solution HDEEM. My evaluation

provided valuable feedback for sustained improvements: On the one hand, it led to an in-situ

calibration of the measurements. On the other hand, my specifically designed workloads exposed

aliasing issues, which facilitated a redesign of software interfaces. My deliberate evaluation of the

improved measurements now provides a strong confidence for a wide range of uses.

Finally, I evaluated CPU energy counters as an alternative to sophisticated measurements. I system-

atically exposed discrepancies of early implementations based on a comparison with a reference

measurement for a wide range of workload configurations. In addition to a graphical representation,

I quantified the discrepancies by compensating for the divergent reference measurement domains. I

further showed the improvements to RAPL implementations in contemporary processor generations.

The measurements described in this chapter provide the foundation for the remainder of this thesis.

However, the high resolution and large scale result in a large amount of data, which presents a

challenge for processing, storage, and analysis. Consequently, the following chapter introduces a

measurement data infrastructure that addresses this challenge and facilitates further analysis.

78 3. Evaluating and Improving Energy Measurements

79

4 A Scalable Infrastructure for Processing High-Resolution
Power Measurement Data

Many traditional power analyzers focus on user interfaces on the device itself rather than a digital

read-out. While this is suitable for classical analysis use cases, it does not fulfill the requirements for

measuring the power consumption of computing systems. Especially the scale of High Performance

Computing and the amount of information from high-resolution measurements provide a challenge

to gain actual insight from the large volume of measured values.

Therefore, in Section 4.1, I first discuss the requirements for the processing of power measurement data,

particularly considering the measurements presented in Chapter 3. Section 4.2 describes the concepts

and implementation of a scalable measurement data infrastructure. This infrastructure comprises

scalable distributed services connected by a high-performance message broker. In Section 4.3, I

provide an extensive performance evaluation of the proposed infrastructure.

4.1 Requirements for Power Measurement Data Processing

Power measurements present specific and challenging requirements for a data collection and pro-

cessing infrastructure. The range of possible data rates and cardinalities is large: While some

measurement devices provide values at less than 1 Sa/s, other devices go beyond 1 MSa/s. This wide

range of readout rates is particularly difficult to cover by with existing solutions (see Section 2.3).

A trivial criterion for suitability is the precision of timestamps supported by a measurement infras-

tructure: A resolution of 1 ms cannot support update rates above 1 kSa/s. In terms of cardinality, a

sophisticated instrument observing a single compute node may work with less than 10 channels while

an HPC system has several thousand nodes each with multiple measurement points. Measurement

data can originate from a variety of different sources, e.g., a single sophisticated measuring system,

multiple PDUs, and numerous compute node BMCs. Ideally, a unified measurement infrastructure

supports a broad range of configurations to allow the re-use of common software components.

Moreover, there is a range of different use cases for consuming power measurement data. Monitoring

typically uses live data, e.g., to provide gauges and live charts with the current power consumption

or to check thresholds for triggering alerts. Persistent storage is necessary for long-term analysis,

plotting charts of power over time in the past, and energy accounting.

Finally, the infrastructure must support integrating power measurements with application and system

measurements. In the following, I refer to this major use case as application power tracing, even

though this also includes monitoring of system events. Analyzing a delimited experiment is typically a

post-mortem process to avoid perturbation from handling power measurements during the experiment

(see Section 5.1.3). This requires at least temporary storage of full resolution measurement data by

the infrastructure for the duration of the experiment. For some use cases, profiling, i.e., collecting

80 4. A Scalable Infrastructure for Processing Power Measurement Data

only aggregate data from both the application and power measurements, may be sufficient. Generally,

profiling is less demanding although there can be different challenges: For instance, when creating

a profile during the execution of an application, the latency of retrieving the up-to-date measured

power value may be critical. I primarily consider the requirements of tracing because traces can be

used to generate profiles, but not vice-versa (see also Section 2.5).

As discussed in Section 3.5.2, it is essential to accurately retain the source timestamps whenever

processing measurement data. In certain cases, it can be necessary to aggregate measurement

data in order to make storage, processing, or visualization of large volumes of measurement data

feasible. Still, any aggregation of power measurement data should retain the best possible amount

of information. For example, a plot of the average power consumption using correct interval times

conveys accurate information of the dynamic energy consumption and is thus more valuable than

a plot of sampled instantaneous power values (compare Figure 3.13). If a chart further includes

minimal and maximal power consumption for the displayed intervals, it yields more insight. This is

especially the case for system operation, where it is important to identify peaks and outliers.

In this thesis, I address the specific challenges related to handling power measurement data. Therefore,

there are certain aspects that are not covered in the context of this thesis. While the concept and

implementation of the proposed infrastructure can be applied to a broad range of measurement data

from different kinds of sensors, I focus on its usage for power consumption metrics. In practice, my

proposed infrastructure is also used for various data center metrics such as temperature measure-

ments, fluid flows, and valve positions. In a production environment with many users and actors,

authentication and permission management is an important aspect. Although my concept supports

authentication and authorization in principle, I do not consider the details and implementation for this

thesis. Encryption is considered implicitly at transport level via TLS. In terms of scalability, I evaluate

the proposed concept according to the challenging practical requirements for power measurements

of a high-resolution power analyzer and a petascale data center. Even further scalability can be

achieved by clustering and federation of the message broker. However, since it is not necessary to

meet the defined requirements, it is not included in this evaluation. While it is important to also

provide metadata for measurements, I only consider this in a very general form, but do not provide

a specific taxonomy. Further, facilitating resilience of the system and integrity of data is assumed

to be provided by the underlying interfaces and protocols and thus is out of scope for this thesis.

Based on the practical use cases, I define the following minimal performance requirements for the

measurement infrastructure:

(a) Processing measurement data from one data source providing six metrics with 1 MSa/s per

metric (approximately the highest-resolution configuration of an LMG670 power analyzer).

(b) Processing measurement data from 1000 data sources providing six metrics each with 1 kSa/s

(approximately the high-resolution data rate of HDEEM on taurus).

(c) Processing data of 25000 metrics at 1 Sa/s (a high cardinality use case, e.g., data center

monitoring).

(d) Insertion of measurement data into persistent storage at a total rate of 1 MSa/s with one storage

agent (the temporal resolution for persistent storage is limited due to storage space).

4.2. Concepts and Implementation of Measurement Data Management 81

Message Broker

Live

Consumers

Buffered

Consumers

Historic

Consumers

Transformers

Data Sources

Management

& Metadata

Queue

Queue

Queue

Queue
Management RPCs

Live Measurements

Historic Measurements

Persistent Data

Storage

Temporary

Storage

Figure 4.1: Overview of a measurement data infrastructure using distributed services and a message
broker.

(e) Collecting measurement data at 1 MSa/s for a 5 min experiment and retrieving (draining) it in

< 1 min, thus retrieving at a rate of > 5 MSa/s (application power tracing).

(f) Querying timelines and aggregates for arbitrary random intervals with a maximum response

time of 1 s from a persistent data set with six metrics at 1 kSa/s over one year. This facilitates

interactive visualization without interrupting the user’s flow of thought [Nie94].

4.2 Concepts and Implementation of Measurement Data Management

In the following, I describe MetricQ, a concept and implementation of an infrastructure for scalable

metric data processing[Ils+19]1. An overview for this infrastructure is given in Figure 4.1. The

following description includes protocols, interfaces, and core components of the infrastructure.

MetricQ consists of the following kinds of loosely coupled agents:

• Data sources provide measurement data for one or multiple metrics. Such a software component

could control a measurement instrument, fetch data from a monitoring device, or forward local

information from a system under test (e.g., CPU energy counters).

• Live consumers receive incoming values of a certain subset of metrics, typically for immediate

processing. Examples are dynamic visualization in dashboards or continuous monitoring and

analysis to detect anomalies.

• Buffered consumers also use live data, but in a time-delimited workflow that uses a temporary

recording and then receives all buffered measurement data in bulk. The typical use case is the

recording of an application power trace.

• Transformers preprocess measurement data for further analysis, e.g., by filtering or combining

multiple metrics. They act as both live consumers of the raw measurement data and sources for

enhanced metrics.
1I presented MetricQ in [Ils+19] together with my co-authors. This publication overlaps with Section 4.2 and Section 4.3.7

of this thesis and was written after the respective sections of this thesis were drafted.

82 4. A Scalable Infrastructure for Processing Power Measurement Data

• Persistent data storage agents act as a consumer for incoming live data and provide recorded

measurement data on request of historic consumers.

• Historic consumers use persistently stored measurement data. This is often used to generate

interactive charts for arbitrary periods of time in the past.

• A management agent is responsible for providing the configuration for data sources and or-

chestrate connections between sources and consumers. The management agent also collects

and provides metadata for metrics in the infrastructure, but is not involved in any transfer of

measured values, neither live nor historic.

Metrics

Context is essential in order to gain knowledge from a series of measured values. To that end,

the infrastructure concept uses metrics, where a metric identifies one specific measurand that is

repeatedly measured over time. Metrics have a unique name, which is composed of fragments

separated by dots. While there is no rigid specification for metric names, each fragment should be

self-descriptive. Components of multiple metrics form a tree, presenting a hierarchy with the first

component containing the largest set of metrics. By convention, the fragments specify a system

component or location, starting with the coarsest location. The last fragment then specifies the name

of the measured quantity. An example name would be elab.ariel.s0.dram.power, where elab
is the name of a laboratory, ariel a hostname, s0 short for the first socket, dram for the memory

within the socket, and power is the measured quantity. In addition to the implicit naming scheme,

each metric is associated with a set of flexibly definable metadata. Some metadata should always be

specified as it is of particular interest to interpret the numerical values, i.e., the unit symbol [Int06,

Tab. 3], a textual description, and the update rate (in Sa/s).

The spatial hierarchy in the naming allows to easily refer to a set of metrics, e.g., all metrics within

the scope of elab.ariel. Regardless of that, measurement data for distinct metrics is technically

strictly separate. As I will demonstrate in Section 4.3, this property enables a trivial parallelization of

key services in MetricQ on the one hand, and an efficient selection of measurement data on the other

hand. However, in some cases, this approach can lead to redundancy. For example, this scheme does

not allow grouping of data for multiple metrics from one measurement device or otherwise closely

related measurands, which could be processed in bulk messages or share the same timestamps for

their measured values. The set of metrics and their metadata is collected by the management agent.

4.2.1 Message-Based Communication between Agents

All communication between the agents in the system is performed using a message broker. This pro-

vides several advantages over direct communication and enables crucial features of the infrastructure.

Decoupling data sources and consumers allows for a very flexible and dynamic mapping based on the

metrics of interest. For example, a data source can provide measurement results for any number of

consumers without being aware of the consumers and even without establishing direct network con-

nections. A source is agnostic as to whether its measurement data undergoes live analysis, is used in

application power tracing, or stored persistently. This simplifies the implementation of sources for new

4.2. Concepts and Implementation of Measurement Data Management 83

measurement devices. In contrast, the previous implementation for high-resolution measurements

for a specific data acquisition interface included the temporary storage on the measuring system. This

previous approach required a complex monolithic implementation, which sent aggregated data to

persistent storage, controls and buffers experiments, and sends high-resolution data for application

power traces using a custom protocol. The memory requirements for temporary storage also resulted

in an inflexible deployment. Moreover, with the novel approach, consumers can utilize measurements

of many sources, or just a subset of the measurements of one source, on a per-metric basis. This

means that less software components are required in order to integrate different measurements on a

system under test.

Data queues within the message broker allow simple publishing of measured values without waiting

for consumers. In the case of application power traces, queues act as temporary storage to collect

measurements for the duration of an experiment. Queues also provide decoupling such that all

consumers can be restarted or temporarily disconnected without the loss of measurement data. For

example, a persistent storage agent can be rebooted and still retain a complete continuous recording

of measured values. Management control, configuration, and metadata messages are also transmitted

using the message broker, thus providing the same benefits. This approach does introduce a crucial

dependency to the message broker. The resulting strict requirements for stability can be fulfilled by

modern message broker software and standardized message queuing protocols.

The selective routing by the message broker ensures that the measurement data is only handled by

those agents that need it. This is necessary to enable the very high sampling rates and thus data rates

of sophisticated power measurement devices. That also means that the management agent does not

need to handle any actual measurement data. Further, all consumers receive only the measurement

data that is relevant for them on a per-metric basis. This concept for distribution provides an inherent

scalability in the infrastructure. The only limiting factor is the message broker, which can exploit

federation and clustering for scalability. All agents in the system that handle measurement data can

be trivially parallelized on a per-metric basis, unless there is an external requirement for an agent to

process a large set of metrics. For example, persistent storage in the infrastructure can be arbitrarily

split across multiple agents, which cover disjunct sets of metrics. A parallelization of the management

agent is typically not necessary, since it does not handle measurement data. Still, it is possible to

perform the management functions by a set of parallel agents as long as they operate stateless or

somehow maintain a coherent view of the state of the system.

Since the management agent orchestrates the dynamic configuration of the message broker, it offers

the possibility to enforce permissions. For example, if a consumer wants to receive data from a set

of metrics, the management agent sets up the necessary queues and routing and could also check if

that consumer has permission for these metrics. As mentioned previously, while this possibility is

intended in the design, the specifics of it are not in scope of this thesis.

The implementation of this design uses the Advanced Message Queuing Protocol (AMQP) in version

0-9-1. With AMQP, messages are published to a specified exchange and then delivered to message

queues depending on the type of the exchange and the routing configuration. Respectively, consumers

then subscribe to queues and retrieve the messages. Note that in terms of MetricQ, agents are only

considered to be consumers if they receive either live or historic metric data. In the sense of AMQP, all

84 4. A Scalable Infrastructure for Processing Power Measurement Data

Live Consumer

Persistent

Data Storage

Any Agent
(except Management)

Management

Agent

Historic

Consumer

Data Exchange by Metric
Data

Queue

History

Exchange
by Metric

Request

Queue

Default

Exchange

direct Reply-to
RPC &

RPC-

response

QueueBroadcast

Exchange
all Agents

Management

Exchange
by Function

RPC

Queue

direct Reply-to
Response

Queue

Data Source

Historic

Consumer

Management

Agent

Debug Client

Any Agent
(except Management)

Persistent

Data Storage

Value

Request

RPC Response

RPC

RPC

Response

Publishers Exchanges QueuesRoutes
Published

Messages
ConsumersSubscriptions

M
e
tr

ic
 D

a
ta

M
a
n
a
g
e
m

e
n
t

RPC

Figure 4.2: The exchanges and message paths within the RabbitMQ configuration of MetricQ.

MetricQ agents are consumers, at least of RPC-related messages. The routing of messages in AMQP

depends on the exchange type. MetricQ uses three exchange types:

• A topic exchange delivers messages to any number of queues based on the routing key of a

message and patterns used for binding queues to an exchange.

• The default exchanges uses a special implicit routing. All messages are routed to the queue that

has the same name as the routing key of the message.

• Fanout exchanges send messages to all queues bound to it, ignoring the routing key of incoming

messages.

For MetricQ, I use RabbitMQ [Piv19], an open-source implementation of AMQP, which is written in

Erlang. AMQP was formalized as an ISO standard in version 1.0 [Int14b]. However, AMQP 1.0 offers

fewer semantics and there are less client implementations available [Piv19, Supported Protocols]

Exchanges

The following describes how MetricQ leverages the existing RabbitMQ functionality with its particular

configuration. An overview over the five exchanges used by MetricQ as well as the respective

publishers, messages, routes, queues, subscriptions, and consumers is shown in Figure 4.2. Sources

send the measurement results to the data exchange. This is a topic exchange that forwards the

messages to any number of queues based on the metric name as the routing key and queue bindings

(subscriptions to a set of metrics). The message broker discards data messages if there is no current

subscription for a specific metric or duplicates it if there are multiple subscriptions.

Requests to receive a trace of power measurements from persistent storage are sent to the history

exchange. Similarly to the data exchange, this is a topic exchange with the metric names used as

routing keys. This allows separate agents for persistent data storage to be responsible for different

disjunct sets of metrics.

4.2. Concepts and Implementation of Measurement Data Management 85

The management exchange is used whenever another agent wants to communicate with the man-

agement agent. This is also a topic exchange, but uses the requested remote procedure call (RPC)

function as a routing key, allowing to functionally distribute management messages across multiple

agents.

While most published messages are not addressed to a specific receiver, but rather to a management

function or just the data or history exchange in general, some messages must be sent to a specific

agent. Such messages are published to the AMQP default exchange and are therefore addressed to

specific queues that are exclusive to individual agents2. This scheme is used for response messages of

RPCs and history requests. Moreover, this exchange allows to invoke RPCs in any non-management

agent, e.g., for triggering a configuration update on a data source.

An additional broadcast (fanout) exchange allows to send RPCs to all agents in the infrastructure.

While this is not necessary for the primary functionality, it can be used to discover all active agents or

for debugging purposes. Exchanges are initially setup by the management agent, but they are also

configured to be durable so that they are still available after a restart of the message broker.

Queues

On the consumer side, queues and routing configuration control the delivery of messages. All

consumers of measurement data receive data messages through queues that are connected to the data

exchange with the metric name as routing key. The use cases for live consumers are typically transient,

e.g., a user selects a set of metrics for a live visualization. Queues for transient consumers carry

unique names and are created by the management agent on request (subscribe) of consumers. They

are configured to be automatically deleted by the message broker once the consumer disconnects.

For the case of application power traces, this queue acts as temporary storage. Transformers and

persistent data storage agents use similar queues, except that they are not transient. This allows a

persistent storage or transformer agent to restart without losing any measurement data.

Queries for historic metric series use two more types of queues: Each persistent data storage agent

uses a queue to receive queries for its set of metrics. Answers containing the query result are

addressed via the default exchange to exclusive response queues of the requesting historic consumers.

The management queue receives messages through the management exchange. In the current

implementation, the system uses a single management queue, which is configured to receive messages

with any routing key (all RPC functions). However, it is possible to split this into multiple queues to

distribute different management functions do different management agent implementations. Typically,

there is only one consuming management agent instance to the management queue, but it is possible

to replicate the management agent for load-balancing. The management queue is configured to

be non-exclusive, which means that management request messages are also buffered when the

management agent is temporarily unavailable. This enables a restart of the management agent

without losing RPCs, as long as it completes within the timeout duration of the client.

Each agent, except the management agent, has an exclusive queue to receive RPCs and RPC responses.

This RPC queue is the only queue that is declared by agents themselves, all other queues are declared

by the management agent.

2All agents are identified by a unique name, its token. The token is also used to build the agent’s RPC queue name.

86 4. A Scalable Infrastructure for Processing Power Measurement Data

4.2.2 Protocols

Two different protocols are used for communication between agents. Communication between the

management agent and other agents is done in the form of remote procedure calls (RPCs). Hence,

each call involves two messages, a function call and a response. An empty response is sent if the RPC

has no return value. Both calls and responses use JSON to leverage a flexible definition of arguments

and return values. All calls include a function attribute in both the JSON payload and as routing key,

which enables flexible dispatching of RPCs. The other attributes depend on the function and can have

different types and default values for convenience.

Contrary to the RPCs, messages containing metric data require a more efficient encoding than the

verbose JSON. Therefore, MetricQ uses Protocol Buffers (protobuf)3 for all messages that contain

measurement data. Protobuf uses a binary encoding that is efficient both in terms of processing

time and message size, while retaining portability and extensible definitions. The main structure

for measurement data is the DataChunk, which contains a list of timestamps and a list of values.

Both lists are of equal length and the nth timestamp corresponds to the nth value. Timestamps

are differentially encoded, i.e., the first timestamp is an actual timestamp whereas all following

timestamp values are computed as the difference of successive timestamps. The use of a separate

timestamp list in combination with the differential encoding enables a very space-efficient encoding.

Timestamps refer to the number of nanoseconds since 00:00:00, 1 January 1970 UTC minus any leap

seconds, i.e., POSIX time or Unix time. While the timestamps are 64-bit signed integers in memory,

protobuf uses base-128 variants for encoding. This encoding means that smaller values require less

space, e.g., values less than 16384 use 2 B in the buffer. Metric values are always represented as

double-precision floating point, both in memory and as encoding. Request messages for historic data

primarily include timestamps, while their respective responses have similar lists of timestamps and

values as the live measurement data messages.

The ability to include more than one timestamp / value pair (chunking) and the efficient encoding

stems from the requirement of supporting measurement with high update rates for individual mea-

surement points in the order of 1 MSa/s. By having multiple measured values in one message, the

relative cost of headers (space) and message handling (time) is reduced significantly. Enabled by the

differential timestamps, the variable encoding is particularly efficient for high update rates — where

it is also most important. For example at update rates of ≥62 kSa/s, only 10 B per value need to be

transmitted (instead of 16 B per value). Isolated benchmarks with such metric time series data show

that the fast generic compression algorithm LZ44 provides a similar data reduction ratio of ≈ 0.6.

However, LZ4 compression/decompression is slower than protobuf encoding/decoding. In the context

of general monitoring data, it has been demonstrated that floating point values can be efficiently

encoded when applying bitwise XOR to successive values. It is, however, not clear how effective this

approach would be for power measurement data in particular (e.g., [Pel+15]). A detailed comparison

of the current approach using protobuf with different compression methods remains as future work.

3https://developers.google.com/protocol-buffers
4LZ4 — Extremely fast compression: https://lz4.org

https://developers.google.com/protocol-buffers
https://lz4.org

4.2. Concepts and Implementation of Measurement Data Management 87

Python 3

json

Concrete Python Agent ImplementationsConcrete C++ Agent Implementations

Blocking Subscription

Wrapper

AMQP-CPP

Asio

Connection Handler

Source Sink

nlohmann/json

Trans-

former
Drain

Subscriber
Historic

Consumer

aio-pika / aiormq

Source Sink
Historic

Consumer

Synchr.

Source
Manager

Python 3 asyncio

Protobuf

Protobuf

DB

MetricQ Core

MetricQ Core

MetricQ Agent MetricQ API
Third-party

library

Code Type

Figure 4.3: The components of the MetricQ C++ API, the Python API, and used third-party libraries.

4.2.3 Application Programming Interfaces

MetricQ provides two application programming interfaces (APIs) in order to support the efficient

development of agents for the system. These interfaces hide all details of the implementation, e.g.,

messages and exchanges, while offering a high-level notion centered around metrics and data points.

A C++ library is used for applications that require the best possible performance, while a Python

module increases development productivity. Both interfaces are fully asynchronous, which enables

efficient message handling without the necessity for additional threads. These interfaces also provide

abstractions for executing RPCs and handling their responses. Both libraries are built on top of

existing open source libraries to process AMQP, as well as protobuf and JSON encoding and decoding.

Figure 4.3 gives an overview over the APIs and leveraged libraries.

The C++ library utilizes AMQP-CPP5 for the message layer as well as asio6 for TLS, networking,

and the asynchronous event loop. A hierarchy of abstract base classes represent the different kinds

of agents, i.e., consumer (also referred to as sink), source, persistent storage (db) and transformer.

Those specific agents are implemented by deriving from them and implementing virtual methods.

Collecting data for application power traces uses two different classes: One control agent handles the

initial subscription. Another special sink, the drain, performs the eventual retrieval of the buffered

measurement values. Additionally, blocking wrapper functions are available for the subscription and

drain. These functions still use an asynchronous event loop internally, but hide it to simplify certain

use cases that do not benefit from an asynchronous interface.

The Python library is built on top of aio-pika7. Using special decorators enables concise dispatching

of RPCs, a functionality mainly used by the implementation of the management agent. While Python

imposes a performance overhead, the use of native coroutines greatly simplifies the asynchronous

control flow as opposed to the callback-based control flow in C++. In addition to the asynchronous

polymorphic approach, there is a procedural blocking interface for sources, which allows easy adoption

of existing code . This blocking interface internally runs a thread with the asynchronous event loop

and dispatches all new measurement data as tasks to this event loop.

5https://github.com/CopernicaMarketingSoftware/AMQP-CPP
6https://think-async.com/
7https://github.com/mosquito/aio-pika

https://github.com/CopernicaMarketingSoftware/AMQP-CPP
https://think-async.com/
https://github.com/mosquito/aio-pika

88 4. A Scalable Infrastructure for Processing Power Measurement Data

4.2.4 Efficient Metric Time Series Storage and Retrieval

In addition to live analysis, storage of metric data is crucial for many power and energy analysis use

cases. This applies to both temporary and persistent storage.

Temporary Storage in Message Queues

Temporary storage for limited-time experiments is provided by the message broker. When starting

the recording of an application power trace, a set of metrics is subscribed, i.e., the management agent

creates a queue and bindings for the given metrics in response to an RPC. Over the course of the

experiment, incoming messages containing data for these metrics are delivered to this queue, but not

consumed. Once the experiment is completed, unsubscribing this queue will delete the bindings and

generate a special end-message to mark that there will be no further messages in the queue. Now the

consumer can drain all stored metric data from the queue for any kind of post-mortem analysis. After

processing the end-message, the queue is deleted with a release RPC. To avoid resource leaks with

non-conforming clients, e.g., a client that crashes before calling release, this queue uses a configurable

timeout after which it is deleted with all its buffered messages.

This approach allows clients to retain no active connection in-between subscription and unsubscription

— only remembering the name of the subscribed queue. Consequently, this allows a system under

test to control the recording for an experiment with no ongoing perturbation. Particularly when

measuring idle systems, it is critical to not even have an open connection that may cause activity from

processing heartbeats or keep-alive packets.

RabbitMQ is well suited for temporarily storing measurement data without requiring additional

services. It transparently pages out data from queued messages to disk and, if necessary, temporarily

throttles sources if memory or disk consumption reaches a critical watermark. All of theses thresholds

are configurable. While RabbitMQ provides the building blocks for temporal storage, MetricQ, in

particular the management agent, controls the dynamic configuration, i.e., the creation and deletion

of queues and their bindings.

Flat File-Based Persistent Storage

For efficient persistent storage, it is important to exploit the intrinsic properties of typical time series

data and power measurement data in particular. The primary way to access data is the timestamp

associated with a value. All timestamps for incoming samples of one metric are monotonous and

approximately equidistant. New data is always appended to existing data, i.e., there are no changes

to existing data. For some use cases, truncation of existing data may be desirable. However, in the

scope of this work, it is not considered as a primary feature. In special scenarios, the monotonicity

of timestamps may not be guaranteed, e.g., due to wireless data transmission from measurement

devices [AC16]. Generally, this can be rectified by an appropriate protocol or buffering. Within

RabbitMQ, the order of messages is always preserved8. In MetricQ, each metric corresponds to one

independent univariate time series. This arises from the general design which uses metric identifiers

8The ordering guarantee is limited to one chain with single channels for both publisher and consumer, single exchange,
and single queue. This condition is satisfied for the configuration used by MetricQ [Piv19, Broker Semantics].

4.2. Concepts and Implementation of Measurement Data Management 89

as routing keys for messages used for both insertion and retrieval. Thus, there are always exactly two

columns (timestamp and value), and never any operations covering multiple metrics.

In Section 2.3.1, I discussed the limitations of existing time series databases. The aforementioned

properties (append-only, time-indexed, monotonous, approximately equidistant, and univariate) can

be leveraged for a focused design and implementation. I propose a storage scheme that appends each

incoming measurement point, consisting of an 8 B integer timestamp and a 8 B floating point value,

directly to a file. This scheme implies that time monotonicity is enforced. Insertion with this scheme

is very efficient as it entails only linear writes to one file for each metric. There is no overhead for

managing an index tree or irregular writes as are typically necessary with generic database storage

schemes [Pac07, Ch. 10]. It is also not necessary to manage an additional write ahead log.

Retrieving the position for a given timestamp uses binary search in logarithmic time — exploiting the

ordering of timestamps within the flat file. This can be further improved by exploiting the regular

metric readout rates. Similarly to insertion, reading the measurements maps to efficient linear reads

— only the binary search for timestamps requires random reads.

Due to the mapping of one file per metric, multiple metrics cannot share timestamps. This is consistent

with message protocol of MetricQ, which also uses separate messages for separate metrics. Since

read accesses to a file occur at the 16 B boundaries of each timestamp-value-pair, it is not directly

possible to use a more space-efficient encoding for timestamps or values. Nevertheless, it is possible

to use a transparent underlying block-wise compression, e.g., on the file-system layer, as long as

reading at a specific logical position can be performed in constant time.

4.2.5 Hierarchical Timeline Aggregation

While the flat file-based direct storage offers efficient insertion of data as well as logarithmic-time

seeking to timestamps, the cost of retrieving measurement data still scales linearly with the number

of values in the requested time interval. Thus, it is not easily feasible to support requests over longer

time intervals even if not all raw values are required, e.g., for charts of the average power or an

energy consumption value.

To that end, I propose the concept of Hierarchical Timeline Aggregation (HTA). This concept exploits

the nature of measurement series. On top of the raw timestamp-value data, aggregated measurement

results for fixed time intervals (aggregation intervals) are stored. The lowest aggregation level k = 0

uses a configured minimum aggregation interval duration i0. Higher aggregation levels k use larger

intervals with a duration of ik = i0 ∗ f k and an interval factor f ∈ N, f ≥ 2. An upper limit ikmax

ensures that no impractical aggregation levels with very few intervals are used.

There are different ways to span the aggregation intervals: Either they have a fixed duration or they

use a fixed number of values per interval (and thus a dynamic duration). Using a fixed number of

values allows to have well-balanced intervals without requiring a known regular update rate of raw

values r (in Sa/s). However, a fixed and aligned duration allows direct addressing of intervals for

a given timestamp. Therefore, I use aligned intervals of fixed length, i.e., they span from n ∗ ik to

(n+ 1) ∗ ik (half-open, n ∈ N).

90 4. A Scalable Infrastructure for Processing Power Measurement Data

Aggregation Types

Conceptually, many different aggregation functions a are possible, as long as they are associative,

i.e., they can be applied independently to partitions of the time series. In other words, the series of

x j (aggregate values with their respective time intervals) satisfies the following for every increasing

sequence of jk:

a (x1, . . . , xm) = a
�

a
�

x1, . . . , x j1

�

, a
�

x j1+1, . . . , x j2

�

, . . . , a
�

x jk+1, . . . , xm

��

(4.1)

This condition ensures that applying the aggregation operation to a subset of measurement data

for the intermediate intervals produces the same result as applying the operation to the full set

of measurement data in one step. The current implementation stores the following data in each

aggregation interval:

• minimum measured value during the interval,

• maximum measured value during the interval,

• count of all measurements corresponding to the interval,

• sum of all measured values corresponding to the interval,

• active time for which a measured value was known, typically this is equal to ik,

• integral of the metric value over the active time within the interval,

• timestamp at the beginning of the interval (redundant, used for consistency checks).

Since the generic aggregation functions use aggregates as input and output, raw values first need

to be converted to intervals in order to generate the input for aggregation level 0. For aggregation

functions that only refer to values, i.e., minimum, maximum, count, and sum, this is trivial. However,

aggregation functions that consider time, i.e., active time, integral, and timestamp require further

consideration. They require a continuous signal rather than discrete samples. To reconstruct this

signal, I consider that many power measurement devices provide average power readout values.

This implies the assumption, that a particular measured value is valid from the previous timestamp

to its associated timestamp. Consequently, the continuous representation of the time series is a

left-continuous step function. Formally, this representation of a discrete time series is defined as zero-

order hold everted (ZOHE) in [LVE16, Def. 7]. Under this model, continuous-time-based aggregations

can be computed from raw values. In general, different temporal models can be used for different

aggregations.

Based on the different aggregates, more statistics can be computed: While count and sum allow

to compute the arithmetic mean over the values themselves, integral and active time provide the

weighted mean that takes non-equidistant timestamps into consideration. A possible extension to this

is to also include the cumulative sum of squares which then allows to compute the standard deviation.

4.2. Concepts and Implementation of Measurement Data Management 91

Insertion into Aggregation Levels

While inserting data into an HTA store, the aggregation levels are computed on the fly. For each new

measurement point, the lowest aggregation level is updated. Whenever a measurement point after

the end time of the lowest current aggregation interval becomes known, this aggregation interval

is completed. A completed aggregation interval is added to the current aggregation interval of the

next higher level. With this approach, the worst-case cost for modifying aggregations upon insertion

scales with the number of aggregation levels, which is limited by the maximum interval. Amortized

over time, however, the average amount of modified aggregations per insertion is limited as follows.

While the lowest aggregation level is always updated, the chance to update higher levels depend on

the regular insertion rate r and the minimum aggregation interval i0 as well as the interval factor f .

Oaggregation = 1+
1

ri0
·

kmax
∑︂

k=0

1
f k

(4.2)

< 1+
1

ri0
·

1
1− 1/ f

(4.3)

= 1+
f

r i0(f − 1)
(4.4)

≤ 1+
2

ri0
, given that f ≥ 2 (4.5)

Thus, the aggregation cost for insertion has an amortized constant time complexity and can be tuned

by choosing i0≫ 1/r. Further, since only one set of aggregated values per aggregation level needs to

be tracked, the active data set to track all open aggregation intervals is small. Overall, the practical

performance cost of adding an HTA on top of raw data storage is minimal.

Querying Aggregate Data

Queries for a timeline of measurement data can specify the minimal required resolution, e.g., the

number of pixels for a plot. Based on this constraint, an appropriate aggregation level is chosen

for the result. If the minimum aggregation interval does not provide sufficient resolution, the raw

measurement data is used transparently instead. This principle of aggregate timeline retrieval is

displayed in Figure 4.4. The choice of i0 and f as well as the required resolution effectively limit the

amount of data that needs to be processed for a timeline request with an arbitrary duration.

Raw Values

Aggregation Level 0

Aggregation Level 1

Aggregation Level 2

Aggregation Level 3

Time

Requested Timeline Interval

Figure 4.4: Retrieving an aggregate timeline for an arbitrary request interval and a given resolution.
The utilized data is highlighted in blue (f = 3).

92 4. A Scalable Infrastructure for Processing Power Measurement Data

Requested Aggregation Interval

Raw Values

Aggregation Level 0

Aggregation Level 1

Aggregation Level 2

Aggregation Level 3

Time

Figure 4.5: Computing an efficient aggregate over an arbitrary request interval. The utilized data is
highlighted in orange (f = 3).

In addition to the timeline, the HTA concept allows efficient and exact computation of energy, average

power, or any aggregated individual value for arbitrary request intervals. The approach to compute

this is illustrated in Figure 4.5. First, the largest possible aggregation intervals that are fully within

the requested interval are considered, i.e., aggregation level 2 in the example. This leaves out gaps

at the requested interval borders, which are added from lower aggregation levels. Eventually, the

original raw data layer completes the aggregation up to the interval boundaries.

Storage Concept for Aggregation Levels

The data from aggregation intervals is stored in append-only binary files similar to original measure-

ment data. All intervals are aligned and use and equidistant on one level. While writing, no interval

is ever omitted: If there was no metric value for an interval, an appropriate one is written as soon as

the first value after the missing interval becomes known. This storage scheme allows direct indexing

based on the queried timestamp and the known timestamp of the first recorded measured value

(epoch). Similarly to storage of raw measurement points, no explicit compression is used for storing

aggregation data. However, compression can be added on the file-system layer.

In addition to enabling efficient retrieval of aggregated timelines and aggregate values for arbitrary

request intervals, the HTA can speed up indexing in the raw measurement data file. The position of a

timestamp-value pair within the original data can be computed from the number of values with smaller

timestamps. This number can be bounded using the count within the aggregation intervals, similarly

to computing a single aggregate value. Technically, this approach has the same time complexity as

binary search (O(log(N))). Practically, however, it requires less file accesses and can exploit caching

at higher aggregation intervals, which contain small data sets that are often used.

Comparison with Similar Concepts

The HTA concept offers specific advantages over existing time series database concepts and implemen-

tations (compare Section 2.3.1). The use of multiple levels containing summarized data is similar

to RRDtool [Oet17] as well as the model for multiresolution time series data described in [LVE16].

However, the existing approaches use summarization as lossy compression with the goal of only

requiring a fixed amount of storage. In contrast, the HTA is designed for efficient and accurate queries

over arbitrary durations. Further, the hierarchical scheme ensures that most of the time, only one

aggregation needs to be updated on an insert. Schemes with arbitrary aggregation levels need to

4.2. Concepts and Implementation of Measurement Data Management 93

update all aggregation levels for each insertion. Moreover, RRDtool is designed for low-granularity

data, which is also indicated by one-second-granularity of timestamps. BTrDB [AC16] places aggre-

gates in a tree-structure for allowing efficient queries. The data in BTrDB is stored in a versioned

copy-on-write tree, which allows out-of-order insertion. While this approach provides similar benefits

as HTA, it does use in a more complex storage format.

The downsampling / retention functionality of popular time series databases could be used to

create aggregation hierarchies similar to HTA. In InfluxDB [Inf19a, Downsampling and data reten-

tion], aggregations / downsampling can be manually defined using retention policies. Similarly,

TimescaleDB [Tim19] uses special precomputed views named continuous aggregates to speed up ag-

gregate queries. However, this approach requires a manual configuration of multiple levels. Moreover,

queries do not transparently select an appropriate retention level. Instead, queries need to address a

specified retention policy or aggregate view. On the client side, this selection is not practical, as the

specific configuration of queried metrics is not known. A transparent implementation would require

a sophisticated middleware for query rewriting. For InfluxDB, there have been discussions9 about

improving the access to databases with multiple retention policies, but there is no consistent concept

or implementation. In contrast to the existing approaches for approximate query processing that use

sampling or signal processing [Cha+01; BCD03; Cha+11; Per+15], the performance benefit from the

HTA does not sacrifice correctness but only granularity for aggregate timelines.

The simple storage concept of using flat append-only files exposes beneficial I/O patterns, similar to

write ahead logs. Due to the inherent locality, the underlying I/O layers can transparently improve

performance through coalescing, caching, and prefetching without the need for explicit consideration

in the implementation. While compression is also possible, a transparent generic compression does

not offer the same level of data reduction as time series data specific encoding (compare [Pel+15]).

Implementation as a Persistent Data Storage Agent in MetricQ

I implemented the concepts for flat file-based storage and Hierarchical Timeline Aggregation in a

persistent data storage agent for MetricQ. The actual HTA functionality is encapsulated in a C++

library, which is used by the storage agent implementation in addition to the C++ MetricQ API

and two asynchronous event loops. One of the event loops handles the AMQP connections and

processes messages to the level of protobuf structures. The AMQP event loop uses a single thread

for all C++ agents because access to a stream needs to be serialized in any case. The protobuf

structures, either for inserting new values or retrieving historic requests, are then dispatched to the

other event loop, which uses multiple worker threads for processing. Race conditions are avoided by

using per-metric strands as execution policies. That means, that requests concerning a specific metric

are never executed simultaneously. The HTA I/O operations themselves are blocking because Linux

does not offer non-blocking file I/O10. Dispatching the requests to a separate event loop allows the

connection handling to still process messages (especially heartbeats), while blocking I/O operations

are running on the other event loop. Using multiple data worker threads allows parallel processing

on a per-metric level within the persistent data storage implementation.

9https://github.com/influxdata/influxdb/issues/7198
10While Linux and POSIX offer some support for asynchronous I/O, it is not possible to open a file asynchronously, which

would also be necessary.

https://github.com/influxdata/influxdb/issues/7198

94 4. A Scalable Infrastructure for Processing Power Measurement Data

4.3 Performance Evaluation

As discussed in Section 4.1, sophisticated energy measurements present demanding requirements to

the performance of a measurement data processing. In this section, I evaluate the performance of

MetricQ and provide a comparison with a state-of-the-art time series database system. I used several

benchmarks to determine whether the MetricQ implementation meets the defined requirements. The

benchmark results also reveal the performance boundaries of MetricQ with a particular focus on

metric data rate for live processing, application power tracing, and persistent storage.

I used a synthetic data source for the benchmarking to allow controllable data rates and utilize a

reproducible environment. A recording of actual measured values from the artemis system provides

power values for the synthetic data source to allow a realistic value compression for the comparative

time series database. The synthetic data source generates measurement points in batches (chunks)

at regular time intervals whereas the timestamps within each chunk are interpolated on a linear

scale. This generation scheme emulates a timestamping similar to a measurement with a device

that provides a block of measurement results at a constant rate without individual timestamps, e.g.,

National Instruments DAQ or ZES LMG in scope mode (see Chapter 3).

A set of benchmarks covers measurement data collection with respect to different use cases: For

determining the maximum ingestion rate, all metric data points were discarded. In this configuration,

measurement data was published to the message broker, but no consumer was subscribed. Therefore,

there were no queues to which the respective messages were delivered. This benchmark primarily

serves as a baseline and to better identify the cause of performance bottlenecks. However, it can be

relevant in practice to collect more measurement data than can be processed. Keeping measurement

data sources running continuously, but only recording or analyzing them selectively, simplifies control

and management of the measurement infrastructure.

The end-to-end performance was determined with a dummy consumer. This consumer subscribes to

a set of metrics and unpacks all messages to the point of individual timestamps and values. At this

point, the dummy consumer does not process the data any further.

In the third test configuration (hta), persistent data collection was included using the HTA implemen-

tation. The aggregation interval configuration used i0 = 30/r, kmax = 7, and f = 10.

In all of the three configurations, it is not trivial to determine the maximum end-to-end throughput.

Simply publishing as many data points as possible is neither a viable nor representative continuous

mode of operation. There are several buffers within components of the system that allow short-time

bursts while maintaining asynchronous operation. Within the C++ source library, write operations

are buffered as asynchronous tasks in the asio layer. If the messages cannot be sent fast enough,

the buffer will accumulate pending tasks and eventually run out of memory. Moreover, RabbitMQ

uses the credit flow mechanism11 to throttle publishers to prevent resources exhaustion. Therefore,

the maximum throughput is determined by gradually increasing the data rates or cardinality of the

synthetic sources until the operation is no longer stable. To achieve the maximum possible message

throughput, I disabled credit flow throttling. On the subscriber side, a prefetch count12 of 400 was

configured for the data channel. This limited the number of messages that are delivered to a consumer

before receiving acknowledgments. The limit must be large enough to effectively hide the latency

11https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/
12[Piv19, Consumer Acknowledgements and Publisher Confirms], https://www.rabbitmq.com/confirms.html

https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/
https://www.rabbitmq.com/confirms.html

4.3. Performance Evaluation 95

by overlapping transmission and processing, as long as there are enough messages in a queue. An

unlimited prefetch count, however, could overflow the receive buffer. The HTA implementation also

dispatches incoming data chunks to a separate asynchronous asio event loop (see also Section 4.2.3).

Nevertheless, messages are only acknowledged after processing is complete so that there are never

more than 400 messages buffered in the two event loops. If the consumers cannot process data at the

rate of producers, the messages are buffered in queues within RabbitMQ. While this mechanism is

essential for temporary situations in practice, a permanent operation at such an imbalance would not

be sustainable.

I designed the benchmarks to measure end-to-end times, i.e., from right before the first source sends

the first value to after the last consumer receives its last value. To that end, the synthetic benchmark

source sends a special end message that causes the benchmark consumers (dummy and hta) to shut

down and record the current timestamps. For the discard use case, only the times from the benchmark

sources were used. All agents print their respective timestamps to the console as a basis to compute

the total end-to-end performance.

In addition, I tested the temporary storage used for application power tracing using a simple benchmark

drain. It subscribes to incoming metrics for a given duration and then measures the time it takes to

retrieve all measurements from the queue.

The above mentioned benchmarks were all implemented with the high-performance MetricQ C++

library. Moreover, I used Python and MPI to implements a controller that orchestrates the distributed

services needed for the benchmarks. This controller spawns the broker, management, source, and

consumer processes on the different involved nodes. It also collects the output from all of the involved

processes and computes the total end-to-end time for the parallel execution.

Finally, I determined the end-to-end HTA query latency with another benchmark. This benchmark

uses the MetricQ Python module to generate and measure queries to the HTA implementation.

4.3.1 Benchmark Hardware Specifications

All of the following benchmarks were performed on a special set of NVMe nodes from the taurus HPC

system at TU Dresden13. Each node is equipped with two Intel Xeon E5-2620 v4 processors with a

nominal frequency of 2.1 GHz and up to 3.0 GHz with Turbo mode as well as 64 GB of main memory.

All nodes are interconnected with two EDR InfiniBand connections using Mellanox MCX555A-ECAT

adapters providing dual port 100 Gbit connectivity. The connections for data payloads of different

clients alternated between the two InfiniBand networks. Scenarios with only single clients of each

type use only one of the InfiniBand ports.

For high-performance persistent storage, each node contains eight Intel DC P4610 SSDs at a formatted

capacity of 2.9 TB. In normal operation, the nodes are not accessed directly but export a parallel

BeeGFS file system. For the following benchmarks, however, each SSD was separately formatted

with a local ext4 file system. If not noted otherwise, each HTA storage instance used a single SSD

exclusively. AMQP/HTTP connections without TLS were used for all benchmarks. Experiments

were performed with the following software versions: GCC 8.2.0, RabbitMQ 3.7.13, Erlang 21.3,

Python 3.6.6.

13https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/NvmeStorage

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/NvmeStorage

96 4. A Scalable Infrastructure for Processing Power Measurement Data

0 2 4 6 8 10 12 14

Configured Per-Channel Rate (MSa/s)

0

10

20

30

40

50

60

To
ta

lE
nd

-t
o-

En
d

R
at

e
(M

Sa
/s

)

Mode

discard

dummy

hta

Figure 4.6: The total effective end-to-end metric throughput for a single data source and consumer at
different requested per-channel metric rates.

4.3.2 Throughput in Symmetric Configuration with Replication

One of the main motivations for developing MetricQ was to enable processing metrics at the data

rates of high-resolution power measurements. The first benchmark used a single data source with six

measurement channels and was executed for each of the different consumer modes discard, dummy,

and hta. For all modes, the metric data rate rate per channel was increased until performance

degradation caused a timeout. In order to limit the overall experiment time, I narrowed down the

tested range of data rates individually for each mode by coarse grained benchmarks beforehand. All

experiments were set to produce 40 s of measurement data and were repeated three times.

The result from each experiment is the total end-to-end metric rate, i.e., the total number of values

transmitted for all metrics, divided by the time between the first send and last consume (last send

for discard). Given the power measurement use case, I use the unit Sa/s for reporting metric data

rates. Figure 4.6 shows that the discard and dummy scenarios exhibit similar patterns with no

performance degradation up to ≈ 10 MSa/s per-channel (≈ 60 MSa/s total). For higher per-channel

rates, the end-to-end performance decreases while variation increases. The bottleneck in both cases

is in the source implementation: Once the requested metric rate exceeds the possible send rate, the

source generates more asynchronous tasks than can be processed. The contention on the event loop

decreases performance even further and the end-to-end time exceeds the intended 40 s since the

source publishes the locally buffered messages. Such an over-utilized scenario would eventually lead

to memory exhaustion. The dummy workload is affected by over-utilization even more than discard.

Observation shows that a over-utilized dummy source publishes messages in bursts rather than at a

constant rate, possibly due to flow-control originating from the consumer queue.

The performance for the hta benchmark saturates at 21.0 MSa/s with no variations. An over-utilized

HTA agent /buffering in the RabbitMQ queue and an increased time to complete processing all

measured values, thus saturating the end-to-end rate. Thanks to the limited prefetch-count, the HTA

agent is not flooded by messages and continues to process at a constant rate. RabbitMQ handles the

buffering gracefully. While this benchmark is not affected, in practice the message broker performance

4.3. Performance Evaluation 97

1 2 4 8 16

Replication

0

2

4

6

8

10

M
ax

.
Pe

r-
C

ha
nn

el
R

at
e

(M
Sa
/s

)

discard

dummy

hta

(a) Maximum per-channel sampling rate configu-
rations without performance degradation. The
lowest setting with performance degradation is
shown in lighter colors.

1 2 4 8 16

Replication

0

100

200

300

400

500

600

700

M
ax

.
To

ta
lR

at
e

(M
Sa
/s

)

discard
dummy
hta

(b) Total (6 channels× replication) end-to-end met-
ric rates for the highest tested configuration
without performance degradation.

Figure 4.7: Throughput characteristics for different replication levels and consumer modes.

may degrade when paging out messages to disk. If more data is posted than can be processed, the

disk space would be exhausted if more data is posted than processed.

The results show, that MetricQ fulfills the stated ingestion performance requirement (a) of 1 MSa/s

per channel for six channels by a factor of 10. Requirement (d), stating a total persistent storage

insertion performance of 1 MSa/s, is surpassed by a factor of 21 (compare Section 4.1).

Symmetric Replication

All agents within the system can be parallelized on a per-metric granularity. Therefore, I further con-

ducted a symmetric replication benchmark case with p sources and p consumers for p ∈ {1,2, 4,8, 16}.
Up to eight sources or consumers were executed on one node. The HTA agents used three worker

threads such that each worker thread was running on one hardware thread. The sources and con-

sumers were linked pairwise, i.e., one consumer exclusively consumed data from one source. For

presenting the results, I consider the maximum rate without performance degradation, i.e., the

maximum configured per-channel sampling rate at which none of the three experiment repetitions

exhibited an end-to-end runtime that is more than 2 % longer than the configured duration. This

indirect nature of determining the maximum sustainable throughput introduces some uncertainty

due to the granularity of tested metric rates. The true maximum rate lies within the determined rate

and the next higher configuration, i.e., the lowest per-channel rate at which performance degradation

was observed. The confidence in this interval can be increased by using more repetitions and the

width of this interval can be decreased by a more fine-grained configuration of tested rates. However,

the current results confirm that MetricQ exceeds the stated requirements with a significant headroom.

Figure 4.7a shows the maximum per-channel metric data rate and Figure 4.7b displays the corre-

sponding total end-to-end rate for the different replication levels and consumer modes. For up to four

parallel source/consumer pairs, the total throughput scales almost linearly. While discard and dummy

modes perform similarly, both drop slightly at a replication level of four. This effect could be caused

by reduced Turbo frequencies at increased core utilization, but was not investigated further. At higher

98 4. A Scalable Infrastructure for Processing Power Measurement Data

replication levels, the dummy throughput was lower than in discard mode, indicating that the bottle-

neck shifted from the source to the message broker or network. The highest total end-to-end rates

reached at p = 16 are 671 MSa/s and 563 MSa/s for discard and dummy configurations, respectively.

The maximum per-channel rate for the hta case dropped only from 3.75 MSa/s to 3.00 MSa/s across

all replication levels. The total metric rate scaled up to 263 MSa/s when using sixteen HTA instances

on the same number of SSDs across two nodes.

Underlying Limitations of Achievable Performance

The experimental conditions with high-performance networks and SSDs were deliberately chosen to

reveal non-obvious limitations. Practical experience shows that even an environment with a regular

gigabit network and a NFS partition supports demanding requirements (see Section 4.3.7).

To put the results from the high-performance benchmark environment in context, I estimated the

underlying I/O bandwidth and data rates: At the given per-channel rates, ignoring minimal relative

overhead at the high chunk sizes, each timestamp-value pair requires 11 B in protobuf. Thus the

563 MSa/s passing through the message broker at p = 16, dummy correspond to 49.5 Gbit/s of

the theoretically available 200 Gbit/s. However, higher bandwidth is typically achieved using low-

level RDMA access rather than generic TCP sockets (see [Mel18]). In the HTA implementation,

each timestamp-value pair uses 16 B and aggregates 56 B each. For the given configuration, each

measurement sample requires 18.07 B on average — ignoring the diminishing cost of headers.

Consequently, the achieved 21.0 MSa/s with one HTA client / SSD correspond to 381 MiB/s. Intel

specifies up to 3200 MB/s for sequential writes for the used SSDs [Int18b].

4.3.3 Throughput with Many Data Sources and Single Consumers

To understand the performance ceiling for an instrumented HPC system, the metric cardinality was

increased for the following benchmark. I used a total of 45 taurus NVMe nodes for this benchmark.

42 nodes were used for sources, with 32 sources each (one per hardware thread). This resulted in

1344 distinct source processes with a separate RPC and data connections to the message broker. Each

source published six metrics at an increasing rate. The remaining three nodes executed the message

broker, 32 management agent processes, and the consumer (dummy or hta). This test demonstrates

the use of parallel management agents to speed up the connection phase of many simultaneous clients

(each type on one dedicated node).

An HPC use case does not necessarily imply a large number of distinct source agents. The HDEEM

measurement data collection, for example, uses a single process running on an administrative node.

This data source process collects all of the data from the 1456 BMCs to forward it as messages. A

future solution, however, could possibly run an agent directly on each BMC (compare Section 2.2.2,

DiG).

To facilitate the large amount of active clients and metric data files, the number of file handles

for the RabbitMQ and hta processes was increased to 120 000. Increasing the number of sources

further, by oversubscribing the nodes, resulted in sporadic connection issues, which manifested as

timeouts during the initial AMQP connect. It has been documented that RabbitMQ can successfully

handle between 20 000 to above 500 000 connections, but that takes “effort and experimentation with

4.3. Performance Evaluation 99

multiple RabbitMQ and OS settings”14. Considering that the system under test is part of a production

HPC system, no such attempt at tuning for even more clients was made.

For the given configuration of sources, I executed benchmarks with a single dummy or hta instance,

as well as the discard scenario with no consumers. The hta was configured with 15 worker threads

to ensure a dedicated core was available for the message handling and each HTA worker. Further,

the hta was configured to distribute metrics across all eight SSD partitions. Experiment runtime

was increased to 300 s to mitigate the influence of the increased connection setup time — the result

should represent sustained operation.

After a preliminary experiment to determine the approximate maximum data rate, the source per-

metric rate was increased with at least five repetitions for each rate setting. I configured the chunk

size such that there is always one chunk per second for each metric in all configurations. The highest

rate setting that allowed stable operation without degraded end-to-end performance is considered to

be the maximum metric data rate:

• discard: 75 kSa/s per channel, 601 MSa/s total end-to-end. This value is slightly lower than

the achieved 671 MSa/s for discard with 16 sources and sinks (see Section 4.3.2), which can

be explained by the reduced chunk size and the additional effort required to handle a large

amount of clients.

• dummy: 8.6 kSa/s per channel, 68.9 MSa/s total end-to-end. Here, the single consumer is

clearly the bottleneck and throughput is only slightly higher than in the symmetric dummy

configuration, where the single source is the bottleneck (61.4 MSa/s, see Section 4.3.2).

• hta: 3.4 kSa/s per channel, 27.3 MSa/s total end-to-end. This performance is higher than the

previous test with one source and one hta agent (21.0 MSa/s, see Section 4.3.2) indicating

that this scenario benefits from using multiple SSD partitions and more HTA worker threads.

The difference, however, is not proportional to the additional resources suggesting that the

bottleneck is not HTA write performance but rather message ingestion or other shared resources.

The performance requirement (b) from Section 4.1 was surpassed in all configurations, even with

a single consumer. This benchmark used 1.3 times the required sources and achieves 75 × of the

required per-metric data rate. If a consumer bottleneck was introduced, the required metric rate is

exceeded by a factor of 8 (factor of 10 when factoring in the number of sources).

The above scenario still exploited chunking within each metric. To understand the limitations for

even larger cardinalities, where chunking is not applicable, the per-metric rate was fixed to 1 Sa/s

at a chunk size of 1 and the number of channels was increased instead. This experiment was only

performed for the discard mode. Up to 300 metrics per source (403200 metrics total) showed

a consistent performance at a total rate of 0.40 MSa/s. Higher configurations with 350 and 400

metrics per source ran stable, but with flow-controlled source channels, at 0.43 MSa/s. Even higher

cardinalities resulted in unstable operation. This shows that while MetricQ benefits from per-metric

chunking to enable very high total metric data rates, it also allows a high cardinality at lower update

rates. Consequently, the performance requirement (c) (25000 metrics at 1 Sa/s) was exceeded by a

factor of 16.
14[Piv19, Networking], https://www.rabbitmq.com/networking.html,

https://groups.google.com/forum/#!topic/rabbitmq-users/LXqvS1MVA20

https://www.rabbitmq.com/networking.html
https://groups.google.com/forum/#!topic/rabbitmq-users/LXqvS1MVA20

100 4. A Scalable Infrastructure for Processing Power Measurement Data

0.5 1.0 2.0 4.0 8.0 16.0

Incoming Metric Rate (MSa/s)

0

10

20

30

40

50

60
Q

ue
ue

D
ra

in
R

at
e

(M
Sa
/s

)

Duration

300 s

60 s

Figure 4.8: Drain performance for retrieving temporarily stored metric data at a given incoming
metric rate and duration of recording.

4.3.4 Temporary Storage in Message Queues

The drain benchmark evaluated the use of RabbitMQ for temporarily storing metric data in queues.

For this benchmark, I used two nodes — the message broker and consumer ran on different nodes,

communicating over one InfiniBand link. The disk location for RabbitMQ was placed on one of the

SSDs. Over a duration of 60 s or 300 s, the drain subscribed to a set of six metrics generated by one

source at a given target rate. I increased the per-channel metric generation rate, beginning with

0.1 MSa/s with five repetitions for each configuration.

The highest achieved total metric rate to store messages in the queue was 25 MSa/s (4.2 MSa/s per

channel). At higher rates, i.e., 34 MSa/s, the queue, and therefore the source, is placed into flow state,

throttling incoming messages. Figure 4.8 shows the rate at which the stored data was retrieved from

the queue. The result reveals two distinct performance levels at ≈ 55 MSa/s and ≈ 20 MSa/s. The

performance levels correspond to cases where RabbitMQ retains queued messages in memory, and

cases where it pages messages out to disk. Since this effect correlates with the total size of messages

in a queue, the experiments with a shorter duration of recording remained at high performance

levels for larger incoming metric rates. Further, performance is slightly lower for smaller queues, i.e.,

short duration and low incoming metric rate, influenced by a fixed overhead. In this benchmark, the

performance requirement (e) stated in Section 4.1 was exceeded by a factor of 11.

4.3.5 Persistent Metric Time Series Request Performance

An important goal of MetricQ is the interactive visualization of large volumes of persistently stored

data. To evaluate the infrastructure and the HTA implementation in this regard, a data set with

six metrics recorded at 1 kSa/s for one year was generated synthetically. This amounts to a total

of 189 billion values or 3.1 TiB as stored in the HTA. For this benchmark, each of the six metrics

were stored on a dedicated SSD partition and the HTA was configured with six worker threads. The

message broker and management agent were running on one node, while the HTA implementation

4.3. Performance Evaluation 101

and benchmarking agent were running on another node. Since all persistent request messages and

answers pass through the message broker, each message passes the InfiniBand network twice.

In order to facilitate interactive charts, the benchmark focuses on the time to answer persistent data

requests (query response latency). I implemented a benchmark driver based on the MetricQ Python

module to generate those requests and to measure the end-to-end latency. In addition, the HTA

implementation was instrumented to expose certain internal latencies:

1. End-to-end latency was measured in the client between issuing the first query and receiving all

responses. It therefore includes the round-trip message transfer through the message broker as

well as client-side message processing in Python.

2. Server request latency denotes the time elapsed from receiving to sending the respective protobuf

messages, not including AMQP parsing.

3. HTA worker latency denotes the time elapsed for the HTA operation within the worker thread.

All query configurations were repeated 20 times and each of the repetitions was performed on a

randomly selected time interval to avoid overly specific caching. In normal interactive visualization,

some requests may overlap so that there may be caching, but I focused on the worst-case. The latency

was measured for the full factorial combinations of each of the following factors:

1. The queries were either requests for a timeline or a single minimum, maximum, and average

aggregate for the entire duration. Requested timelines were configured to a granularity of least

1000 aggregate intervals and include minimum, maximum, and average for each interval. A

single requested aggregate value represents an analysis use case, e.g., job energy consumption.

2. Either one randomly selected metric, or all six stored metrics were requested. Since the

infrastructure only allows one metric per request, the latter case issues six requests in parallel.

3. The duration of the queried time interval was increased from one second to four months on a

logarithmic scale.

The resulting latency of all configurations is shown in Figure 4.9. All latencies were below 30 ms, with

only minimal variations for each configuration. This is well below the response time of 100 ms that is

perceived as instantaneous [Nie94] and gives headroom, e.g., for rendering or including additional

metrics. The performance requirement (f) of a maximum latency of 1 s stated in Section 4.1 was

exceeded by a factor of 33.

For timeline queries, a pattern shows the impact of queried time interval: Up to 30 s, the required

granularity of 1000 data points implies the use of non-aggregated measured values — the result set

size increases with the query duration, as does the latency. Larger query durations allow the use of

aggregation levels in the HTA: After every factor 10 of the queried duration, a higher aggregation

level is chosen, reducing the data size that needs to be read and transmitted again. This pattern shows

how the concept of the HTA provides an effective bound for the query latency. The remaining peaks

could be further limited by reducing the minimum interval and the interval factor. However, this

would come at the cost of increased storage size overhead, which is 13 % for the given configuration.

102 4. A Scalable Infrastructure for Processing Power Measurement Data

0

5

10

15

20

25

30

Q
ue

ry
R

es
po

ns
e

La
te

nc
y

(m
s)

Query Type = timeline | Query Target = random single metric

Latency Breakdown

End-to-end

(Maximum) Server Request

(Maximum) HTA Worker

Query Type = timeline | Query Target = six metrics

101 103 105 107

Duration of Queried Time Interval (s)

0

5

10

15

20

25

30

Q
ue

ry
R

es
po

ns
e

La
te

nc
y

(m
s)

Query Type = aggregate | Query Target = random single metric

101 103 105 107

Duration of Queried Time Interval (s)

Query Type = aggregate | Query Target = six metrics

Figure 4.9: Query latencies for different query types, targets, and query time intervals. Error bars
show the 95 % confidence interval around the mean for each measurement configuration.

The results also show that most of the latency resides in message transfer and client-side processing,

while the HTA operations require less time. On the server side, there is no noticeable difference

between the total server request time and HTA worker time. This means that the worker threads start

processing incoming queries with no negligible delay and the result is immediately dispatched. For

queries regarding very long time intervals, the HTA time further decreases. This effect can be caused

by caching of the highest aggregation levels that contain relatively few entries overall.

All requests for aggregate were answered in less than 8 ms, independently of the queried time interval.

Including all six metrics in the query does increase the end-to-end latency by less than a factor of

six. This shows that the parallel requests were in effect, but do not scale perfectly. Note that the

internal server request and HTA worker latencies in Figure 4.9 of multiple concurrent queries refer

to the maximum of each individual one. It is possible that the increased latency for multiple metric

requests is in part due to the processing of increased data volume within the Python benchmark client.

4.3.6 Performance Comparison with Contemporary Time Series Storage Solutions

To put the MetricQ performance in context, I performed similar benchmarks with the contemporary

time series database InfluxDB (see Section 2.3.1). I used InfluxDB 1.7.4-1 in the default configu-

ration except for compaction15 as suggested by official benchmark documentation16. In the basic

configuration, InfluxDB uses one path for storage, located on a single SSD partition. The InfluxDB

daemon was running on one taurus NVMe node, while all benchmark drivers were running on a

second node. Communication between clients and the database used one InfiniBand link and HTTP.
15compact-full-write-cold-duration="0"
16https://github.com/influxdata/influxdb-comparisons

https://github.com/influxdata/influxdb-comparisons

4.3. Performance Evaluation 103

1 2 4 8 16

Number of Workers

0.0

0.5

1.0

1.5

2.0

2.5
To

ta
lV

al
ue

In
se

rt
io

n
R

at
e

(M
Sa
/s

) Hosts

1
1000

Figure 4.10: Value insertion rates for InfluxDB using bulk load workers. Rates are given for a configu-
ration with 1 host, 6 channels, 0.4 MSa/s and 1000 hosts, 6 channels, each 0.4 kSa/s.

Insertion Performance of InfluxDB

To determine the maximum insertion rates of InfluxDB, I extended the benchmarking code provided

by the vendor16 (see also [HKK17]). Contrary to the MetricQ benchmarks, the InfluxDB benchmark

is not a data source with a real-time sampling rate, but generates data as fast as can be inserted. The

rate of artificial timestamps for this data has diminishing impact on the performance — nevertheless,

I determined and used the approximate sampling rate that InfluxDB can handle in real time. While

the original implementation focuses on DevOps and IoT use cases, I implemented a simulated power

monitoring device similar to the previous benchmarks. This simulated device has six channels at a

rate of 0.4 MSa/s per channel. Data from all six channels (metrics) is inserted in measurement points

with shared timestamps, thus exploiting the multivariate capabilities of InfluxDB. For a measurement

duration of 40 s, 96 million metric values or 16 million measurement points are generated. A second

configuration with increased cardinality uses 1000 simulated hosts, each with six metrics reporting at

0.4 kSa/s per channel. The benchmark driver used up to sixteen worker threads on one node and

bulk inserts with the default size of 5000 points (30000 values). Each configuration was repeated

four times. Contrary to the benchmarks in Section 4.3.2 that use replication, the InfluxDB workers all

process the same metric stream from a single simulated measurement device.

Figure 4.10 shows that InfluxDB reached a maximum insertion rate of ≈ 2.3 MSa/s, which is signifi-

cantly lower than the 21.0 MSa/s of the hta benchmark without replication17 described in Section 4.3.2.

The increased cardinality reduces performance slightly for smaller worker counts, but performance

with 16 workers is the same for both 1 and 1000 hosts. These numbers are consistent with the results

from [HKK17], which reports a write throughput of 1.4 MSa/s for 4 writers, even though the use case

and hardware is different. It is worth noting that the InfluxDB benchmark requires eight or more

workers to saturate a single influxd instance. While the insertion rate of the HTA implementation is

≈ 9× higher than InfluxDB, a single-threaded data source in MetricQ can publish data at rates even

three times higher than the HTA storage can consume (compare Section 4.3.2).

17The referred configuration without replication also utilized only a single SSD.

104 4. A Scalable Infrastructure for Processing Power Measurement Data

100 101 102

Duration of Queried Time Interval (s)

101

102

103

104

Q
ue

ry
R

es
po

ns
e

La
te

nc
y

(m
s)

Query target = random single metric

100 101 102

Duration of Queried Time Interval (s)

Query target = six metrics

Query type

timeline (influx group-by)

single aggregate (influx)

timeline (influx raw)

timeline (HTA group-by)

single aggregate (HTA)

Figure 4.11: End-to-end query response latencies for InfluxDB and the HTA implementation. Both
axis use a logarithmic scale. All lines shows the 95 % confidence interval around the
mean as colored bands.

Query Performance of InfluxDB

To compare query latency, I used a similar setup as described in Section 4.3.5 with a benchmark

client built on the InfluxDB Python module. One advantage of InfluxDB is the compression of

data. The data set with 189 billion values required only 0.5 TiB disk space (2.9 B/Sa) as opposed

to 3.1 TiB (18.1 B/Sa) in the HTA storage. This high compression may be favored by the limited

number of unique values (4096) and perfectly equidistant and aligned timestamps of in the simulated

measurement. However, the six metrics are spread across 2794 files and directories, which required

increasing the number of allowed file handles for the database generation, even with only six data

series. In order to limit the overall experiment time, the queried time intervals are only measured up

to 100 s. For benchmarking InfluxDB, three query types were used:

1. A group-by timeline similar to the HTA timeline requests, which transparently return aggregated

intervals. The query requests min, max, and mean of each metric and groups the result such

that there are exactly 1000 aggregates (as opposed to at least 1000 aggregates with HTA).

2. A single aggregate requesting min, max, and mean of each metric over the entire queried interval.

This query is identical to the single aggregate for HTA requests.

3. A raw timeline that simply gets all measurement points for the requested interval.

4.3. Performance Evaluation 105

For comparison, the HTA results presented in Figure 4.9 are used. Figure 4.11 shows the end-to-end

query response latencies for different query types, query targets (random single metric and all six

metrics), and queried time intervals. The observed query latencies of InfluxDB range from 10 ms to

40 s, with large variation across the repetition of each configuration. In the fastest configuration, for

example, latencies range from 12.9 ms to 368 ms with a mean of 153 ms and a standard deviation

of 103 ms. Queries to InfluxDB that use any kind of aggregation are consistently and significantly

slower than requesting the full timeline. Requesting measurement data from all metrics is significantly

slower than querying a random single metric showing no clear benefit from the grouping of multiple

metrics in measurement points with shared timestamps.

Dataheap Metric Ingestion Rate

The published results in [KHN12] allow a basic approximate comparison with Dataheap (see also

Section 2.3.2), which also offers a scalable implementation supporting “millions of performance

counter updates each second”. The authors used dual-socket 6-core Intel Westmere-EP servers with

10 Gbit Ethernet. Their performance evaluation focuses on publishing metric values, similar to the

MetricQ discard benchmarks. Dataheap uses bulk transfers that contain values of multiple metrics at

one timestamp, similar to measurement points in InfluxDB. One single-threaded Dataheap source

can publish 0.5 MSa/s — compared to 60 MSa/s with MetricQ. The centralized Dataheap system is

saturated at 6 MSa/s with up to 120 client threads — two orders of magnitude less than 671 MSa/s

in the corresponding replicated MetricQ discard benchmark. Even accounting for the hardware

differences, there is a significant performance benefit of MetricQ. Persistent insertion performance of

Dataheap depends on the MySQL backend and has not been tested exhaustively.

BTrDB Insertion Performance

With its aggregated tree structure and the use case of micro-synchrophasors data, BTrDB [AC16]

has similarities to the HTA concept. For its Go implementation, an insertion rate of 53.35 MSa/s

was reported when using four primary nodes and 16 Ceph Object Store Daemons [AC16, Sec. 7,

Tab. 1]. Insertion for the BTrDB benchmark uses chunks containing 10000 records. The comparison

to MetricQ hta is not straightforward as functionality is distributed differently. Based on the used

hardware, it is closest to the configuration with 16 HTA instances using 16 SSDs on two nodes that

reached 263 MSa/s. There are too many differences in the hardware configuration to make a accurate

comparison, it can only be said that the performance is within the same order of magnitude. The

published BTrDB query latencies ([AC16, Sec. 6.3, Fig. 6]) show a similar pattern as the HTA results

from Figure 4.9. Statistical queries in BTrDB are similar to timeline queries to the HTA. The published

performance of queries to a large real-world data set ranges from 100 ms to 250 ms. While this is

slower and exhibits much more variance than the HTA benchmarks at <30 ms, the data set is larger,

and the storage back-end more layered. Thanks to the tree-based aggregation, BTrDB also answers

statistical queries over years worth of data efficiently.

106 4. A Scalable Infrastructure for Processing Power Measurement Data

4.3.7 Practical Usage of MetricQ for High-Resolution Measurements and HPC Monitoring

MetricQ is currently being used for a variety of measurement data at TU Dresden. The main focus is

on the energy measurement test systems (see Chapter 3), the HPC power measurements of taurus,

and data center monitoring. One virtual machine with 16 Intel Xeon Gold 6136 hardware threads,

32 GiB memory, and 500 GB disk space is exclusively running the RabbitMQ message broker. Most

agents are running on another virtual machine with the same hardware specification. This includes

the management agent, HTA storage agents, a Grafana endpoint, a WebSocket server, monitoring

consumers, and various transformers. Three NFS-mounted volumes with a total capacity total of

30 TB are used for the persistent storage. These NFS volumes use a transparent compression, which

achieves a data reduction of 22 %. Data sources are distributed among various measurement-specific

systems. A total of 38 agents are continuously connected to the message broker, i.e., 22 data sources,

4 transformers, 4 live consumers, 6 HTA storage agents, one historic consumer (Grafana), and the

management agent. Overall, the system manages ≈ 27 000 metrics, most of which are recorded

for long-term storage. For metrics that were present in the previous measurement infrastructure

Dataheap, collected data from up to ten years was imported into the HTA storage.

The energy measurement test systems publish measurements of four ZES LMG power analyzers. In

the current configuration, one LMG670 device provides 151 kSa/s for each of the 7 channels18. For

sustainable persistent storage, these high-resolution metrics are aggregated to 100 Sa/s. Further,

two LMG450 devices and one LMG95 device produce a total of 9 AC measurements at 20 Sa/s.

The HDEEM HPC power measurements on taurus publish 4464 metrics (three per node) at 1 Sa/s

each19. The remaining metrics include additional power measurements from PDUs, temperature

measurements for each taurus node, and a variety of measurements from building automation devices.

These metrics use sampling rates ranging from 1 Sa/s to daily updates.

The heterogeneous composition of this MetricQ instance, as well as the use of shared resources (virtual

machines, shared network, and shared storage) make it difficult to report repeatable and reproducible

performance numbers. Therefore, I used dedicated systems and a controllable workload for the

performance evaluation in the previous subsections. So far, there was no insurmountable performance

blockade when using MetricQ in this broad practical scenario. The Python consumer implementation

required performance tuning20 to enable the live-visualization use case presented in Section 5.1.1.

After the tuning, this consumer instance can sustainably process the incoming measurements —

further significant increases of metric data rates might require switching the implementation to C++

or parallelizing it. The HDEEM data source has the highest message publishing rate (4464 messages

per second) and is therefore split into three instances to avoid channel rate limiting. While the

LMG670 data source has the highest aggregated metric rate at ≈ 1 MSa/s and the highest network

traffic of ≈ 10 MB/s, it operates without any throttling or limitations due to the efficient chunking.

Overall MetricQ meets the requirements even in this complex and demanding scenario. I use this

MetricQ instance for the examples presented in Chapter 5 as well as some experiments in Chapter 3.

More details about that data-center aspects of this infrastructure are describe in [Ils+19].

18The seventh measurement channel was added after the tests described in Chapter 3.
19The high-resolution measurements of HDEEM at 1000 Sa/s and 100 Sa/s are not available for continuous collection.
20The uvloop library improves performance compared to the default Python event loop. Moreover, I contributed perfor-

mance improvements to the aiormq library (https://github.com/mosquito/aiormq/issues/37).

https://github.com/mosquito/aiormq/issues/37

4.4. Conclusion 107

4.4 Conclusion

In this chapter, I described MetricQ — a scalable infrastructure for processing high-resolution energy

measurement data. The concept behind MetricQ is based on a scalable message broker, which flexibly

connects measurement data sources and consumers. Further, I presented Hierarchical Timeline

Aggregation (HTA), a concept for persistent measurement data organization that exploits the properties

of time series metric data to enable fast aggregate queries over large data sets. The HTA concept

is backed by a file-based storage implementation which provides both efficient insertion and data

retrieval.

In an extensive performance evaluation, I demonstrated, that the MetricQ implementation overfulfills

the demanding performance requirements of both high-resolution power measurements and large-

scale HPC power monitoring. For both insertion and queries, my approach significantly out-performs

a prevalent state-of-the art time series database. The solution is practically used in a deployment

with a broad range of measurement data sources. Combined with the enhanced power measurements

of Chapter 3, this software infrastructure lays the foundation for the extensive analysis scenarios

described in the next chapter.

108 4. A Scalable Infrastructure for Processing Power Measurement Data

109

5 Energy Efficiency Analysis

In the previous chapters, I discussed advances to power measurement as well as a complementing

software infrastructure for collection, distribution, storage, and retrieval. To gain an actual scientific

insight for energy efficiency research, or to discover anomalies in operation, the measurement data

needs to be made accessible to a user. In the following, I will discuss specific ways to utilize power

measurement data, with a focus of data managed by MetricQ.

First, I discuss general approaches to leverage the data from the measurement infrastructure for various

analyses and interactive visualizations in Section 5.1. A particularly challenging aspect of creating

application power traces, the synchronization of fine-grained events with timestamps from different

clocks. Therefore, in Section 5.2, I present and evaluate a novel approach for time synchronization of

application power traces based on correlation sequences. Finally, in Section 5.3, I showcase several

practical use cases for the discussed measurements and the infrastructure implementation.

5.1 General Energy Efficiency Analysis Scenarios

The following discussed analysis scenarios are aligned with the requirements from Section 4.1.

This includes visualization of live data in Section 5.1.1 and interactive visualization of historic

measurements in Section 5.1.2. Both visualizations are especially important for the purpose of energy-

efficient operation. Energy efficiency research is particularly focused on application power tracing in

order to leverage many diverse sources of information. In Section 5.1.3, I cover the main concepts and

challenges for integrating high-resolution power measurements in application performance traces.

Further, I describe the technical interfaces that are used to leverage different data sources. The

graphical visualization of application power traces is discussed in Section 5.1.4.

5.1.1 Live Visualization of Power Measurements

A typical method for visualizing power measurements in the context of system monitoring is a

dashboard that gives an overview over the current state of the system. This can include live power

consumption measurement data. Such a dashboard is depicted in Figure 5.1. It shows the current

power consumption of the HDEEM partitions in taurus. The visualization uses the per-processor

measurements and is arranged by the physical topology (nodes, chassis, racks). Each of the 2592

measured values is color-coded in a heat map and updated once every second. This structured

overview allows to quickly locate patterns in the system utilization or anomalies in operation.

The visualization can further be enhanced with additional data. Power data from different sources

(e.g., PDU) can complement the more fine-grained values, providing a confirmation at different levels

in the power conversion. Other metric data, such as from the cooling infrastructure, has a tight

correlation with power consumption and can also be handled since MetricQ can be used for generic

110 5. Energy Efficiency Analysis

Figure 5.1: A heat map of the live power consumption of each processor in the racks (AHNN-CPU)
of the taurus HDEEM partitions updated at 1 Sa/s.

metric data. Further non-metric data, such as information about scheduled jobs, can provide even

more insight but needs to be collected from different interfaces.

Realizing this particular visualization with MetricQ involves additional software components: The

visualization itself is implemented in JavaScript and runs in a browser. The code for this website was

originally developed for Dataheap [KHN12], and adapted to MetricQ. A specific JavaScript library

takes care of subscribing to metrics and invoking the drawing functions. This library, however, does

not directly communicate with the infrastructure through AMQP. Communicating over a protocol such

as AMQP is not well supported for JavaScript running in browsers. Instead, a WebSocket server acts

as a bridge between the browser and the measurement data infrastructure. Within the infrastructure,

the WebSocket server implements a live consumer.

5.1.2 Visualization of Long-Term Measurements

The second important use case is the visualization of persistently recorded data, i.e., historic charts of

the power measurements. This can range from displaying measurements of a few seconds to several

years. In Section 4.3.5, I demonstrated, that the HTA storage concept and its implementation in

MetricQ is capable of answering aggregate queries over large data sets in real-time.

In order to achieve a versatile visualization without implementing a custom front-end from scratch, I

leverage Grafana (see also Section 2.3.2). At the client side, a Grafana data source implementation,

derived from the simple JSON data source1, makes historic data from MetricQ accessible to Grafana.

It uses a minimal protocol over HTTP with requests and answers encoded in JSON. On the other end,

a Python program implements an endpoint for this Grafana data source. It derives from the Python

MetricQ implementation for a historic consumer.

Figure 5.2 shows a chart created with Grafana containing four measurements from components of a

single system (ariel). The screenshot shows one month of measurements, but the time range of the

chart can be freely chosen and interactively zoomed into. Grafana allows to freely configure charts

from metrics recorded in MetricQ and also other data sources. Users can further select from the

possible aggregations (minimum, maximum, mean, and count) as well as a moving average function.

On one hand, the Grafana frontend enables powerful dashboards, giving an overview of commonly

needed metrics for both short term and long term trends. On the other hand, a user can quickly build

a custom combination of charts from all possible metrics and their aggregations for arbitrary time

intervals.

1https://github.com/grafana/simple-json-datasource

https://github.com/grafana/simple-json-datasource

5.1. General Energy Efficiency Analysis Scenarios 111

Figure 5.2: A dashboard with timeline charts of one month of power measurements on ariel in Grafana.
Each chart shows the minimum, average, and maximum values of an aggregated 100 Sa/s
measurement.

5.1.3 Integration in Application Performance Traces

The discussed visualizations for live and historic measurements focus exclusively on displaying

the power values along a shared time axis. For additional insight, it is important to combine the

information from power measurements with application and system performance measurements.

In particular, I focus on traces, which retain the full temporal information of both power measurements

and application/system events. Alternatively, the measurements and events can be combined on a

reduced level, e.g., attach the energy consumption to an application profile. Similarly, such information

can also be combined for a live visualization, e.g., displaying current executed job, CPU usage, and

power consumption (see Section 2.5.3).

In terms of application power tracing, I consider explicit experiments with a clear scope of time

and involved resources. In the following, I discuss measurements originating around application

events, but experiments involving system events can be handled likewise. During the experiment

— the execution of an application — events about the application are generated either through

instrumentation or sampling (see Section 2.5.1). These events are collected and recorded within a

measuring system that runs on the same system under test, possibly even in the same process.

Figure 5.3 shows how the general out-of-band post-mortem approach can be realized with MetricQ

(see also Section 2.5.3, Section 4.2). The queue is of central importance, as it buffers the measured

values during the experiment within RabbitMQ. This functionality is completely decoupled from the

interfaces, i.e., the measurement source implementation is agnostic to how the data it publishes is

used. During the experiment, the application monitoring framework only collects events from the

application and other information from the system under test. The correlation between these events

and the power measurements is done with respect to the shared time axis.

While monitoring tools strive to collect a broad range of metric data, it can be difficult to implement

the data collection using many different interfaces within the core of the monitoring software. A plugin

interface can leverage many different interfaces for metric data without creating strong dependencies

112 5. Energy Efficiency Analysis

System under Test

Application
Monitoring

Framework
Queue

Message

Broker

Power

Measurement

initialize

finalize

event

event

event

event

event

subscribe

finalize

power trace

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

publish

E
x

p
e

ri
m

e
n

t
d

u
ra

ti
o

n

Figure 5.3: A workflow for the post-mortem combination of application event traces and power
measurements within an experiment.

that can be difficult to maintain. Two publications that I co-authored [Sch+11; Sch+17a] described a

flexible plugin interface for VampirTrace and Score-P respectively. These interfaces allow users to

leverage various kinds of additional metrics by loading a shared library at runtime. The monitoring

tool lo2s, which offers performance measurements for both application and system events, supports

the same interface so that plugins can be used by multiple tools (see also Section 2.5.1).

For the HDEEM measurements, two ways of integration are available. The continuous monitoring

of average power at 1 Sa/s is published to MetricQ and is therefore available for application power

tracing in Score-P. The high-resolution measurements at 100 Sa/s to 1000 Sa/s, however, are not

available for continuous readouts with the current API. Instead, HDEEM provides a recording of

full-resolution measurements within the BMC for experiments up to eight hours. This interface

enables full-scale high-resolution application power traces with an additional plugin. Section 5.3.3

showcases an example use case for this approach.

For different power measurement interfaces, other approaches are still preferable. RAPL, for example,

is typically read locally on the system under test (see Section 2.2.4 and Section 3.6). Thus, an external

buffering for post-mortem integration is not applicable. Instead, it can be read either in regular

intervals or at application events. In all cases, no explicit measurement timestamp is available and

the local timestamp has to be used. This results in inaccuracies when converting energy to power as

discussed in Section 3.6.1.

5.1.4 Graphical Analysis of Application Power Traces

Score-P and lo2suse the same output format, OTF2, and can therefore use the same means for

further analysis and visualization. Vampir [Knü+08] can be used to interactively display OTF2 files.

While the main focus of Vampir is to display events of a parallel application trace in an interactive

timeline, it can also be used for system events. OTF2 and Vampir support arbitrary metric data on the

same time scale as the application events (see also Section 2.5.1).

5.1. General Energy Efficiency Analysis Scenarios 113

Figure 5.4: An example visualization of an application power trace with Vampir. The top shows the
menu, available charts, and full trace preview. The left side shows the master timeline (top)
with application events, performance radar (middle) heat map with per-core power values,
and counter data timeline (bottom) with system power measurements for a seven-second
time interval. The right side displays the function summary, a statistical profile for the
selected time interval.

Figure 5.4 shows an exemplary visualization of an application power trace from the NPB BT bench-

mark [VH03]. The three timeline charts on the left present application events and power measure-

ments in the selected time interval. Events from the parallel application, in this case color-coded

function samples, are shown in the master timeline (top left). The master timeline gives an overview

of the activity of the application both over time and threads. The counter data timeline (bottom left)

was originally used to display rates of performance monitoring counters, but it can be used to display

power measurements. For a concise visualization of separate measurements of multiple hardware

components, e.g., per-core or per-node in a multi-node application, the performance radar (middle

left) is used. The performance radar shows the multi-dimensional values as a color-coded heat map.

Note that the displayed per-core measurements are a specific feature of lo2s. The plugin interface

discussed in Section 5.1.3 only supports per thread, per process, per host, or unique metrics. Score-P

does not allow metric plugins to associate values with the hardware components within a compute

node.

With the support for arbitrary metrics and display of versatile events in various timeline displays,

Vampir facilitates a comprehensive visual analysis of application traces and system event traces

containing power measurements. Moreover, the scalable implementation can efficiently handle

high-resolution measurements.

114 5. Energy Efficiency Analysis

5.2 Correlating Power Measurements with Application Events

When analyzing power measurement traces in the context of application or system events, they are

typically correlated by a shared time axis. However, there are several factors that impede an accurate

correlation of the two, particularly for power measurements at high sampling rates. In the analog

domain, any filters, including low-pass filters inherent to the measurement domain or necessary

anti-aliasing filters, result in a delay between the power draw at the consumer and the measurement

signal. Digital filters can add even further delays. Additionally, there is often a delay between

the analog-to-digital conversion and taking the measurement timestamp that adds uncertainty to

the timestamp associated with a measurement sample. For example, the National Instruments data

acquisition API for reading a buffer of analog samples does not offer any timestamps2. In such a case,

the timestamps have to be reconstructed from additional clocks of the controlling systems.

The data acquisition system and system under test are typically separate and thus use separate clocks,

introducing another source of uncertainty in the temporal correlation between application / system

events and measured values. Those clocks are commonly synchronized using the network time

protocol (NTP). In local networks, NTP can offer a better accuracy than 100 µs [Mil06]— whether

that is sufficient or not depends on the sampling rate. For some network configurations, more precise

network time synchronization can be achieved, e.g., by using switches as NTP masters. GPS based

clocks are another option that require additional hardware.

In [Lib+16] and [Lib+18b], Libri et al. showed a detailed evaluation of synchronization mechanisms

in HPC systems with a focus on being able to correctly align monitoring data. For two synchronized

embedded monitoring nodes, the authors report an NTP accuracy of 17.5 µs and a precision of

8.4 µs. Leveraging the precise time protocol (PTP), they achieve an accuracy and precision of 16.1 ns

and 513.7 ns respectively (see [Lib+16]). On the compute nodes of the HPC cluster, they report

further improvement towards an accuracy of 2.6 µs and a precision below 2.7 µs with NTP and “sub-

microsecond” using PTP (see [Lib+18b]). The authors further validate the solution with a synthetic

benchmark that shows a good correlation between the recorded timestamp of an application state

transition and a power measurement recording. These results are very important for measurements

in large distributed systems. However, this approach cannot universally be applied, for instance

when using integrated power measurement devices that lack an option for network-based time

synchronization — like the LMG670 power analyzer. It also does not account for possible filter delays

and delayed timestamping. The high clock synchronization accuracy comes at a certain cost: With

NTP, the fastest possible polling interval of 8 s is used. PTP requires two daemons: One performs

the required network communication at 1 Hz, the other synchronizes the system clock with the

PTP Hardware Clock at 12 Hz. It was shown that the network traffic is negligible in terms of total

bandwidth, even for a large-scale system. The perturbation of regularly scheduled tasks, however,

may have an undesired impact, particularly for use cases that include idle phases.

Another consideration for synchronization is to use electrical signals that can be controlled from a

CPU. For instance, the serial port of a computing system could be used to carry a signal to a data

acquisition device. While the signal itself would be sufficiently fast for synchronization, preliminary

tests on the systems under test showed that writing a single byte to a serial port takes as much as 8 ms.

2As documented by the API function DAQmxReadAnalogF64
http://zone.ni.com/reference/en-XX/help/370471AE-01/daqmxcfunc/daqmxreadanalogf64/

http://zone.ni.com/reference/en-XX/help/370471AE-01/daqmxcfunc/daqmxreadanalogf64/

5.2. Correlating Power Measurements with Application Events 115

This is likely caused by buffering in the kernel. A high precision direct time synchronization would

require general-purpose input/output (GPIO) pins with minimal latency in a sub-microsecond range.

On the application level, that means the output must be triggered without going through the Linux

kernel. In [Lib+16], the authors demonstrated how this can be used to evaluate time synchronization

accuracy.

5.2.1 Challenges for Time Synchronization of Power Measurements

Measurements operating in the order of 1 Sa/s require little consideration in terms of synchronizing

timestamps as long as NTP is enabled in general. For the LMG450 measurements with readouts

at 20 Sa/s, the delay over serial connection is still insignificant, but a careful NTP configuration is

required. The HDEEM measurements operate at up to 1 kSa/s. In this configuration, the analog

and digital filters introduce a significant delay. This delay is corrected with static offsets of −5.6 ms

and −35 ms for the blade and VR measurements, respectively. These offsets are internally applied to

the timestamps within the HDEEM library. Therefore, different timestamps are provided for blade

and VR measurements in the API. Clock synchronization is ensured by local NTP servers running on

the admin nodes of taurus, which are closely connected to both the compute nodes (system under

test) and BMC hosts (measuring system). In-band measurements further use an HDEEM-specific

kernel module that allows to send a low-latency GPIO signal from the compute node to the BMC

upon starting and stopping measurements for more accurate clock synchronization (see [Ils+18c]).

With sampling rates up to 1.21 MSa/s, the measuring systems apollo, artemis, diana, and ariel pose

more stringent requirements for time synchronization. With the LMG670-based measurements on

ariel, the measurement timestamps are generated by the measurement device. A remote command

is used to set the system time on the device to a given timestamp [ZES16, Sec. 8.9.265]. In the

implementation of the measurement control software (MetricQ data source), this coarse-grained

synchronization is performed when establishing the connection to the measurement device. To limit

the drift of the clock on the measurement device, the data source is automatically restarted daily.

Many traces contain distinct patterns that can be recognized in both the system / application event

trace and the power trace. This allows a manual alignment, e.g., using a visual comparison session

in Vampir. For the measurements in apollo, artemis, and diana, which are all based on National

Instruments data acquisition, I designed an automatic time synchronization. The basic idea is to

artificially create a pattern in power consumption that can be automatically detected and used for

synchronization. The metric plugin generates a transition from idle to a high-power kernel at both

the begin and end of a measurement. A heuristic is then used to locate these transitions in the power

consumption signal and align the timestamps with those recorded during generation of the transitions.

Over the course of the measurements, timestamps are corrected using a linear interpolation between

the two synchronization points. The heuristic is very sensitive to noise in the power consumption

signal by overlapping activity. Thus, the synchronization requires exclusive access to all cores of

the system to limit the impact of noise. A transition from idle to active on all cores is used due to a

particularly high change in amplitude (power). In practice, this method is typically accurate in the

order of 50 µs when compared with manual alignment [Ils+15a]. However, this pattern can be easily

distorted by background tasks activating the processor during the idle phase, making the heuristic

less reliable.

116 5. Energy Efficiency Analysis

1.

Compute
aggregated
m-sequence

2.

Run
high-power
/ low-power
kernels on

the SuT

4.

Measure
correlation

signal
during
kernel

execution

6.
Oversample
correlation
signal with
fixed rate

8.

Compute
cross-

correlation

9.

Determine
maximum
correlation

offset

10.

Change
timestamps

based on
linear

interpolation
of the two

offsets

3.

Measure
power

consumption
during the
correlation

interval

5.

Subtract
average

power from
measurement

values

7.

Oversample
power

measurement
signal with
fixed rate

Influences

Figure 5.5: A workflow for automatic time synchronization of power measurements. The Steps 1 to 4
are performed both before and after the experiment. The Steps 5 to 8 are executed twice
for post-processing. Step 10 uses the two results of each invocation of Step 9.

5.2.2 Reliable Automatic Time Synchronization with Correlation Sequences

In the following, I present a novel approach for synchronizing power measurements and applica-

tion events based on correlation sequences and crosscorrelation. Such statistical techniques for

synchronizing signals are used for instance in wireless communication and radar applications. In

general, the approach involves the following steps: First, a signal is generated from a correlation

sequence. This sequence is characterized by a low auto-correlation for non-zero shifts. The correlation

signal is transmitted over a channel and then received again. I leverage the power consumption

signal itself as a unconventional channel from the system under test to the measuring system. A

crosscorrelation is then used to determine the time-shift between the transmitted and received power

signal. The mathematical principles of signal correlation and its application to established fields are

described in literature, e.g., [Sol05; Lük92]. Applying the principles to time synchronization of power

measurements, however, has certain specific aspects, which I discuss in the following. An overview of

the proposed workflow is shown in Figure 5.5.

5.2.3 Creating a Correlation Signal on a Power Measurement Channel

First of all, leveraging signal correlation for synchronizing power measurements requires a way to turn

a correlation sequence into a signal that can eventually be measured as the power consumption. Special

workloads with known distinct power consumption can be used to affect the power consumption

signal in a controlled matter. This technique to convert a binary sequence into a correlating power

consumption signal establishes an indirect and unusual communication channel.

Short pulses provide the sharpest autocorrelation — increasing the resolution at which the peak

can be determined under noise. However, as discussed in Section 3.5, the bandwidth of the power

measurement channel is limited. Thus, arbitrarily short pulses are not suitable as basic block for

the correlation signal. This limitation can be overcome by using a longer coded signal pattern.

The increased duration increases the transmitted signal energy and results in a sharp correlation

spike (see [Sol05, Sec. 12.1]). In addition, longer pulses are detectable with the limited bandwidth

of the power measurement channel.

5.2. Correlating Power Measurements with Application Events 117

A simple way to generate longer sequences with good auto-correlation properties is to use maximum

length sequences (m-sequences) [Lük92, Ch. 10]. In particular, I use binary m-sequences that

are generated using an irreducible polynomial in GF(2). A binary m-sequence generated using a

polynomial with the degree r, has a length of 2r − 1. The exponents of the polynomial define a

linear-feedback shift register that can efficiently compute the binary sequence [Lük92, Sec. 3.4.3]. In

general, there exist sequences with better autocorrelation properties. For instance Barker sequences

are defined to have un-normalized autocorrelation, which is bounded by 1 for all non-zero offsets.

However, such sequences are only known for lengths ≤ 13 [Sol05, Sec. 12.3], and are thus not

suitable for the described use case. Long m-sequences on the other hand, can be generated efficiently.

When creating the pattern by running the different kernels, it is difficult to precisely control the rate

at which the workload varies. On any non-real-time computer system it cannot be guaranteed to

run a kernel for an exact amount of time. In general, any workload with an influence on power

consumption could be used — e.g., disk accesses — in conjunction with a suitable measurement

channel. However, the low-power and high-power kernels presented in Section 3.4.1 achieve

particularly sharp transitions of CPU power consumption at a fine-grained time scale. Running these

workloads only on a single core provides the sharpest possible transitions with limited amplitude

changes. Multiple threads would increase the amplitude at the cost of ambiguity of timestamps and

possibly longer transitions. Therefore, I execute the low-power and high-power kernels in a single

thread, which is pinned to one logical CPU. The lower significance due to low amplitude changes is

compensated by increasing the length of the correlation sequence.

Ideally, there should be no measurable change of the measurement signal within the time intervals

corresponding to one value of the correlation sequence. Running control code between repetitions

of the same kernel could cause such changes. Thus, I aggregate the binary sequence by grouping

successive values to (value, count) pairs, e.g.:

1, 1, 1, 0, 1, 0, 0→ (1,3), (0,1), (1,1), (0,2) (5.1)

Rather than using the given time for each kernel invocation, a deadline timer is incremented for each

kernel invocation. This approach enforces an amortized constant rate, even if each individual kernel

does not achieve its expected duration perfectly. To further take the imperfect kernel execution

durations at an individual level into account, all transition times are recorded. This provides an

accurate actual transmitted signal for correlation in which −1 represents low-power and 1 the

high-power kernels.

As shown in Figure 5.6, a padding phase, in which the low-power kernel is executed, is added both

before and after the executing the actual correlation signal. The padding reduces the impact of noise

from the experiment itself, that could otherwise affect the power measurement signal within the

correlation interval. As long as the clock-offset is smaller than both the correlation interval and

padding duration, the power measurement signal within the correlation interval will overlap only

with the correlation and padding intervals. This concludes the Steps 1, 2, and 4 of the workflow

depicted in Figure 5.5.

118 5. Energy Efficiency Analysis

Padding Correlation Interval Padding

-1

+1

53 W

55 W

Power Measurement Signal

Transmission Channel

Time

1 1 1 0 1 0 0

Correlation Sequence

Correlation Signal

Figure 5.6: The relationship between the correlation sequence, correlation signal, and power mea-
surement signal during the correlation interval. Power values are given as an example.

5.2.4 Processing the Correlation Signal and Measured Power Values

On the receiver side of the channel, the power measurement is influenced by the invoked kernels

during the correlation interval as depicted in Figure 5.6. In the transmission channel, many effects

are applied to the correlation signal, some of which need special consideration. The theoretical

correlation signal is defined as:

s(n) ∈ {−1, 1}, n ∈ {0,1, ..., N − 1} (5.2)

Technically, this is a sequence since I discuss the signal in the digital domain. However, this sequence

is different than the initial m-sequence in that it is based on actual measured transition timestamps

and has a different sampling rate. For now, I assume common and uniform sampling rates and defer

the consideration of different sampling rates.

To this sequence, the time offset δ (in units of the sampling period) is applied — the value of δ is to

be determined3:

s′(n) = s(n−δ) (5.3)

Going to the power domain, the range of the signal changes by an offset and factor:

p(n) = as′(n) + b (5.4)

= as(n−δ) + b (5.5)

An inherent low-pass filter and noise further affect this signal (see also Section 3.5.1). The delay of

the filter is included in δ, but I make no further assumptions about filter and noise. Considering the

noise, it is important to retaining a high peak of the correlation such that it can be detected correctly.

In Section 5.2.6, I evaluate the characteristics of the peak for practical examples. Given that the

correlation sequence s was based on an m-sequence, it can be assumed that its auto-correlation ϕss(τ)

has a sharp peak at τ= 0.

3δ is assumed to be constant during the relatively short correlation interval.

5.2. Correlating Power Measurements with Application Events 119

Using the transformation rules for crosscorrelation from [Lük92, Tab. 2.3], the crosscorrelation of

the two simplified real-valued signals (correlation signal s and power measurement signal p) is the

following4:

ϕsp(τ) = aϕss′(τ) + b
N−1−τ
∑︂

n=0

s(n) (5.6)

ϕss′(τ) = ϕss(τ−δ) (5.7)

ϕsp(τ) = aϕss(τ−δ) + b
N−1−τ
∑︂

n=0

s(n) (5.8)

While the first summand in (5.8) contains the shift δ — which is to be determined — and is only

scaled by a, the second term introduces noise in the correlation signal. The partial sum over s(n) is

essentially a random walk. The average of p can be removed by applying an additional transformation:

p =
1
N

N−1
∑︂

m=0

p(m) (5.9)

p0(n) = p(n)− p (5.10)

Further, the mean of the correlation sequence, and consequently the correlation signal s is negligible

(1/N [Lük92, Sec. 10.7.1]). Thus, in the idealized case with s = 0, from (5.5) follows:

p = as+ b (5.11)

b = p (5.12)

Based on (5.8), the correlation using the transformed p0 is:

ϕsp0
(τ) = ϕsp(τ)− p

N−1−τ
∑︂

n=0

s(n) (5.13)

= aϕss(τ−δ) (5.14)

The additional noise is canceled out, there remains only the shifted and scaled initial autocorrelation.

Therefore, in Step 5 of Figure 5.5, the average is removed from the measured power consumption

trace. Utilizing the known autocorrelation peak of ϕss at 0, δ can be determined:

δ = arg max
τ

ϕsp0
(τ) (5.15)

In traditional applications for crosscorrelation, such a transformation is typically not necessary due to

the more symmetric sending and receiving of the signal. Practical results confirmed that removing

the mean from the power measurement signal increases the statistical significance of the correlation.

4The arbitrary impact from noise and filter is omitted from the formula, as I focus on the impact non-zero mean in the
power consumption signal.

120 5. Energy Efficiency Analysis

5.2.5 Common Oversampling of the Correlation Signals at Different Rates

Before applying the crosscorrelation, the sampling rates of both signals need to be equalized. Initially,

the recorded correlation signal and power measurement signal have different sampling intervals.

Since I use a generic interface to leverage various kinds of measurement devices, I cannot even assume

that the sampling rates of power measurements are constant over time.

First, the semantics of the time-discrete measurement points on a continuous time scale have to be

considered. The synthetic correlation signal has a well-defined continuous definition: The state (−1:

low-power, +1: high-power) is constant between the recorded transitions i.e., a rectangular waveform.

For the measured power values, a temporal validity from each measurement point to the previous

one is assumed. This is true for averaged power measurements that are timestamped with their last

measurement sample going into the average. For instantaneous samples, it would be more accurate to

apply a low-pass filter to the pulsed signal for re-sampling. However, since the time synchronization

does not attempt to achieve a precision of less than the sampling period for instantaneous power

samples, the given assumption is sufficiently accurate. Based on these assumptions the re-sampling

can be performed with simple generic code rather than using filters for sample rate conversion.

In Steps 6 and 7 of Figure 5.5, both the correlation signal and the transformed power measurement

signal are oversampled with the same fixed rate. Due to the lengthy time intervals required for the

kernels to influence the measured power consumption at significant amplitude, the low original

rate of the correlation sequence would present a significant restriction on the precision of the

resulting synchronization. In this use case of synchronizing power measurements, the configurable

oversampling rate allows a trade-off between possible precision of the synchronization and cost for

computing the crosscorrelation. For constant measurement sampling rates, it is also possible to

re-sample only the correlation signal at the timestamps of power measurement samples and keep the

power measurement signal as is. While this is true in the discussed example, the implementation

attempts to be more general by avoiding this assumption and thus oversampling both signals.

Determining the crosscorrelation from the given signals can be very computationally demanding. The

actual computation is more efficient in the frequency domain [Lük92, Sec. 2.2.1], and a fast Fourier

transform (FFT) can be used to transform the signals to and from the frequency domain.

Algorithm 1 describes the efficient approach for determining the offset using FFTs. It includes Steps

5 through 9 of Figure 5.5. When computing the correlation arrays, negative offsets are wrapping

around in a circular fashion. Thus, to avoid overlap, the sequences are extended with zeros to at least

twice the size minus one. The sizes of both arrays are equal due to the identical correlation interval

and oversampling rate. For the implementation, I use the FFTW (Fastest Fourier Transform in the

West) library5.

The experiment can be long enough, that the clock drift may significantly impact the time offset

during its duration. Therefore, the correlation signal is repeated before and after the experiment,

and a linear interpolation is used for timestamp correction in the final Step 10 of Figure 5.5.

5Available as open-source at http://www.fftw.org/

http://www.fftw.org/

5.2. Correlating Power Measurements with Application Events 121

Algorithm 1 Determining the time offset between the correlation signal (s) and the measured
power (p) given a common oversampling period (t) and the correlation interval (i)

1: function FINDOFFSET(s, p, t, i)
2: ss← SAMPLE(s, t, i)
3: ps← SAMPLE(p− p, t, i) ▷ remove average
4: N ← |ss| ▷ also equal to |ps|
5: Ne← 2⌈ld(2N−1)⌉ ▷ power of 2 size improves FFTW performance
6: se← EXTEND0(ss, Ne) ▷ pad by at least factor of 2 to avoid circular overlap
7: pe← EXTEND0(ps, Ne)
8: S← FFT(se)
9: P ← FFT(pe)

10: ϕ← IFFT(S∗ · P) ▷ where S∗ is the element-wise complex conjugate of S
11: γ← argmaxτϕ(τ) ▷ offset with maximum autocorrelation
12: if δ < N then
13: return δ · t
14: else
15: return (δ− Ne) · t ▷ circular index corresponds to negative offset
16: end if
17: end function

5.2.6 Evaluation of Correlation and Time Synchronization

This novel approach for time synchronization is used with the high-resolution measurements of

ariel. The synchronization kernels are pinned to core 0, and the CPU power consumption of the

processor package 0 is used. For the evaluation, a measurement sampling rate of 152 kSa/s is used.

All parameters of the time synchronization are configurable, the following settings have been used

for the evaluation: The correlation uses an m-sequence with N = 8192 and a time quantum of 1 ms

(a correlation interval of 8.2 s) as well as a padding of 2 s. The common oversampling period is 5 µs.

In the following, I discuss two synchronization scenarios:

1. The remainder of the system is in normal idle, i.e., there is only the normal background activity

during synchronization. This is the ideal case for synchronization.

2. A FIRESTARTER process is running in the background during the synchronization interval on all

cores (see also Section 3.4.1). This leads to a high background power consumption, masking the

impact of the correlation signal. Further, the operating system will switch between executing the

correlation kernels and FIRESTARTER on core 0. This noise has a strong impact on correlation

and would make the classical time synchronization with a heuristic impossible and a manual

synchronization very difficult. In addition, the scheduling makes it very difficult to execute the

correlation kernels precisely at the expected time intervals. Thus, this scenario reveals whether

the deadline timer approach is effective in maintaining good correlation properties. It also

shows whether the recording of actual transition timestamps produces a correct correlation

signal.

122 5. Energy Efficiency Analysis

(a) Idle - no background activity.

(b) FIRESTARTER running in background.

Figure 5.7: A comparison of the synthetic correlation signal (top) and the measured power consump-
tion (bottom) after applying the time correction. The displayed time intervals are short
parts of the total correlation intervals, each at the same point within the underlying
m-sequence. The different colors (red, black, blue) show the maximum, mean, and
minimum power respectively.

The two different scenarios are setup to affect synchronization before and after an experiment

respectively. Figure 5.7 shows the correlation signal and measured power for both scenarios with

applied time synchronization. While the correlation is clearly visible in the idle case (Figure 5.7a), it

is hardly possible to visually identify the correlation when FIRESTARTER is running (Figure 5.7b).

Further, the correlation signal in Figure 5.7b itself is faulty - it shows the same part of the underlying

m-sequence as Figure 5.7a but is missing some impulses. This is due to contention for CPU time

between the synchronization kernels and FIRESTARTER. The deadline timer ensures that the overall

sequence is not distorted even though locally some impulses are omitted and skewed.

The results of the crosscorrelation are shown in Figure 5.8. In both scenarios, the correlation spike is

well defined and significant — but it is clearly stronger in the idle case. When looking at the spike in

detail (Figure 5.8b), the linear slope around ±1 ms of the maximum is clearly visible. This corresponds

to the 1 ms time quantum used to generate the correlation signal. Reducing the time quantum would

result in a narrower spike [Sol05, Sec. 12.1], but at some point the amplitude would vanish due to

low-pass of the channel. Nevertheless, the well-defined peak — rather than a flat plateau — allows

to determine the offset at a more fine-grained resolution than the 1 ms time quantum. This shows

that the oversampling of the coarse-grained correlation signal does effectively improve precision.

5.2. Correlating Power Measurements with Application Events 123

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Correlation Offset (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
or

re
la

ti
on

(1
)

Noise = idle

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Correlation Offset (s)

Noise = FIRESTARTER

(a) Full range of offsets.

−2 −1 0 1 2

Offset from Maximum (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
or

re
la

ti
on

(1
)

Noise = idle

−2 −1 0 1 2

Offset from Maximum (ms)

Noise = FIRESTARTER

(b) Limited range of offsets around the detected peak.

Figure 5.8: A crosscorrelation between the recorded correlation signal and the measured power
consumption. The correlation is shown for no background activity (idle) and continuous
background activity (FIRESTARTER). The correlation amplitude is normalized with the
same factor for both signals.

124 5. Energy Efficiency Analysis

Quantifying the significance of the correlation is challenging due to the width of the peak. One metric

that is commonly used to evaluate the correlation quality is the factor F between main maximum at

γ and side maximum at τ ̸= γ defined as:

γ = argmax
τ

ϕ(τ) (5.16)

F = max
τ ̸=γ

ϕ(γ)
|ϕ(τ)|

(5.17)

However, this factor is meaningless in this use case, because there are similar values very close to the

maximum due to the oversampling. The merit factor suffers from the same limitation (see also [Lük92,

Sec. 4.1]). Therefore, I define a modified factor that excludes all the correlations ϕ within the time

quantum from the denominator. Let ε be the number of samples within the correlation time quantum,

i.e., ε= 200 for a time quantum of 1 ms and an oversampling period of 5 µs.

F ′ = max
∥τ−γ∥≥ε

ϕ(γ)
|ϕ(τ)|

(5.18)

The practical implementation of the condition ∥τ− γ∥ considers the circular properties within the

correlation array. For the discussed tests, the modified factor F ′ is 44.03 with idle and 6.16 with

FIRESTARTER, confirming the observation of Figure 5.8. Additional tests indicate that this factor

decreases when reducing the length of the m-sequences. For the FIRESTARTER scenario this eventually

becomes problematic and results are unreliable for N = 1024, while for idle the correlation remains

reliable. The implementation in the application power tracing plugin uses F ′ as an indicate as to

whether the synchronization was successful.

In the mentioned example, each crosscorrelation was performed for 1.6 million data points and the

execution took 1.3 s. This computational overhead adds to the 24 s overhead from two synchronization

intervals with padding. This overhead does not impose practical limitations for post-processing-base

application power tracing. However, executing the extensive synchronization patterns makes this

approach unsuitable for real-time analysis.

Figure 5.9 shows the temporal correlation between scheduled tasks and the power consumption trace

with corrected timestamps. The change in power consumption matches the transition of scheduled

tasks closely. However, the change in power consumption exhibits a slope of ≈ 150 µs. While the

transition of tasks lies within the transition of power measurements, it could be argued, that the

power measurement slope should begin at the task transition. By that argument, the synchronization

could be considered to have an error of ≈ 70 µs. Ultimately, the automatic offset detection using

correlation sequences provides a time synchronization within the precision of a power transition slope.

I demonstrated a correct synchronization with significant correlation even under the adverse influence

of FIRESTARTER — yielding a high confidence in the synchronization under imperfect conditions.

The proposed synchronization approach works pairwise between one measurement channel and a

single-node system under test. It can be combined with traditional network-based synchronization

techniques (e.g., [Lib+18b]) or message-ordering (e.g., [Bec+10]) to achieve a global correlation

between events and measurements in a distributed system.

5.3. Use Cases for Application Power Traces 125

Figure 5.9: A correlation of system events using the automatic time synchronization. The top panel
shows the scheduled tasks (brown is FIRESTARTER, blue is the monitoring process), the
bottom panel shows the power consumption.

5.3 Use Cases for Application Power Traces

The previous chapters and sections lay the foundations for collecting and processing high-resolution

power measurements and correlating them with application and system events. In the following, I

present three specific examples of how the resulting application power traces can be leveraged to

gain valuable insights. Each example has particularly challenging constraints that connect back to

the requirements for power measurements and their processing. Section 5.3.1 covers the analysis of

a complex power anomaly that depends on sophisticated system event monitoring. This particular

anomaly affects idle systems and thus requires a passive monitoring without any perturbation from

regular power measurements. In Section 5.3.2, I show how measurements can be used to understand

and model C-state transitions. Specifically the transition from an active to an idle state cannot be

observed directly due to the lack of an observable event. The power consumption trace, however,

reveals properties of these transitions — on the presumption of a measurement with a very high

temporal resolution. Finally, in Section 5.3.3, I demonstrate the scalable measurement capabilities of

HDEEM. To that end, I discuss an application power trace of a benchmark running on more than a

thousand nodes of a production HPC system.

5.3.1 Analyzing Complex Power Anomalies

One of the most important techniques for saving energy on computing systems are C-states (see also

Section 2.4.2). Contemporary processors offer a range of C-states that allow a trade-off between

wake-up latency and power consumption (see also [SMW14]). Whenever there are no active tasks

assigned to a logical CPU, the operating system may decide to enter a sleep state, e.g., using the

mwait instruction. The operating system selects the C-state that is to be entered and passes the

choice to the processor. On a system with multiple hardware threads per core, each core uses the

lowest (shallowest) C-state of all its hardware threads. In [Ils+18a], I described an anomaly called

Powernightmares. This anomaly was discovered on recent workstation and server systems running

the Linux kernel and caused excessive energy consumption of ∼ 10 % on affected systems [WI18].

126 5. Energy Efficiency Analysis

High-resolution energy measurements and their combination with sophisticated system monitor-

ing played a crucial role in discovering the issue, identifying its cause, and evaluating solutions.

Particularly, the energy measurements on diana, taurus, and ariel were used in the process.

Idle Power Management in Linux

Like most contemporary operating systems, Linux uses preemptive multitasking, i.e., a scheduling-

clock interrupts each logical CPU in regular intervals to run the task scheduler. Since these scheduling

interrupts cause wake-ups from C-states and thus increase the power consumption in idle, they can

be disabled when entering a C-state. This feature is called dyntick-idle, also referred to as nohz or

tickless and is the default mode of operation for Linux (see [McK]). Therefore, a logical CPU can

remain in idle mode continuously until the next interrupt from a timer or external source, reducing

the idle power consumption.

When going to idle, the targeted C-state is selected by the cpuidle governor in Linux. The choice

of a C-state presents a trade-off between a large reduction of power consumption (deep C-state)

and fast wake-up latency (shallow C-state). The actual way to enter idle is implemented in an

architecture-specific cpuidle driver. For the discussed systems, this is the microarchitecture-aware

intel_idle driver. It uses the mwait instruction, which passes the selected C-state as a hint to the

processor.

During the initial discovery of Powernightmares, around Linux version 4.10, the following two cpuidle

governors were available: The ladder governor increases or decreases the chosen C-state from the

consecutively numbered available states depending on whether the previous choice was deemed

correct. While this behavior is appropriate for tick-based kernels, it is problematic with systems

running in dyntick-idle [PLB07, Sec. 4.1]. In dyntick-idle, the governor needs to be able to select

the most appropriate C-state directly, skipping any intermediate C-states, because it may be in one

selected state for a long time.

Therefore, tickless Linux systems use the menu governor by default. The menu governor combines

several inputs to a heuristic that predicts the duration of an upcoming idle phase. In order to choose

the most efficient C-state, this prediction is compared to the target_residency of all available C-states.

This target_residency defines a break-even-point at which the additional energy for the transition

becomes less than the energy saved from reduced power in the idle state.

The prediction heuristic in the menu governor utilizes several sources of information. In principle, the

governor knows the next pending timer that will likely cause a wake-up on the CPU. This information,

however, may be incomplete or inaccurate. Thus, a correction factor based on the previous prediction

accuracy is applied. In addition, not all triggers for wake-ups can be known in advance, e.g., hardware

interrupts may occur unexpected. To account for that, the menu governor uses a simple recording of

the eight previous sleep durations to detect repeating intervals. From this list, up to two high values

can be filtered as outliers. If the variance among the remaining values is still too high, this predictor

is ignored. The overall prediction is the minimum of the next timer event and a heuristically detected

repeated interval. Further mechanisms in the menu governor attempt to limit the performance impact

for I/O intensive workloads and enforce a maximum latency requested by device drivers or the user.

5.3. Use Cases for Application Power Traces 127

Idle Power Anomalies

Powernightmares were first observed during energy efficiency research on the instrumented system

diana. Sporadically, the system power consumption would increase from the normal idle power

consumption of≈ 73 W to above 100 W during phases with no discernible activity. This was confirmed

by the fully external measurement to rule out a potential perturbation by the monitoring itself.

In [Ils+18a], I describe the initial investigation on diana as well as practical examples from taurus. For

this thesis, I revisit Powernightmares on the newer ariel system using the LMG 670-based power mea-

surements (see Section 3.1). Especially the automatic time synchronization discussed in Section 5.2

provides an accurate insight into the issue without the need for manual time alignment. Figure 5.10

shows the system power trace during a Powernightmare as measured on ariel. The trace combines

power values from the high-resolution, per-socket power measurements (LMG 670), AC power

measurements (LMG 450), as well as events from the operating system captured with lo2s(see Sec-

tion 2.5.1). Scheduling events provide the information on active tasks, while the power/cpu_idle
tracepoint events reveal which C-state was selected at what time and logical CPU by the operating

system. The collection of this information has only minimal impact on the idle system, there are no

additional regular wake-ups from measurement. This is achieved by measuring and recording power

values externally. Further, the system events are recorded in buffers by the kernel only when the CPU

is already active. For [Ils+18a], additional information from CPU residency counters was collected,

which implied sporadic activity by the monitoring system. While this information confirmed, that the

hardware actually uses the C-states selected by the operating system, it is not essential to illustrate

the issue.

Figure 5.10a reveals that the average power consumption on both sockets and the full system is

significantly increased for a duration of ≈ 6 s. The recorded C-state selections reveal the cause: A

single hardware thread remains in the C1 and later C1E core C-states for this interval rather than

using C6 like all other hardware threads. For the full experiment duration, there is no significant

activity scheduled on any of the logical CPUs — there are only rare and short wake-ups, which are

normal, even for an idle system. For the depicted long idle phases, anything other than the deepest

C-state (C6) is a poor choice for energy efficiency.

Figure 5.10b shows the first few milliseconds of this long high-power phase and reveals the scheduling

pattern that leads to this Powernightmare. During a time of only ≈ 2 ms, a set of tasks are repeatedly

scheduled on four different logical CPUs. This activity includes multiple kworker, ksoftirqd, and

the jbd2/data2-8 tasks. The latter is related to the Journaling Block Device (JBD), which provides

journaling for the ext4 root file system. It is conceivable that all shown activity is related to journaling,

but fully understanding the relationship between all involved processes would require an additional

investigation. In general, such a pattern of interaction between different tasks, including kernel

threads, is common and was shown to trigger Powernightmares under normal idle conditions. For

example, in [Ils+18a, Fig. 2], I analyze similar event sequences related to activity of the parallel file

system Lustre.

The reason why this activity pattern ends in an inefficient idle state goes back to the repeated idle

duration prediction heuristic of the menu governor. The governor, which runs separately on each

logical CPU, observes the repeated scheduling of certain tasks with very short gaps of idle in-between.

128 5. Energy Efficiency Analysis

(a) The full duration of the Powernightmare occurrence. The middle two processor package power charts show
maximum/average/minimum in red/black/blue.

(b) The trigger pattern that causes a Powernightmare. Since the chart only shows a 3 ms-interval, only high-
resolution per-socket power measurements are used. The top panel shows task scheduling on CPUs with
the same color-coding as the right panel, which shows the amount of time these tasks were scheduled
during the selected interval.

Figure 5.10: An observation of a Powernightmare with an external power measurement and non-
intrusive event tracing. Both Vampir screenshots show the power measurements as well
as the selected C-state (indicated by power/cpu_idle::state): C6 (red), C1E (green),
C1 (yellow), active CPU (dark blue)

5.3. Use Cases for Application Power Traces 129

From this observation, the governor wrongly predicts the upcoming idle duration to be short again.

Thus, a shallow C-state, i.e., C1 or C1E, that is suitable for the short predicted idle duration is chosen.

The original discussion in [Ils+18a] was based on dual-socket systems (diana and taurus) with Intel

Haswell processors. For these systems, the impact was clearly measurable, but negligible when

considering sustainable average power. I used a synthetic trigger workload to quantify the impact of

Powernightmares in a reproducible way. On newer systems, such as the dual-socket Intel Skylake

system diana, the impact on idle power consumption when running an unmodified Ubuntu installation

increased significantly by∼ 10 %. Due to the high variability over time and many factors that influence

an idle system, this number should only serve as a rough classification of magnitude. Independent

measurements in the Intel OTC Server Power Lab showed similar impact, and high variability, on

multi-socket systems based on Broadwell, Skylake, and Knights Landing processors [WI18].

Paradoxically, the impact of a Powernightmare becomes worse on systems that are tuned for a low

idle power consumption by reducing the rate of interrupts. The reason is that a governor is only able

to correct the wrong decision at a scheduling point. So less frequent wake-up interrupts also imply

longer phases of Powernightmares. However, even waking up after a longer period than expected

is not always followed by efficient deep sleep phases. As can be seen in Figure 5.10a, the affected

logical CPU actually only switches from C1 to C1E after a short activation — rather than going to the

deepest C-state C6 after the fist wake-up. The reason for this delayed change is that the first long idle

period can be removed as an outlier in the repeatable-interval-detection heuristic.

The impact of Powernightmares on sustained idle power consumption is characterized by two more

factors that explain the increased average power consumption on newer generation systems. On the

one hand, the increased number of hardware threads, and thus internal kernel tasks, make it statistical

more likely for a Powernightmare to occur. This effect is very difficult to quantify due to the high

variability. On the other hand, the impact of package C-states on overall system power consumption

has grown significantly from Sandy Bridge, over Haswell, to Skylake (server systems). For example,

the power consumption when all cores are in the deepest sleep state, allowing the system to go into a

low-power package C-state, decreased from 81 W to 70 W across the three generations. Contrary, the

power consumption with just a single core in the shallow C1E increased from 96 W to 122 W [WI18,

Part 2, Slide 5].

Preventing Inefficient Sleep States in Practice

In [Ils+18a], my co-authors and I proposed a fallback-timer mechanism to mitigate the impact of

Powernightmares on average idle power consumption. Whenever the next known timer event is much

farther in the future than the heuristically predicted idle time, a 10 ms-timer is set. If the heuristic was

correct, the CPU wakes up before the timer and the timer is canceled leaving only the overhead from

setting and canceling the timer. If the heuristic was wrong, the CPU wakes up from the timer and is

allowed to enter a deep sleep state, ignoring the current residency history. This way, only a short time

is spent in the shallow sleep state, reducing the energy impact from a potential Powernightmare.

To show the effectiveness of this mitigation, I used a synthetic trigger workload. This workload wakes

up the processor eight times in 10 µs intervals before sleeping for 10 s. While this workload spends

> 99 % of time in idle, it increases the power consumption of diana from 73 W to 119 W with affected

kernels. Figure 5.11 plots a density distribution of power consumption samples collected over 20 min.

130 5. Energy Efficiency Analysis

Normal Idle Trigger Workload

80

100

120

140

Fu
ll

Sy
st

em
Po

w
er

(W
)

Unmodified Kernel
Fallback Timer
nohz=off

Figure 5.11: A violin-plot of the full-system power consumption of diana for different configura-
tions of workloads and mitigation strategies. The unmodified kernel is 4.11.0-rc8
(8b5d11e) (adapted from [Ils+18a]).

In normal idle, with just the default daemons and tasks running, the impact of Powernightmares on

the unmodified kernel can be seen as a small spike for power consumptions around 115 W. With the

trigger workload, the entire distribution of power samples is shifted. The plot also shows that the

fallback timer effectively mitigates the impact of Powernightmares in both normal idle and with the

trigger workload.

An alternative mitigation could be the nohz=off kernel configuration. In this configuration, the

scheduling tick timer is not deactivated during idle phases. Due to this regular timer at 4 ms intervals,

Powernightmares have no significant impact. However, as shown in Figure 5.11, the idle power

consumption is increased to 78.5 W — for both normal idle and the trigger workload. We discussed

other approaches to address the problem in [Ils+18a, Sec. IV-A], but they have distinct disadvantages.

In the context of the original publication, I started a discussion with the Linux kernel developer

community. With the increased impact on later hardware generations, the topic received more

attention. Eventually, a fix was implemented that combines the ideas of a fallback timer and nohz=off:

In an interaction with the scheduling subsystem, the existing scheduling tick timer functions as a

fallback timer. Instead of always disabling the scheduling tick timer upon entering idle (dyntick-

idle mode) or keeping it always enabled (nohz=off), it is now is kept enabled conditionally. This

solution is more intrusive to the software structure than a dedicated fallback timer — it required

significant changes across different kernel subsystems. However, the implementation does not only

avoid additional timers, it also saves the latency from disabling the scheduling timer when it is not

necessary to do so. This can even improve performance on certain I/O intensive workloads that

exhibit regular short idle durations.

Using the sophisticated measurements on ariel, I evaluated several iterations of the patch-set developed

by the Intel kernel developer Rafael J. Wysocki. The resulting system power traces repeatedly provided

feedback for the development to ensure the patch fulfills its goal without negative side effects6.

6For examples of feedback based on system power traces, see https://lkml.org/lkml/2018/3/20/238, https:
//lkml.org/lkml/2018/3/21/641, and https://lkml.org/lkml/2018/4/10/604.

https://lkml.org/lkml/2018/3/20/238
https://lkml.org/lkml/2018/3/21/641
https://lkml.org/lkml/2018/3/21/641
https://lkml.org/lkml/2018/4/10/604

5.3. Use Cases for Application Power Traces 131

Eventually, patch set was included in the Linux release 4.17. More recently, Wysocki developed a

new idle governor for tickless systems — the timer events oriented (TEO) governor [Ryb18]. As the

name suggests, this governor focuses on leveraging timer events, but still uses a pattern detection.

The discovery of Powernightmares and the path to a solution highlight the significance of sophisticated

energy measurements. Now, as a traceable result of this research, a large number of servers worldwide

directly benefit by a reduced energy consumption. This use case also shows that power measurements

provide the biggest insight when combined with specific software measurements — in this case specific

fine-grained operating system events. This combination yields a unique perception of a complex and

impactful interaction between software, the operating system, and hardware. The careful design of

the measurement configuration allows an observation without significant perturbation, even of idle

systems. Moreover, an accurate and comprehensive energy measurement enables a strong validation

of improvements.

5.3.2 Quantifying C-State Transitions

As demonstrated in the previous section, C-states are one of the most important techniques for energy

efficiency. In order to exploit them optimally, their characteristics must be well-understood. To model

C-states, the power consumption in a state as well as the latency of a transition are of particular

interest. A value for the worst-case wake-up latency is exposed to the operating system via ACPI

table entries. However, it has been demonstrated, that the values documented in ACPI tables can

differ significantly from practical measurements [SMW14; Hac+15; Sch+19]. These measurement

results also show that wake-up latencies depend not only on the core C-state, but also package C-state,

the location of the core initiating the wake-up, and sometimes also the core frequency. The power

consumption within a state can be determined with an low-resolution accurate power measurement.

However, the correct measurement domain needs to be considered and the influencing factors (e.g.,

package C-states) need to be identified and controlled.

While previous publications only evaluate the time that it takes to leave an idle state, I described

a methodology to quantify the time and energy for entering an idle state in [Ils+18b]. Utilizing

the high-resolution power measurements of diana, it became possible to closely observe the power

consumption during a transition to a deep sleep state. Thus, a detailed model for C-states can be built

that includes quantitative information of the time it takes before a processor package reaches a stable

sleep power. This is a practical definition of entering a C-state — it does not necessarily coincide with

all internal state changes of the processor.

For this thesis, I revisit the analysis of C-state transitions on the more recent ariel system (see

Section 3.1). Figure 5.12 visualizes transitions from a deep sleep state (all cores in C6) to active

and deep sleep again. This pattern is created by a synthetic workload that iterates over a small

computational kernel, performs an OpenMP barrier synchronization, and a sleep phase of 250 ms.

The workload is configured to modify a data set of 2 MiB in order to fill the caches (1 MiB L2 and

1.375 MiB L3 per core). During the experiments, the core frequency is set to the nominal value of

3 GHz by using userspace governor. Figure 5.12a shows two distinct peaks for all four attached power

domains on processors and DRAM: The first peak correlates with the core activity with a duration

of ≈ 440 µs as reported by the operating system. The second peak occurs right before the power

consumption returns to stable low-power idle for all power domains. Between the peaks is a phase of

132 5. Energy Efficiency Analysis

(a) All cores of the two processor packages briefly wake up from continuous C6.

(b) All cores of the first processor package (socket 0) briefly wake up from continuous C6.

Figure 5.12: A trace of power consumption during C-state transitions. During the active phase, all
active cores modify a 2 MiB data set. The top four panels of each figure show the power
consumption per processor package and its associated memory. The bottom panel of each
figure shows the active C-state on each hardware thread as requested by the operating
system: C6 (red), active CPU (dark blue).

5.3. Use Cases for Application Power Traces 133

≈ 900 µs of medium power consumption. Notably, the power consumption of each processor package

is mostly around 40 W, which is less than the power consumption if all cores are continuously in C1E

state7, the second lowest core C-state available on the system. A conceivable explanation is that that

all cores quickly enter the target state C6, but the package enters its PC6 with a certain delay. The

peak at the end may indicate a cache flush. Without modifying the memory during the wake-up phase,

no such peak can be observed. The trace also contains a recording of C-state residency counters.

However, as their collection requires explicit reads, it is done in much more coarse-grained intervals.

According to these residency counters, the processor packages spend a noticeable amount of time

in package-C2 (≈ 2.3 % of ref-cycles). This could explain a part of the low-power phase during the

transition into the C-state, but the quantitative observation is not entirely conclusive.

It is noteworthy, that the Intel idle driver in Linux uses a target residency value of only 600 µs while

the measurements show that it takes longer to reach a stable low-power consumption. However, there

is no indication that the long time to settle the power consumption has a negative impact on wake-up

latency. Due to the relatively low power plateau during the transition, it may still be beneficial for

energy efficiency to chose C6 for sleep phases of < 1 ms.

Figure 5.12b shows a similar C-state transition, but with only one processor package being activated.

Overall the sequence is similar for the activated package. The power consumption of the package

that remains inactive is increased at a relatively stable intermediate level during both the activity and

transition of the active package. This increase can be explained by a less efficient package C-state

that is required to maintain cache coherence.

An accurate quantitative model would require a more sophisticated analysis with a significant number

of samples rather than the visual evaluation of the two example transitions. It is also important to

consider the specific conditions of transitions: e.g., which state is entered, what is the state of caches,

how many cores are active, and what are the states of the non-participating cores. Further, the core

and uncore frequencies do have an impact of the power consumption at the more shallow C-states.

Therefore, further investigation should isolate their impact on power consumption during a C-state

transition. It is also conceivable that the hardware uses its own prediction to delay when a C-state

becomes effective. It is briefly documented that Intel processors may use a “delayed C state algorithm”

that can “reject [...] deep sleep states” [Int14a, p. 121]. Thus, for building a quantitative model,

the specific use case has to be considered when carefully choosing the factors and conditions in the

experiment.

Similar measurements on the Haswell-EP system diana showed a transition pattern with a duration

of ≈ 230 µs [Ils+18b]. However, there is a difference in the measurement configuration: For the

measurements on diana one core was constantly active. The results from comparable measurements

on the Skylake-SP system ariel were less consistent and are subject of future investigation. Thus, the

two architectures cannot be directly compared using the presented results.

Investigating C-state transitions shows, how high-resolution power measurements can yield conceptual

and quantitative information about processes that are otherwise impossible to observe. As with the

previous use case, it is crucial, that the measurement does not impose any perturbation. The collection

of operating system events and their accurate temporal correlation lays the foundation for a detailed

visual analysis.

7In C1E at nominal frequency, the two packages consume ≈ 53 W and ≈58 W respectively

134 5. Energy Efficiency Analysis

5.3.3 Measuring the Dynamic Power Consumption of HPC Applications

The previous two sections focused on particularly high-resolution node-level measurements in combi-

nation with fine-grained system event logging. To demonstrate power measurements in the context

of large-scale HPC applications, I used Score-P with the HDEEM metric plugin. Note that HDEEM

buffers its high-resolution power measurements within the BMC for the duration of an experiment.

Therefore, contrary to the previous two sections, MetricQ was not utilized in the following use case. I

first presented and discussed the following application power traces together with my co-authors

in [Ils+18c].

This use-case focuses on the Block tri-diagonal solver (BT) pseudo application from the NAS Parallel

Benchmarks (NPB) [VH03]. Specifically, I used the hybrid (multi-zone) MPI /OpenMP implementation

in Version 3.3. The traces were created with the problem class F in an execution on 1024 nodes with

24 threads each. Executing this configuration took 677 s and resulted in a trace with a total size of

360 GiB.

Figure 5.13 shows different views of this trace in Vampir. The overall picture of application events

and node-level power measurements is shown in Figure 5.13a. Due to the large amount of data and

fixed number of pixels, this view provides limited insight. While the function summary reveals where

most time is spent overall, the timeline charts show some repeated patterns, but the patterns are too

noisy and fine-granular for this presentation.

The utility of such large traces, which retain all detailed information, arises from being able to focus

on smaller portions of the execution. For example, Figure 5.13b depicts the time interval of one

MPI iteration in the application. In this magnification, more patterns within one iteration can be

identified. It reveals a correlation between the executed function and the power consumption. Most

significantly, the power consumption during the MPI communication phase (red) is lower than during

the computation of the solver.

Figure 5.13c looks even closer — at one inner iteration on one node. Further, the power measurement

of DRAM channels as well as a recording of L3 cache misses is included. In this view, the characteristics

of each function in terms of power consumption can be identified. During the rhs.f parallel region

(brown), the overall power consumption as well as the DRAM power is at its maximum. This region

also exhibits the highest L3 cache misses. Moreover, the region is executed multiple times separated

by short synchronizations. However, the specific characteristics of this region differ between the

invocations. The three solve functions each exhibit a different power consumption that remains

constant within the function execution. Only when some threads complete the computation and enter

a synchronization, the power consumption of the compute node decreases.

This exploratory visualization confirms that even complex and dynamic relationships between applica-

tion regions and power consumption, as well as hardware performance counters, can be exposed with

large-scale application power traces. Particularly Figure 5.13c shows function-specific details within

a time interval of only ≈ 500 ms — emphasizing the need for high-resolution power measurements

well beyond 1 Sa/s, even for large-scale applications.

5.3. Use Cases for Application Power Traces 135

(a) A full view of the full application execution. Top: executed functions, bottom: compute node power
consumption heat map, right: accumulated exclusive time spent in different functions.

(b) A visualization of one MPI iteration. Top: executed functions, bottom: compute node power consumption
heat map, right: accumulated exclusive time spent in different functions.

(c) A magnification of one inner iteration of one compute node. The charts show (top to bottom) the executed
functions on each thread, total compute node power consumption, DRAM power consumption, and sum of
L3 cache misses on all application threads.

Figure 5.13: An application power trace of NPB-BT-MZ with HDEEM measurements of 1024 taurus
nodes. The top panel in each chart shows which thread executes which function at any
given time. Dominating functions are z_solve (yellow), y_solve (green), x_solve
(dark blue), a parallel region in rhs.f (brown), OpenMP synchronization (cyan), and
MPI (red) (adapted from [Ils+18c]).

136 5. Energy Efficiency Analysis

5.4 Conclusion

In this chapter, I described how the sophisticated measurements of Chapter 3 can be leveraged

to gain elaborate insight into energy efficiency aspects of computing systems. The infrastructure

portrayed in Chapter 4 plays a vital role in making the measurement data accessible for different

analysis scenarios. Both live visualization of power measurements and interactive exploration of

long-term measurement collections are invaluable for energy-efficient operation of HPC systems.

The generation and visualization of application power traces, which combine information from the

application execution, system events, and power measurements, are particularly important for energy

efficiency research. To overcome the challenge of different clocks on the measuring system and

system under test, I devised a novel approach for time-synchronization of power measurements. This

approach utilizes the power consumption of the system under test as a hidden channel to transmit a

carefully crafted correlation signal and apply crosscorrelation to determine the temporal offset. Its

implementation provides automatic time synchronization for application power traces and is highly

resilient to noise.

Equipped with those building blocks, I discussed challenging use cases for application power traces:

Power anomalies on idle systems are particularly hard to observe, as they are invalidated by intrusive

measuring systems. Notwithstanding this challenge, the low-perturbation post-mortem application

power traces yielded important insight into the intricate interaction between software, operating

system, and hardware. I discussed how this analysis eventually lead to a substantial improvement in

the official Linux release — saving 10 % of idle energy on contemporary server systems. Further, I

laid out how the high-resolution measurements magnify details of C-state transitions lasting only

around a microsecond. Finally, I demonstrated the scalable HDEEM measurements on the basis of a

parallel benchmark running on more than a thousand nodes of a petascale HPC system.

Beyond the scope of this thesis, the READEX project uses HDEEM to control and verify automatic

energy efficiency tuning [Sch+17b]. Moreover, my co-authors and I used the measurement system

of artemis to determine the most energy efficient configurations of data processing algorithms in

[Göt+14a] and different database queries in [Göt+14b]. The results of this work confirm that the

most energy-efficient configuration differs even among similar workloads. This finding emphasizes

once more that detailed energy measurements are essential for optimizing energy efficiency.

137

6 Summary and Outlook

This thesis was motivated by the growing importance of energy consumption for the efficient operation

of High Performance Computing systems. Contemporary energy measurements for such systems,

however, do not provide the high temporal resolution necessary to fully analyze the dynamic impact

of applications and the operating system on power consumption. Moreover, the high data rates

of scalable high-resolution energy measurements exceed the capabilities of existing solutions for

managing and storing measured values. I addressed these challenges by providing improvements to

energy measurement, measurement data processing, and energy efficiency analysis.

High-Resolution Energy Measurement

First, I discussed various measurement techniques, with a focus on improving the temporal resolution

beyond state of the art. I described several measurement setups that leverage custom-built sensors and

sophisticated power analyzers with sampling rates up to 1 MSa/s. Equipped with such high sampling

rates, I analyzed the shortest possible variations in power consumption at different instrumentation

points. At the common 12 V power input, workload changes as short as ≈ 140 µs can be observed in

the power consumption signal with the full amplitude change. I confirmed this visual observation

of timeline charts by analyzing the power spectral density of the measurement signal for a novel

synthetic binary white noise generator. Measurements at the voltage regulators can resolve even

shorter workload changes down to ≈ 12 µs.

Moreover, I evaluated the accuracy of the presented measurement approaches. Of the custom-build

measurements, shunt-based 12 V DC instrumentation showed the best error of less than 1.7 % or

2.3 W absolute. In contrast, measurements using the voltage regulators themselves show significant

workload-specific discrepancies of up to 6.3 % or 18 W and even higher in idle configurations.

I further performed a rigorous evaluation of the integrated HPC measuring system HDEEM, which

revealed issues with calibration as well as aliasing due to insufficient interfaces. This actionable

feedback resulted in improvements in the final version that is deployed in a 1456-node production

HPC system.

Additionally, I discussed and evaluated energy counters provided by processors themselves as an

alternative to dedicated measurements. While Intel’s RAPL initially suffered from significant workload-

specific errors, the contemporary implementations provide consistent results. However, it is not

feasible to verify the absolute calibration due to differences in the measurement domain. Since RAPL

does not provide total power consumption on server systems, it cannot be used for system-level

energy efficiency analysis.

138 6. Summary and Outlook

Scalable Processing of Measurement Data

The second main contribution of this thesis is the design of a scalable infrastructure for processing

high-resolution energy measurement data. In this design, I leverage a message broker to connect

decoupled agents that produce and consume measurement data. The design of the infrastructure

enables the handling of measurement data at very high sampling rates from a large number of sensors.

With a series of benchmarks, I demonstrated that the implementation reaches end-to-end processing

rates of more than 500 MSa/s with a single message broker node and 16 instances of data sources

and live metric consumers each. This result exceeds the demanding performance requirements arising

from the aforementioned high-resolution measuring systems.

The measurement infrastructure also includes an efficient time series database that I explicitly

designed for high-resolution measurements. A novel concept behind this database — Hierarchical

Timeline Aggregation — facilitates a multiresolution data storage for efficient and accurate queries

over arbitrary time intervals. The corresponding implementation leverages an efficient flat-file storage

scheme and achieved an insertion rate of 21 MSa/s with a single database instance. I further used

benchmarks to demonstrate that the database can answer aggregate timeline queries over 189 billion

data points with a maximum end-to-end latency of 30 ms regardless of the requested time interval.

Moreover, I described a productive deployment of the measurement infrastructure that is used for a

petascale HPC data center

Energy Efficiency Analysis

Finally, I discussed a range of general scenarios for energy efficiency analysis: live dashboards, historic

charts, as well as application power traces and their visualization. Moreover, I addressed the challenge

of correlating power measurements with application and system traces. At the short timescales of

the described high-resolution measuring systems, conventional network clock synchronization is not

sufficient. Therefore I devised a novel workflow for timestamp synchronization between out-of-band

power measurements and in-band application monitoring. This workflow uses a carefully crafted

synthetic workload to send a synchronization signal through the power measurement as a hidden

channel and then applies cross correlation to recover the timestamp offset between the measuring

system and the system under test. I demonstrated that this approach to synchronization is especially

resilient to adverse influences from background activity.

I then presented three practical use cases that leverage the correlation of energy measurements

with application/system monitoring. In one of the use cases, I analyzed a power anomaly in the

interaction between the operating system and hardware during idle phases. The high resolution

of power measurements and precise attribution to operating system events provided the necessary

insight to understand the triggers and underlying causes of this anomaly. Ultimately, this discovery

led to an improvement in the Linux kernel, which saves ∼ 10 % of idle energy on server systems.

This use case emphasizes how the presented combination of sophisticated energy measurements, a

capable processing infrastructure, and analysis techniques can lead to valuable insights and advances

in energy efficiency.

139

Outlook

Energy efficiency will remain an important topic for High Performance Computing systems — po-

tentially with an even stronger link to performance — perpetuating the role of sophisticated energy

measurements. While Section 3.5 revealed the limits of temporal granularity when measuring com-

puting power, it also presents an opportunity to precisely tailor measurement solutions with the

best possible temporal resolution at a reduced cost. This can help towards ubiquitously available

high-quality energy measurements.

The discussed HDEEM solution for scalable energy measurement of HPC systems supports a post-

mortem data collection at 1 kSa/s. Continuous data recording with HDEEM is only possible at

lower resolutions. Since the results presented in Section 4.3 confirm that it is feasible to process

measurement data at higher readout rates at scale, the next step is continuous high-resolution power

monitoring for HPC systems. A similar trend can be observed with the DiG HPC power measurements,

in which embedded measuring controllers publish measurement data at 1 kSa/s to a message broker,

albeit not yet at the highest possible resolution [Bor+18; LBB18].

The described metric processing infrastructure MetricQ performs very well for high-resolution data

as it allows efficient handling of multiple data points of one metric in a single message. To further

increase the scalability regarding the cardinality, it is also possible to transfer measured values from

multiple metrics in one message. This approach, however, breaks the strict one-to-one mapping of

metrics to routing keys and therefore requires a formal metric grouping scheme. It is also possible

to extend metric grouping to the HTA database to benefit queries referring to groups of metrics. By

sharing the timestamps across all metrics of a group, the compression during transfer and storage

can be improved, at the cost of more restrictive grouping. Moreover, the HTA implementation can be

extended to support additional statistical measures, e.g., the standard deviation.

The use cases discussed in Section 5.3 present many starting points for further energy efficiency

analysis. In particular, the C-state characteristics obtained in Section 5.3.2 could be statistically

quantified and used to build detailed models. These models can then be used to select more efficient

C-states in workloads that frequently alternate between idle and active phases.

By integrating energy measurements as an ingrained part of the performance analysis and optimization

workflow, the full potential of scalable energy measurements of HPC applications will be unlocked.

The elimination of harmful power anomalies discussed in Section 5.3.1 serves as an example of

how improving energy measurements can advance energy efficiency research and ultimately lead to

optimizations that reduce the energy consumption of globally deployed computing systems.

140 6. Summary and Outlook

141

A Bibliography

[AA02] Stan W. Amos and Roger S. Amos. Newnes Dictionary of Electronics. Elsevier Science,
2002. ISBN: 9780080524054.

[AC16] Michael P. Andersen and David E. Culler. “BTrDB: Optimizing Storage System Design
for Timeseries Processing.” In: 14th USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA: USENIX Association, 2016, pp. 39–52. ISBN: 978-1-931971-
28-7. URL: https://www.usenix.org/conference/fast16/technical-sessions/
presentation/andersen (visited on Feb. 4, 2020).

[Ach+99] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. “The
Aqua Approximate Query Answering System.” In: Proceedings of the 1999 ACM SIGMOD
international conference on Management of data - SIGMOD ’99. ACM Press, 1999. DOI:
10.1145/304182.304581.

[Adh+09] Laksono Adhianto, S. Banerjee, Mike W. Fagan, Mark W. Krentel, G. Marin, John Mellor-
Crummey, and Nathan R. Tallent. “HPCToolkit: Tools for performance analysis of op-
timized parallel programs.” In: Concurrency and Computation: Practice and Experience
(2009). DOI: 10.1002/cpe.1553.

[Adv13] Advanced Micro Devices. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors. rev. 3.14. 2013. URL: https://support.amd.com/
TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf (visited on July 10, 2018).

[Age+14] Anthony Agelastos et al. “The Lightweight Distributed Metric Service: A Scalable Infras-
tructure for Continuous Monitoring of Large Scale Computing Systems and Applications.”
In: SC14: International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, Nov. 2014. DOI: 10.1109/sc.2014.18.

[Alm+18] Francisco Almeida et al. “Energy Monitoring as an Essential Building Block Towards
Sustainable Ultrascale Systems.” In: Sustainable Computing: Informatics and Systems 17
(2018), pp. 27–42. ISSN: 2210-5379. DOI: 10.1016/j.suscom.2017.10.013.

[Auw+14] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay Hammer, Herbert
Huber, Raj Panda, Francois Thomas, and Torsten Wilde. “A Case Study of Energy Aware
Scheduling on SuperMUC.” In: Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 394–409. DOI: 10.1007/978-3-319-07518-1_25.

[Bac+08] Klaus Backhaus, Bernd Erichson, Wulff Plinke, and Rolf Weiber. Multivariate Anal-
ysemethoden. Eine anwendungsorientierte Einführung. (Springer-Lehrbuch) (German
Edition). Springer, 2008. ISBN: 978-3-540-85044-1.

[Bat+14] Natalie Bates, Girish Ghatikar, Ghaleb Abdulla, Gregory A. Koenig, Sridutt Bhalachandra,
Mehdi Sheikhalishahi, Tapasya Patki, Barry Rountree, and Stephen Poole. “Electrical
Grid and Supercomputing Centers: An Investigative Analysis of Emerging Opportunities
and Challenges.” In: Informatik-Spektrum 38.2 (Dec. 2014), pp. 111–127. DOI: 10.
1007/s00287-014-0850-0.

[Bau+19] Elizabeth Bautista, Melissa Romanus, Thomas Davis, Cary Whitney, and Theodore
Kubaska. Collecting, Monitoring, and Analyzing Facility and Systems Data at the National
Energy Research Scientific Computing Center. 2019. DOI: 10.1145/3339186.3339213.

https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://doi.org/10.1145/304182.304581
https://doi.org/10.1002/cpe.1553
https://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://doi.org/10.1109/sc.2014.18
https://doi.org/10.1016/j.suscom.2017.10.013
https://doi.org/10.1007/978-3-319-07518-1_25
https://doi.org/10.1007/s00287-014-0850-0
https://doi.org/10.1007/s00287-014-0850-0
https://doi.org/10.1145/3339186.3339213

142 Appendix A. Bibliography

[BCD03] Brian Babcock, Surajit Chaudhuri, and Gautam Das. “Dynamic Sample Selection for
Approximate Query Processing.” In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. ACM Press, 2003. DOI: 10.1145/872757.872822.

[Bec+10] Daniel Becker, Markus Geimer, Rolf Rabenseifner, and Felix Wolf. “Synchronizing the
Timestamps of Concurrent Events in Traces of Hybrid MPI/OpenMP Applications.”
In: 2010 IEEE International Conference on Cluster Computing. IEEE, Sept. 2010. DOI:
10.1109/cluster.2010.13.

[Bed+10] Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Porterfield. “PowerMon: Fine-
grained and Integrated Power Monitoring for Commodity Computer Systems.” In: Pro-
ceedings of the 2010 IEEE SoutheastCon. Mar. 2010, pp. 479–484. DOI: 10.1109/SECON.
2010.5453824.

[Bel00] Frank Bellosa. “The Benefits of Event-Driven Energy Accounting in Power-Sensitive
Systems.” In: Proceedings of the 9th workshop on ACM SIGOPS European workshop
beyond the PC: new challenges for the operating system - EW 9. ACM Press, 2000. DOI:
10.1145/566726.566736.

[Ben+17] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini. “Continuous
Learning of HPC Infrastructure Models using Big Data Analytics and In-Memory pro-
cessing Tools.” In: Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, Mar. 2017. DOI: 10.23919/date.2017.7927143.

[Ber+10] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade.
“Decomposable and Responsive Power Models for Multicore Processors using Perfor-
mance Counters.” In: Proceedings of the 24th ACM International Conference on Super-
computing - ICS ’10. ACM Press, 2010. DOI: 10.1145/1810085.1810108.

[Ber+12] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade.
“Counter-Based Power Modeling Methods: Top-Down vs. Bottom-Up.” In: The Computer
Journal 56.2 (Aug. 2012), pp. 198–213. DOI: 10.1093/comjnl/bxs116.

[Bie15] Mario Bielert. “Evaluating Power Estimation Techniques: A Methodological Approach.”
Diploma thesis. TU Dresden, 2015.

[BJ07] W. Lloyd Bircher and Lizy K. John. “Complete System Power Estimation: A Trickle-Down
Approach Based on Performance Events.” In: 2007 IEEE International Symposium on
Performance Analysis of Systems & Software. IEEE, Apr. 2007. DOI: 10.1109/ispass.
2007.363746.

[Bor+18] Andrea Borghesi, Andrea Bartolini, Antonio Libri, Francesco Beneventi, Daniele Gregori,
Simone Tinti, and Piero Altoè. “The D.A.V.I.D.E. Big-Data-Powered Fine-Grain Power and
Performance Monitoring Support.” In: May 2018. DOI: 10.1145/3203217.3205863.

[Bra+09] Jim Brandt, Ann Gentile, Jackson Mayo, Philippe Pebay, Diana Roe, David Thompson,
and Matthew Wong. “Resource Monitoring and Management with OVIS to Enable HPC
in Cloud Computing Environments.” In: 2009 IEEE International Symposium on Parallel
& Distributed Processing. IEEE, May 2009. DOI: 10.1109/ipdps.2009.5161234.

[Bur+14] Edward A. Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William J.
Lambert, Kaladhar Radhakrishnan, and Michael J. Hill. “FIVR — Fully integrated voltage
regulators on 4th generation Intel Core SoCs.” In: 2014 IEEE Applied Power Electronics
Conference and Exposition - APEC 2014. IEEE, Mar. 2014. DOI: 10.1109/apec.2014.
6803344.

[Cha+01] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. “Approx-
imate Query Processing Using Wavelets.” In: The VLDB Journal 10.2-3 (Sept. 2001),
pp. 199–223. ISSN: 1066-8888. URL: https://dl.acm.org/doi/10.5555/767141.
767147.

https://doi.org/10.1145/872757.872822
https://doi.org/10.1109/cluster.2010.13
https://doi.org/10.1109/SECON.2010.5453824
https://doi.org/10.1109/SECON.2010.5453824
https://doi.org/10.1145/566726.566736
https://doi.org/10.23919/date.2017.7927143
https://doi.org/10.1145/1810085.1810108
https://doi.org/10.1093/comjnl/bxs116
https://doi.org/10.1109/ispass.2007.363746
https://doi.org/10.1109/ispass.2007.363746
https://doi.org/10.1145/3203217.3205863
https://doi.org/10.1109/ipdps.2009.5161234
https://doi.org/10.1109/apec.2014.6803344
https://doi.org/10.1109/apec.2014.6803344
https://dl.acm.org/doi/10.5555/767141.767147
https://dl.acm.org/doi/10.5555/767141.767147

143

[Cha+11] Pimwadee Chaovalit, Aryya Gangopadhyay, George Karabatis, and Zhiyuan Chen. “Dis-
crete Wavelet Transform-Based Time Series Analysis and Mining.” In: ACM Computing
Surveys 43.2 (Jan. 2011), pp. 1–37. DOI: 10.1145/1883612.1883613.

[Cha+17] Mohak Chadha, Thomas Ilsche, Mario Bielert, and Wolfgang E. Nagel. “A Statistical
Approach to Power Estimation For x86 Processors.” In: The 13th Workshop on High-
Performance, Power-Aware Computing (HPPAC’17). Orlando, FL, USA, 2017. DOI: 10.
1109/IPDPSW.2017.98.

[Dav+10] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le.
“RAPL: Memory Power Estimation and Capping.” In: 2010 ACM/IEEE International
Symposium on Low-Power Electronics and Design (ISLPED). Aug. 2010, pp. 189–194. DOI:
10.1145/1840845.1840883.

[Del13] Dell Inc. PowerEdge R720 and R720xd. Technical Guide. Version 6.0. 2013. URL: https:
//i.dell.com/sites/doccontent/shared-content/data-sheets/ja/Documents/
Dell-PowerEdge-R720Technical-Guide-2018Jun.pdf (visited on Feb. 4, 2020).

[Dol+10] Manuel F. Dolz, Juan C. Fernández, Rafael Mayo, and Enrique S. Quintana-Ortí. “Ener-
gySaving Cluster Roll: Power Saving System for Clusters.” In: Architecture of Computing
Systems - ARCS 2010, ed. by Christian Müller-Schloer et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 162–173. ISBN: 978-3-642-11950-7. DOI: 10.1007/978-
3-642-11950-7_15.

[Dol+15] Manuel F. Dolz, Mohammad Reza Heidari, Michael Kuhn, Thomas Ludwig, and Germán
Fabregat. “ArduPower: A Low-cost Wattmeter to improve Energy Efficiency of HPC
Applications.” In: 2015 Sixth International Green and Sustainable Computing Conference
(IGSC). Dec. 2015, pp. 1–8. DOI: 10.1109/IGCC.2015.7393692.

[DPW16] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. “A Validation of DRAM
RAPL Power Measurements.” In: Proceedings of the Second International Symposium on
Memory Systems. MEMSYS ’16. Alexandria, VA, USA: ACM, 2016, pp. 455–470. ISBN:
978-1-4503-4305-3. DOI: 10.1145/2989081.2989088.

[DTM18] DTMF. Redfish Scalable Platforms Management API Specification. 2018. URL: https:
//www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.
pdf (visited on Jan. 9, 2019).

[Eas+17] Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Brad Geltz, Federico Ardanaz,
Asma Al-Rawi, Kelly Livingston, Fuat Keceli, Matthias Maiterth, and Siddhartha Jana.
“Global Extensible Open Power Manager: A Vehicle for HPC Community Collaboration
on Co-Designed Energy Management Solutions.” In: High Performance Computing, ed. by
Julian M. Kunkel et al. Cham: Springer International Publishing, 2017, pp. 394–412.
ISBN: 978-3-319-58667-0. DOI: 10.1007/978-3-319-58667-0_21.

[Eco+06] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan.
“Full-System Power Analysis and Modeling for Server Environments.” In: Workshop on
Modeling, Benchmarking, and Simulation (MoBS). 2006.

[Fay+16] Eyal Fayneh, Marcelo Yuffe, Ernest Knoll, Michael Zelikson, Muhammad Abozaed, Yair
Talker, Ziv Shmuely, and Saher Abu Rahme. “14nm 6th-Generation Core Processor SoC
with Low Power Consumption and Improved Performance.” In: 2016 IEEE International
Solid-State Circuits Conference (ISSCC). Jan. 2016, pp. 72–73. DOI: 10.1109/ISSCC.
2016.7417912.

[Fre17] Mike Freedman. Time-series data: Why (and how) to use a relational database instead of
NoSQL. Apr. 20, 2017. URL: https://blog.timescale.com/blog/time-series-
data- why- and- how- to- use- a- relational- database- instead- of- nosql-
d0cd6975e87c/ (visited on Nov. 8, 2019).

https://doi.org/10.1145/1883612.1883613
https://doi.org/10.1109/IPDPSW.2017.98
https://doi.org/10.1109/IPDPSW.2017.98
https://doi.org/10.1145/1840845.1840883
https://i.dell.com/sites/doccontent/shared-content/data-sheets/ja/Documents/Dell-PowerEdge-R720Technical-Guide-2018Jun.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/ja/Documents/Dell-PowerEdge-R720Technical-Guide-2018Jun.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/ja/Documents/Dell-PowerEdge-R720Technical-Guide-2018Jun.pdf
https://doi.org/10.1007/978-3-642-11950-7_15
https://doi.org/10.1007/978-3-642-11950-7_15
https://doi.org/10.1109/IGCC.2015.7393692
https://doi.org/10.1145/2989081.2989088
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://doi.org/10.1007/978-3-319-58667-0_21
https://doi.org/10.1109/ISSCC.2016.7417912
https://doi.org/10.1109/ISSCC.2016.7417912
https://blog.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://blog.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://blog.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/

144 Appendix A. Bibliography

[Ge+10] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.
Cameron. “PowerPack: Energy Profiling and Analysis of High-Performance Systems and
Applications.” In: IEEE Transactions on Parallel and Distributed Systems 21.5 (May 2010),
pp. 658–671. ISSN: 1045-9219. DOI: 10.1109/TPDS.2009.76.

[GM16] Bhavishya Goel and Sally A. McKee. “A Methodology for Modeling Dynamic and Static
Power Consumption for Multicore Processors.” In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, May 2016. DOI: 10.1109/ipdps.2016.
118.

[Göt+14a] Sebastian Götz, Thomas Ilsche, Jorge Cardoso, Josef Spillner, Uwe Assmann, Wolfgang E.
Nagel, and Alexander Schill. “Energy-Efficient Data Processing at Sweet Spot Frequen-
cies.” In: On the Move to Meaningful Internet Systems: OTM 2014 Workshops. Springer
Berlin Heidelberg, 2014, pp. 154–171. DOI: 10.1007/978-3-662-45550-0_18.

[Göt+14b] Sebastian Götz, Thomas Ilsche, Jorge Cardoso, Josef Spillner, Thomas Kissinger, Uwe
Assmann, Wolfgang Lehner, Wolfgang E. Nagel, and Alexander Schill. “Energy-Efficient
Databases Using Sweet Spot Frequencies.” In: 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing. IEEE, Dec. 2014. DOI: 10.1109/ucc.2014.142.

[Gra+17] Ryan E. Grant, James H. Laros, Michael Levenhagen, Stephen L. Olivier, Kevin Pedretti,
Lee Ward, and Andrew J. Younge. “Evaluating Energy and Power Profiling Techniques
for HPC Workloads.” In: 2017 Eighth International Green and Sustainable Computing
Conference (IGSC). Oct. 2017, pp. 1–8. DOI: 10.1109/IGCC.2017.8323587.

[GSS15] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient Servers. Apress, Apr. 7,
2015. ISBN: 1430266384.

[Hac+13a] Daniel Hackenberg, Thomas Ilsche, Robert Schöne, Daniel Molka, Maik Schmidt, and
Wolfgang E. Nagel. “Power Measurement Techniques on Standard Compute Nodes:
A Quantitative Comparison.” In: 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, Apr. 2013. DOI: 10.1109/ispass.
2013.6557170.

[Hac+13b] Daniel Hackenberg, Roland Oldenburg, Daniel Molka, and Robert Schöne. “Introducing
FIRESTARTER: A Processor Stress Test Utility.” In: 2013 International Green Computing
Conference Proceedings. IEEE, June 2013. DOI: 10.1109/igcc.2013.6604507.

[Hac+14] Daniel Hackenberg, Thomas Ilsche, Joseph Schuchart, Robert Schöne, Wolfgang E.
Nagel, Marc Simon, and Yiannis Georgiou. “HDEEM: High Definition Energy Efficiency
Monitoring.” In: Proceedings of the 2nd International Workshop on Energy Efficient Super-
computing. E2SC ’14. IEEE, Nov. 2014. DOI: 10.1109/e2sc.2014.13.

[Hac+15] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart,
and Robin Geyer. “An Energy Efficiency Feature Survey of the Intel Haswell Processor.”
In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop.
IEEE, May 2015. DOI: 10.1109/ipdpsw.2015.70.

[Häh+12] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. “Measuring Energy
Consumption for Short Code Paths using RAPL.” In: SIGMETRICS Performance Evaluation
Review 40 (Jan. 2012), pp. 13–17. ISSN: 0163-5999. DOI: 10.1145/2425248.2425252.

[Haj+16] Jawad Haj-Yihia, Ahmad Yasin, Yosi Ben Asher, and Avi Mendelson. “Fine-Grain Power
Breakdown of Modern Out-of-Order Cores and Its Implications on Skylake-Based Sys-
tems.” In: ACM Transactions on Architecture and Code Optimization 13.4 (Dec. 2016),
pp. 1–25. DOI: 10.1145/3018112.

[Haj+18] Jawad Haj-Yahya, Avi Mendelson, Yosi Ben Asher, and Anupam Chattopadhyay. Energy
Efficient High Performance Processors. Springer Singapore, 2018. DOI: 10.1007/978-
981-10-8554-3.

https://doi.org/10.1109/TPDS.2009.76
https://doi.org/10.1109/ipdps.2016.118
https://doi.org/10.1109/ipdps.2016.118
https://doi.org/10.1007/978-3-662-45550-0_18
https://doi.org/10.1109/ucc.2014.142
https://doi.org/10.1109/IGCC.2017.8323587
https://doi.org/10.1109/ispass.2013.6557170
https://doi.org/10.1109/ispass.2013.6557170
https://doi.org/10.1109/igcc.2013.6604507
https://doi.org/10.1109/e2sc.2014.13
https://doi.org/10.1109/ipdpsw.2015.70
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/3018112
https://doi.org/10.1007/978-981-10-8554-3
https://doi.org/10.1007/978-981-10-8554-3

145

[Haj+19] Jawad Haj-Yahya, Efraim Rotem, Avi Mendelson, and Anupam Chattopadhyay. “A
Comprehensive Evaluation of Power Delivery Schemes for Modern Microprocessors.” In:
20th International Symposium on Quality Electronic Design, ISQED 2019, Santa Clara,
CA, USA. 2019, pp. 123–130. DOI: 10.1109/ISQED.2019.8697544.

[Har+14] Alistair Hart, Harvey Richardson, Jens Doleschal, Thomas Ilsche, Mario Bielert, and
Matthew Kappel. “User-level Power Monitoring and Application Performance on Cray
XC30 Supercomputers.” In: Cray User Group 2014. May 2014. URL: https://cug.
org/proceedings/cug2014_proceedings/includes/files/pap136.pdf (visited on
Feb. 4, 2020).

[HEK09] Joachim Hartung, Bärbel Elpelt, and Karl-Heinz Klösener. Statistik. Gruyter, de Olden-
bourg, June 3, 2009. ISBN: 3486590286.

[HKK17] Vlasta Hajek, Tomas Klapka, and Ivan Kudibal. Benchmarking InfluxDB vs. Elasticsearch
for Time Series Data, Metrics & Management. 2017. URL: https://www.influxdata.
com/blog/influxdb-markedly-elasticsearch-in-time-series-data-metrics-
benchmark/ (visited on Feb. 23, 2020).

[HP11] Chung-Hsing Hsu and Stephen W. Poole. “Power Measurement for High Performance
Computing: State of the Art.” In: 2011 International Green Computing Conference and
Workshops. July 2011, pp. 1–6. DOI: 10.1109/IGCC.2011.6008596.

[IBM18] IBM. OCC Firmware Interface Specification for POWER9. Version 0.22. Ed. by Martha
Broyles. June 27, 2018. URL: https://github.com/open-power/docs/raw/d53d84c/
occ/OCC_P9_FW_Interfaces.pdf (visited on Feb. 4, 2020).

[Ils+15a] Thomas Ilsche, Daniel Hackenberg, Stefan Graul, Joseph Schuchart, and Robert Schöne.
“Power Measurements for Compute Nodes: Improving Sampling Rates, Granularity and
Accuracy.” In: 2015 Sixth International Green Computing Conference and Sustainable
Computing Conference (IGSC). Dec. 2015. DOI: 10.1109/IGCC.2015.7393710.

[Ils+15b] Thomas Ilsche, Joseph Schuchart, Robert Schöne, and Daniel Hackenberg. “Combining
Instrumentation and Sampling for Trace-Based Application Performance Analysis.” In:
Tools for High Performance Computing 2014. Springer International Publishing, 2015,
pp. 123–136. DOI: 10.1007/978-3-319-16012-2_6.

[Ils+17] Thomas Ilsche, Robert Schöne, Mario Bielert, Andreas Gocht, and Daniel Hackenberg.
“lo2s — Multi-core System and Application Performance Analysis for Linux.” In: 2017
IEEE International Conference on Cluster Computing (CLUSTER). IEEE. 2017, pp. 801–
804. DOI: 10.1109/CLUSTER.2017.116.

[Ils+18a] Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario Bielert, and Daniel Hackenberg.
“Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-core Sys-
tems.” In: Euro-Par 2017: Parallel Processing Workshops, ed. by Dora B. Heras et al.
Cham: Springer International Publishing, 2018, pp. 623–635. ISBN: 978-3-319-75178-8.
DOI: 10.1007/978-3-319-75178-8_50.

[Ils+18b] Thomas Ilsche, Robert Schöne, Philipp Joram, Mario Bielert, and Andreas Gocht. “System
Monitoring with lo2s: Power and Runtime Impact of C-State Transitions.” In: 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). May
2018, pp. 712–715. DOI: 10.1109/IPDPSW.2018.00114.

[Ils+18c] Thomas Ilsche, Robert Schöne, Joseph Schuchart, Daniel Hackenberg, Marc Simon,
Yiannis Georgiou, and Wolfgang E. Nagel. “Power Measurement Techniques for Energy-
Efficient Computing: Reconciling Scalability, Resolution, and Accuracy.” In: SICS Soft-
ware-Intensive Cyber-Physical Systems. Apr. 2018. DOI: 10.1007/s00450-018-0392-9.

https://doi.org/10.1109/ISQED.2019.8697544
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap136.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap136.pdf
https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-markedly-elasticsearch-in-time-series-data-metrics-benchmark/
https://doi.org/10.1109/IGCC.2011.6008596
https://github.com/open-power/docs/raw/d53d84c/occ/OCC_P9_FW_Interfaces.pdf
https://github.com/open-power/docs/raw/d53d84c/occ/OCC_P9_FW_Interfaces.pdf
https://doi.org/10.1109/IGCC.2015.7393710
https://doi.org/10.1007/978-3-319-16012-2_6
https://doi.org/10.1109/CLUSTER.2017.116
https://doi.org/10.1007/978-3-319-75178-8_50
https://doi.org/10.1109/IPDPSW.2018.00114
https://doi.org/10.1007/s00450-018-0392-9

146 Appendix A. Bibliography

[Ils+19] Thomas Ilsche, Daniel Hackenberg, Robert Schöne, Mario Bielert, Franz Höpfner, and
Wolfgang E. Nagel. “MetricQ: A Scalable Infrastructure for Processing High-Resolution
Time Series Data.” In: 2019 IEEE/ACM Industry/University Joint International Workshop
on Data-center Automation, Analytics, and Control (DAAC). 2019, pp. 7–12. DOI: 10.
1109/DAAC49578.2019.00007.

[Ils09] Thomas Ilsche. “Analyse und Anwendung globaler und lokaler Datenquellen für Pro-
grammspuren.” Diploma thesis. TU Dresden, Dec. 2009.

[Inf19a] InfluxData Inc. InfluxDB 1.7 documentation. 2019. URL: https://docs.influxdata.
com/influxdb/v1.7/ (visited on Nov. 7, 2019).

[Inf19b] InfluxData Inc. InfluxDB 1.X: Open Source Time Series Platform. 2019. URL: https:
//www.influxdata.com/time-series-platform/ (visited on Feb. 4, 2020).

[Int] International Rectifier. IR3529 DATA SHEET, XPHASE3™ PHASE IC. URL: https://www.
infineon.com/dgdl/ir3529m.pdf?fileId=5546d462533600a4015355cd5b781758
(visited on Dec. 17, 2018).

[Int+13] Intel Corporation, Hewlett-Packard, NEC, and Dell. IPMI Specification. v. 2.0 rev. 1.1.
Tech. rep. 2013. URL: https://www.intel.com/content/www/us/en/servers/ipmi/
ipmi-second-gen-interface-spec-v2-rev1-1.html (visited on Feb. 11, 2020).

[Int06] International Bureau of Weights and Measures (BIPM). The International System of Units
(SI). 2006. URL: https://www.bipm.org/utils/common/pdf/si_brochure_8_en.
pdf (visited on Feb. 11, 2020).

[Int13] Intel Corporation. Power Supply. Design Guide for Desktop Platform Form Factors. rev. 1.31.
2013. URL: https://www.intel.com/content/dam/www/public/us/en/documents/
guides/power-supply-design-guide.pdf (visited on Jan. 11, 2019).

[Int14a] Intel Corporation. Intel Xeon Processor E5 v2 and E7 v2 Product Families Uncore Perfor-
mance Monitoring Reference Manual. Reference Number: 329468-002. Intel. 2014. URL:
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
xeon-e5-2600-v2-uncore-manual.pdf.

[Int14b] International Organization for Standardization. Advanced Message Queuing Protocol
(AMQP) v1.0 specification. ISO/IEC 19464:2014. Standard. Geneva, CH, 2014. URL:
https://www.iso.org/standard/64955.html (visited on Feb. 4, 2020).

[Int15] Intel Corporation. Intel® Server Board S2600CP Family Intel® Server System P4000CP
Family. Technical Product Specification. rev. 1.9. May 2015. URL: https://www.intel.
com/content/dam/support/us/en/documents/motherboards/server/s2600cp/
sb/g26942005_s2600cp_p4000cp_tps_rev19.pdf (visited on Feb. 4, 2020).

[Int17a] Intel Corporation. Intel Xeon Processor E5 v3 Product Family - Processor Specification
Update. Sept. 2017. URL: https://www.intel.com/content/dam/www/public/us/
en/documents/specification-updates/xeon-e5-v3-spec-update.pdf (visited
on Feb. 11, 2020).

[Int17b] Intel Corporation. Intel Xeon Processor Scalable Family Specification Update. Aug. 2017.
URL: https://www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/xeon-scalable-spec-update.pdf (visited on July 9,
2018).

[Int18a] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. May 2018. URL: https:
//software.intel.com/en-us/articles/intel-sdm (visited on July 9, 2018).

https://doi.org/10.1109/DAAC49578.2019.00007
https://doi.org/10.1109/DAAC49578.2019.00007
https://docs.influxdata.com/influxdb/v1.7/
https://docs.influxdata.com/influxdb/v1.7/
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://www.infineon.com/dgdl/ir3529m.pdf?fileId=5546d462533600a4015355cd5b781758
https://www.infineon.com/dgdl/ir3529m.pdf?fileId=5546d462533600a4015355cd5b781758
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
https://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/power-supply-design-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/power-supply-design-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
https://www.iso.org/standard/64955.html
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/s2600cp/sb/g26942005_s2600cp_p4000cp_tps_rev19.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/s2600cp/sb/g26942005_s2600cp_p4000cp_tps_rev19.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/s2600cp/sb/g26942005_s2600cp_p4000cp_tps_rev19.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

147

[Int18b] Intel Corporation. Product brief Intel® SSD DC P4610 Series. 2018. URL: https://www.
intel.com/content/dam/www/public/us/en/documents/product-briefs/dc-
p4610-series-brief.pdf (visited on Apr. 10, 2019).

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, Apr. 30,
1991. 720 pp. ISBN: 0471503363.

[JCG08] JCGM - Joint Committee for Guides in Metrology. Evaluation of measurement data —
Guide to the expression of uncertainty in measurement. 1st ed. JCGM 100:2008 (GUM
1995 with minor corrections). 2008. URL: https://www.bipm.org/en/publications/
guides/gum.html (visited on Feb. 11, 2020).

[JCG09] JCGM - Joint Committee for Guides in Metrology. Evaluation of measurement data — An
introduction to the “Guide to the expression of uncertainty in measurement” and related
documents. 1st ed. JCGM 100:2008 (GUM 1995 with minor corrections). 2009. URL:
https://www.bipm.org/en/publications/guides/gum.html (visited on Feb. 11,
2020).

[JCG12] JCGM - Joint Committee for Guides in Metrology. International vocabulary of metrology
- Basic and general concepts and associated terms (VIM). 3rd ed. JCGM 200:2012 (JCGM
200:2008 with minor corrections). 2012. URL: https://jcgm.bipm.org/vim/en/
index.html (visited on Feb. 4, 2020).

[Jia+10] Y. Jiao, H. Lin, P. Balaji, and W. Feng. “Power and Performance Characterization of Com-
putational Kernels on the GPU.” In: Green Computing and Communications (GreenCom),
2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and Social Comput-
ing (CPSCom). Dec. 2010, pp. 221–228. DOI: 10.1109/GreenCom-CPSCom.2010.143.

[JPT17] Soren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. “Time Series Man-
agement Systems: A Survey.” In: IEEE Transactions on Knowledge and Data Engineering
29.11 (Nov. 2017), pp. 2581–2600. DOI: 10.1109/tkde.2017.2740932.

[Juc12] Guido Juckeland. “Trace-based Performance Analysis for Hardware Accelerators.” PhD
thesis. TU Dresden, 2012.

[KHL18] Thomas Kissinger, Dirk Habich, and Wolfgang Lehner. “Adaptive Energy-Control for
In-Memory Database Systems.” In: Proceedings of the 2018 International Conference on
Management of Data - SIGMOD ’18. ACM Press, 2018. DOI: 10.1145/3183713.3183756.

[KHN12] Michael Kluge, Daniel Hackenberg, and Wolfgang E. Nagel. “Collecting Distributed
Performance Data with Dataheap: Generating and Exploiting a Holistic System View.”
In: Procedia Computer Science 9 (2012). Proceedings of the International Conference on
Computational Science, ICCS 2012, pp. 1969–1978. ISSN: 1877-0509. DOI: 10.1016/j.
procs.2012.04.215.

[Knü+08] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. “The Vampir Performance
Analysis Tool-Set.” In: Tools for High Performance Computing, ed. by Michael Resch et al.
Springer Berlin Heidelberg, July 2008, pp. 139–155. ISBN: 978-3-540-68561-6. DOI:
10.1007/978-3-540-68564-7_9.

[Knü+12] Andreas Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time Infrastruc-
ture for Periscope, Scalasca, TAU, and Vampir.” In: Tools for High Performance Computing
2011, ed. by Holger Brunst et al. Springer Berlin Heidelberg, 2012, pp. 79–91. ISBN:
978-3-642-31476-6. DOI: 10.1007/978-3-642-31476-6_7.

[Kog+08] Peter Kogge et al. ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems, ed. by Peter Kogge. 2008.

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/dc-p4610-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/dc-p4610-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/dc-p4610-series-brief.pdf
https://www.bipm.org/en/publications/guides/gum.html
https://www.bipm.org/en/publications/guides/gum.html
https://www.bipm.org/en/publications/guides/gum.html
https://jcgm.bipm.org/vim/en/index.html
https://jcgm.bipm.org/vim/en/index.html
https://doi.org/10.1109/GreenCom-CPSCom.2010.143
https://doi.org/10.1109/tkde.2017.2740932
https://doi.org/10.1145/3183713.3183756
https://doi.org/10.1016/j.procs.2012.04.215
https://doi.org/10.1016/j.procs.2012.04.215
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-642-31476-6_7

148 Appendix A. Bibliography

[Law06] Averill M. Law. Simulation Modeling and Analysis. McGraw Hill Higher Education, 2006.
ISBN: 978-007-125519-6.

[LBB18] Antonio Libri, Andrea Bartolini, and Luca Benini. “Dwarf in a Giant: Enabling Scalable,
High-Resolution HPC Energy Monitoring for Real-Time Profiling and Analytics.” In:
ArXiv e-prints (June 2018). arXiv: 1806.02698 [cs.DC].

[Ler12] Reinhard Lerch. Elektrische Messtechnik. Analoge, digitale und computergestützte Ver-
fahren. (Springer-Lehrbuch) (German Edition). Springer, 2012. ISBN: 978-3-642-22608-
3.

[Li+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and
Norman P. Jouppi. “McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures.” In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture - Micro-42. ACM Press, 2009. DOI: 10.
1145/1669112.1669172.

[Lib+16] Antonio Libri, Andrea Bartolini, Michele Magno, and Luca Benini. “Evaluation of Syn-
chronization Protocols for fine-grain HPC sensor data time-stamping and collection.” In:
2016 International Conference on High Performance Computing & Simulation (HPCS).
IEEE, July 2016. DOI: 10.1109/hpcsim.2016.7568419.

[Lib+18a] Antonio Libri, Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, and Luca Benini.
“MULTITHERMAN: Out-of-band High-Resolution HPC Power and Performance Mon-
itoring Support for Big-Data Analysis.” In: Workshop on Energy Efficiency Tools for
HPC (EETHPC). 2018. URL: http://eethpc.net/wp-content/uploads/2018/05/
ISC2018_EETHPC_AL.pdf (visited on Feb. 4, 2020).

[Lib+18b] Antonio Libri, Andrea Bartolini, Daniele Cesarini, and Luca Benini. “Evaluation of
NTP/PTP Fine-Grain Synchronization Performance in HPC Clusters.” In: Proceedings
of the 2nd Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC
Systems - ANDARE ’18. ACM Press, 2018. DOI: 10.1145/3295816.3295819.

[Lin] Linear Technology. Single Resistor Gain Programmable, Precision Instrumentation Ampli-
fier. URL: https://www.analog.com/media/en/technical-documentation/data-
sheets/1167fc.pdf (visited on Feb. 4, 2020).

[LPD13] James H. Laros, Phil Pokorny, and David DeBonis. “PowerInsight — A Commodity
Power Measurement Capability.” In: 2013 International Green Computing Conference
Proceedings. IEEE, June 2013. DOI: 10.1109/igcc.2013.6604485.

[Lük92] Hans D. Lüke. Korrelationssignale. Korrelationsfolgen und Korrelationsarrays in Nach-
richten- und Informationstechnik, Meßtechnik und Optik. (German Edition). Springer,
1992. ISBN: 3-540-54579-4.

[LVE16] Aleix Llusà Serra, Sebastià Vila-Marta, and Teresa Escobet Canal. “Formalism for a
Multiresolution Time Series Database Model.” In: Inf. Syst. 56.C (Mar. 2016), pp. 19–35.
ISSN: 0306-4379. DOI: 10.1016/j.is.2015.08.006.

[Mai+18] Matthias Maiterth, Gregory Koenig, Kevin Pedretti, Siddhartha Jana, Natalie Bates,
Andrea Borghesi, Dave Montoya, Andrea Bartolini, and Milos Puzovic. “Energy and
Power Aware Job Scheduling and Resource Management: Global Survey — Initial
Analysis.” In: 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). May 2018, pp. 685–693. DOI: 10.1109/IPDPSW.2018.00111.

[Mal11] Roman Malaric. Instrumentation and Measurement in Electrical Engineering. Brown
Walker Press, Apr. 20, 2011. 244 pp. ISBN: 1612335004.

https://arxiv.org/abs/1806.02698
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/hpcsim.2016.7568419
http://eethpc.net/wp-content/uploads/2018/05/ISC2018_EETHPC_AL.pdf
http://eethpc.net/wp-content/uploads/2018/05/ISC2018_EETHPC_AL.pdf
https://doi.org/10.1145/3295816.3295819
https://www.analog.com/media/en/technical-documentation/data-sheets/1167fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1167fc.pdf
https://doi.org/10.1109/igcc.2013.6604485
https://doi.org/10.1016/j.is.2015.08.006
https://doi.org/10.1109/IPDPSW.2018.00111

149

[Mar+17] Steven J. Martin, David Rush, Matthew Kappel, Michael Sandstedt, and Joshua Williams.
“Cray XC40 Power Monitoring and Control for Knights Landing.” In: Cray User Group.
2017. URL: https://cug.org/proceedings/cug2016_proceedings/includes/
files/pap112s2-file1.pdf (visited on Feb. 4, 2020).

[McK] Paul E. McKenney. NO_HZ: Reducing Scheduling-Clock Ticks. URL: https://www.kernel.
org/doc/Documentation/timers/NO_HZ.txt (visited on Feb. 4, 2020).

[Meg] Megware. ClustSafe Energiemanagement und Stromverteilung mit voller Kontrolle. URL:
https://www.megware.com/fileadmin/user_upload/PDFs/ClustSafe.pdf (vis-
ited on Jan. 10, 2019).

[Mel18] Mellanox Technologies. ConnectX®-5 VPI Card. 100Gb/s InfiniBand & Ethernet Adapter
Card. 2018. URL: https://www.mellanox.com/related- docs/prod_adapter_
cards/PB_ConnectX-5_VPI_Card.pdf (visited on Feb. 11, 2020).

[Mil06] David L. Mills. Computer Network Time Synchronization: The Network Time Protocol.
CRC Press, 2006. ISBN: 9781420006155.

[MiT17] MiTAC International Corporation. Tyan S7106. Version 1.0. 2017. URL: ftp://ftp.
tyan.com/doc/S7106_UG_v1.0a.pdf (visited on Feb. 4, 2020).

[MK14] Steven J. Martin and Matthew Kappel. “Cray XC30 Power Monitoring and Manage-
ment.” In: Cray User Group. 2014. URL: https://cug.org/proceedings/cug2014_
proceedings/includes/files/pap130.pdf (visited on Feb. 4, 2020).

[Mol+10] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S. Müller. “Characteriz-
ing the Energy Consumption of Data Transfers and Arithmetic Operations on x86-64
Processors.” In: International Conference on Green Computing. IEEE, Aug. 2010. DOI:
10.1109/greencomp.2010.5598316.

[Mor+10] Alan Morris, Allen D. Malony, Sameer Shende, and Kevin Huck. “Design and Implementa-
tion of a Hybrid Parallel Performance Measurement System.” In: 2010 39th International
Conference on Parallel Processing. IEEE, Sept. 2010. DOI: 10.1109/icpp.2010.57.

[MRK15] Steven J. Martin, David Rush, and Matthew Kappel. “Cray Advanced Platform Monitor-
ing and Control (CAPMC).” In: Cray User Group. 2015. URL: https://cug.org/
proceedings/cug2015_proceedings/includes/files/pap132.pdf (visited on
Feb. 4, 2020).

[Nat15] National Instruments. NI 6122/6123 Specifications. May 2015. URL: https://www.ni.
com/pdf/manuals/371396b.pdf (visited on Feb. 4, 2020).

[Nat16a] National Instruments. DAQ M Series. M Series User Manual. NI 622x, NI 625x, and NI
628x Multifunction I/O Modules and Devices. July 2016. URL: https://www.ni.com/
pdf/manuals/371022l.pdf (visited on Feb. 11, 2020).

[Nat16b] National Instruments. Device Specifications NI 6255. M Series Data Acquisition: 80 AI,
1.25 MS/s, 24 DIO, 2 AO. June 2016. URL: https://www.ni.com/pdf/manuals/
375215c.pdf (visited on Feb. 11, 2020).

[Net+19] Alessio Netti, Micha Müller, Axel Auweter, Carla Guillen, Michael Ott, Daniele Tafani,
and Martin Schulz. “From Facility to Application Sensor Data: Modular, Continuous and
Holistic Monitoring with DCDB.” In: SC ’19 (2019). DOI: 10.1145/3295500.3356191.

[Nie94] Jakob Nielsen. Usability Engineering. Elsevier LTD, Oxford, Nov. 1, 1994. Chap. 5.5.
362 pp. ISBN: 0125184069. URL: https://www.nngroup.com/articles/response-
times-3-important-limits/ (visited on Apr. 4, 2019).

[Nor98] Harry Smith Norman R. Draper. Applied Regression Analysis. JOHN WILEY & SONS INC,
May 13, 1998. 736 pp. ISBN: 0471170828.

https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112s2-file1.pdf
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.megware.com/fileadmin/user_upload/PDFs/ClustSafe.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
ftp://ftp.tyan.com/doc/S7106_UG_v1.0a.pdf
ftp://ftp.tyan.com/doc/S7106_UG_v1.0a.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://doi.org/10.1109/greencomp.2010.5598316
https://doi.org/10.1109/icpp.2010.57
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
https://www.ni.com/pdf/manuals/371396b.pdf
https://www.ni.com/pdf/manuals/371396b.pdf
https://www.ni.com/pdf/manuals/371022l.pdf
https://www.ni.com/pdf/manuals/371022l.pdf
https://www.ni.com/pdf/manuals/375215c.pdf
https://www.ni.com/pdf/manuals/375215c.pdf
https://doi.org/10.1145/3295500.3356191
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/

150 Appendix A. Bibliography

[Oet17] Tobias Oetiker. RRDtool logging & graphing. 2017. URL: https://oss.oetiker.ch/
rrdtool/ (visited on Apr. 9, 2019).

[ON 15] ON Semiconductor. Single-Phase Voltage Regulator with SVID Interface for Computing
Applications. 2015. URL: https://www.onsemi.com/pub/Collateral/NCP81251-
D.PDF (visited on Feb. 11, 2020).

[ONe+96] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. “The log-structured
merge-tree (LSM-tree).” In: Acta Informatica 33.4 (June 1996), pp. 351–385. ISSN:
1432-0525. DOI: 10.1007/s002360050048.

[ONe14] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algo-
rithms for Random Number Generation. Tech. rep. HMC-CS-2014-0905. Claremont, CA:
Harvey Mudd College, Sept. 2014. URL: https://www.cs.hmc.edu/tr/hmc-cs-2014-
0905.pdf (visited on Feb. 4, 2020).

[Pac07] Sasha Pachev. Understanding MySQL Internals: Discovering and Improving a Great
Database. OREILLY MEDIA, Apr. 11, 2007. 234 pp. ISBN: 0596009577.

[Par10] Rainer Parthier. Messtechnik: Grundlagen und Anwendungen der elektrischen Messtechnik
für alle technischen Fachrichtungen und Wirtschaftsingenieure. Vieweg + Teubner, 2010.
ISBN: 978-3-8348-0811-0.

[Pat+13] Tapasya Patki, David K. Lowenthal, Barry Rountree, Martin Schulz, and Bronis R. de
Supinski. “Exploring Hardware Overprovisioning in Power-Constrained, High Perfor-
mance Computing.” In: Proceedings of the 27th international ACM conference on Interna-
tional conference on supercomputing - ICS ’13. ACM Press, 2013. DOI: 10.1145/2464996.
2465009.

[PC11] Vikas Ashok Patil and Vipin Chaudhary. “Rack Aware Scheduling in HPC Data Centers:
An Energy Conservation Strategy.” In: 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum. IEEE, May 2011. DOI: 10.1109/
ipdps.2011.227.

[Pel+15] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza,
and Kaushik Veeraraghavan. “Gorilla: A Fast, Scalable, In-Memory Time Series Database.”
In: vol. 8. 12. VLDB Endowment, Aug. 2015, pp. 1816–1827. DOI: 10.14778/2824032.
2824078.

[Per+15] Kasun S. Perera, Martin Hahmann, Wolfgang Lehner, Torben Bach Pedersen, and Chris-
tian Thomsen. “Modeling Large Time Series for Efficient Approximate Query Processing.”
In: Database Systems for Advanced Applications, ed. by An Liu et al. Cham: Springer Inter-
national Publishing, 2015, pp. 190–204. ISBN: 978-3-319-22324-7. DOI: 10.1007/978-
3-319-22324-7_16.

[Pil+95] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. “Paraver: A Tool to Visu-
alize and Analyze Parallel Code.” In: Proceedings of WoTUG-18: Transputer and occam
Developments. Vol. 44. 1. 1995, pp. 17–31.

[Piv19] Pivotal Software, Inc. RabbitMQ Documentation. for the current release, 3.7.14. 2019.
URL: https://www.rabbitmq.com/documentation.html (visited on Apr. 1, 2019).

[PLB07] Venkatesh Pallipadi, Shaohua Li, and Adam Belay. “cpuidle: Do nothing, efficiently.” In:
Proceedings of the Ottawa Linux Symposium (OLS). 2007. URL: https://www.kernel.
org/doc/ols/2007/ols2007v2-pages-119-126.pdf (visited on Feb. 4, 2020).

[Pur+18] Avi Purkayastha, Steven Hammond, Ramkumar Nagappan, and Max Alt. “Holistic
Approaches to HPC Power and Workflow Management.” In: 2018 Ninth International
Green and Sustainable Computing Conference (IGSC). IEEE. Sept. 2018, pp. 1–8. DOI:
10.1109/IGCC.2018.8752150.

https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/
https://www.onsemi.com/pub/Collateral/NCP81251-D.PDF
https://www.onsemi.com/pub/Collateral/NCP81251-D.PDF
https://doi.org/10.1007/s002360050048
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1145/2464996.2465009
https://doi.org/10.1145/2464996.2465009
https://doi.org/10.1109/ipdps.2011.227
https://doi.org/10.1109/ipdps.2011.227
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.1007/978-3-319-22324-7_16
https://doi.org/10.1007/978-3-319-22324-7_16
https://www.rabbitmq.com/documentation.html
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://doi.org/10.1109/IGCC.2018.8752150

151

[Rot+12] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron
Rajwan. “Power-Management Architecture of the Intel Microarchitecture Code-Named
Sandy Bridge.” In: IEEE Micro 32.2 (Mar. 2012), pp. 20–27. ISSN: 0272-1732. DOI:
10.1109/MM.2012.12.

[RV18] John W. Romein and Bram Veenboer. “PowerSensor 2: a Fast Power Measurement Tool.”
In: 2018 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 2018. DOI: 10.1109/ISPASS.2018.00020.

[RWT+19] RWTH Aachen University, Gesellschaft für numerische Simulation mbH, Technische
Universität Dresden, University of Oregon, Forschungszentrum Jülich GmbH, German
Research School for Simulation Sciences GmbH, Technische Universität München, and
Technische Universität Darmstadt. Score-P Scalable performance measurement infrastruc-
ture for parallel codes. 6.0 (rev. 14673). July 31, 2019. URL: http://scorepci.pages.
jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/pdf/scorep.pdf
(visited on Dec. 18, 2019).

[Rya08] Thomas P. Ryan. Modern Regression Methods. John Wiley & Sons, Inc, Nov. 25, 2008.
642 pp. ISBN: 0470081864.

[Ryb18] Marta Rybczyńska. “Improving idle behavior in tickless systems.” In: LWN (2018). URL:
https://lwn.net/Articles/775618/ (visited on July 1, 2019).

[Sav+15] Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. “Cube v4: From
Performance Report Explorer to Performance Analysis Tool.” In: Procedia Computer
Science 51 (2015), pp. 1343–1352. DOI: 10.1016/j.procs.2015.05.320.

[Sch+11] Robert Schöne, Ronny Tschüter, Thomas Ilsche, and Daniel Hackenberg. “The Vam-
pirTrace Plugin Counter Interface: Introduction and Examples.” In: Euro-Par 2010
Parallel Processing Workshops. Springer Berlin Heidelberg, 2011, pp. 501–511. DOI:
10.1007/978-3-642-21878-1_62.

[Sch+16a] Robert Schöne, Thomas Ilsche, Mario Bielert, Daniel Molka, and Daniel Hackenberg.
“Software Controlled Clock Modulation for Energy Efficiency Optimization on Intel Pro-
cessors.” In: Proceedings of the 4th International Workshop on Energy Efficient Supercom-
puting. E2SC ’16. Salt Lake City, Utah: IEEE, 2016, pp. 69–76. ISBN: 978-1-5090-3856-5.
DOI: 10.1109/e2sc.2016.015.

[Sch+16b] Joseph Schuchart, Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Ramkumar Na-
gappan, and Michael K. Patterson. “The Shift From Processor Power Consumption to
Performance Variations: Fundamental Implications at Scale.” In: Computer Science -
Research and Development 31.4 (Aug. 2016), pp. 197–205. DOI: 10.1007/s00450-016-
0327-2.

[Sch+17a] Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart, Daniel Hackenberg,
and Wolfgang E. Nagel. “Extending the Functionality of Score-P Through Plugins:
Interfaces and Use Cases.” In: Proceedings of the 10th International Workshop on Parallel
Tools for High Performance Computing, October 2016, Stuttgart, Germany, ed. by Christoph
Niethammer et al. Cham: Springer International Publishing, 2017, pp. 59–82. ISBN:
978-3-319-56702-0. DOI: 10.1007/978-3-319-56702-0_4.

[Sch+17b] Joseph Schuchart et al. “The READEX Formalism for Automatic Tuning for Energy
Efficiency.” In: Computing 99.8 (Jan. 2017), pp. 727–745. DOI: 10.1007/s00607-016-
0532-7.

[Sch+19] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel Hackenberg. En-
ergy Efficiency Features of the Intel Skylake-SP Processor and Their Impact on Performance.
accepted for publication. 2019. arXiv: 1905.12468 [cs.DC].

https://doi.org/10.1109/MM.2012.12
https://doi.org/10.1109/ISPASS.2018.00020
http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/pdf/scorep.pdf
http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/pdf/scorep.pdf
https://lwn.net/Articles/775618/
https://doi.org/10.1016/j.procs.2015.05.320
https://doi.org/10.1007/978-3-642-21878-1_62
https://doi.org/10.1109/e2sc.2016.015
https://doi.org/10.1007/s00450-016-0327-2
https://doi.org/10.1007/s00450-016-0327-2
https://doi.org/10.1007/978-3-319-56702-0_4
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/s00607-016-0532-7
https://arxiv.org/abs/1905.12468

152 Appendix A. Bibliography

[Sch19] SchedMD. Slurm Power Saving Guide. Nov. 11, 2019. URL: https://slurm.schedmd.
com/power_save.html (visited on Dec. 9, 2019).

[Ser+12] Harald Servat, Germán Llort, Judit Giménez, Kevin Huck, and Jesús Labarta. “Folding:
Detailed Analysis with Coarse Sampling.” In: Tools for High Performance Computing 2011.
Springer Berlin Heidelberg, 2012, pp. 105–118. DOI: 10.1007/978-3-642-31476-6_9.

[SHM12] Robert Schöne, Daniel Hackenberg, and Daniel Molka. “Memory Performance at Reduced
CPU Clock Speeds: An Analysis of Current x86_64 Processors.” In: Presented as part of
the 2012 Workshop on Power-Aware Computing and Systems. HotPower’12. Hollywood,
CA: USENIX Association, 2012, p. 9.

[SM06] Sameer S. Shende and Allen D. Malony. “The Tau Parallel Performance System.” In:
The International Journal of High Performance Computing Applications 20.2 (May 2006),
pp. 287–311. DOI: 10.1177/1094342006064482.

[SMW14] Robert Schöne, Daniel Molka, and Michael Werner. “Wake-up Latencies for Processor
Idle States on Current x86 Processors.” In: Computer Science - Research and Development
(2014). DOI: 10.1007/s00450-014-0270-z.

[Sol05] Guang Gong Solomon W. Golomb. Signal Design for Good Correlation. Cambridge Uni-
versity Press, 2005. 458 pp. ISBN: 0521821045.

[sol19] solid IT. DB-Engines Ranking of Time Series DBMS. Nov. 4, 2019. URL: https://web.
archive.org/web/20191107090350/https://db-engines.com/en/ranking/time+
series+dbms (visited on Nov. 7, 2019).

[Sys15] System Management Interface Forum, Inc. PMBus Power System Management Protocol
Specification. Part II – Command Language. rev. 1.3.1. 2015. URL: http://pmbus.org/
Specifications/CurrentSpecifications (visited on Oct. 1, 2019).

[Tal+11] Nathan R. Tallent, John Mellor-Crummey, Michael Franco, Reed Landrum, and Laksono
Adhianto. “Scalable Fine-grained Call Path Tracing.” In: Proceedings of the international
conference on Supercomputing - ICS ’11. ACM Press, 2011. DOI: 10.1145/1995896.
1995908.

[Tim19] Timescale, Inc. TimescaleDB Docs. 2019. URL: https://docs.timescale.com (visited
on Feb. 5, 2020).

[Uni16] United EFI, Inc. Advanced Configuration and Power Interface (ACPI) specification. rev.
6.1. 2016. URL: https://www.uefi.org/sites/default/files/resources/ACPI_
6_1.pdf (visited on Feb. 11, 2020).

[Vaz+17] Sudharshan S. Vazhkudai, Ross Miller, Devesh Tiwari, Christopher Zimmer, Feiyi Wang,
Sarp Oral, Raghul Gunasekaran, and Deryl Steinert. “GUIDE: A Scalable Information
Directory Service to Collect, Federate, and Analyze Logs for Operational Insights into
a Leadership HPC Facility.” In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis on - SC ’17. ACM Press, 2017.
DOI: 10.1145/3126908.3126946.

[Ver15] Vernier. Watts Up Pro. 2015. URL: https://www.vernier.com/files/manuals/wu-
pro.pdf (visited on June 7, 2018).

[VH03] Rob F. Van der Wijngaart and Jin Haopiang. NAS Parallel Benchmarks, Multi-Zone Versions.
NAS-03-010. Tech. rep. NAS, July 2003. URL: https://www.nas.nasa.gov/assets/
pdf/techreports/2003/nas-03-010.pdf (visited on Feb. 26, 2020).

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python.” In: Nature Methods (2020). DOI: 10.1038/s41592-019-0686-2.

https://slurm.schedmd.com/power_save.html
https://slurm.schedmd.com/power_save.html
https://doi.org/10.1007/978-3-642-31476-6_9
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1007/s00450-014-0270-z
https://web.archive.org/web/20191107090350/https://db-engines.com/en/ranking/time+series+dbms
https://web.archive.org/web/20191107090350/https://db-engines.com/en/ranking/time+series+dbms
https://web.archive.org/web/20191107090350/https://db-engines.com/en/ranking/time+series+dbms
http://pmbus.org/Specifications/CurrentSpecifications
http://pmbus.org/Specifications/CurrentSpecifications
https://doi.org/10.1145/1995896.1995908
https://doi.org/10.1145/1995896.1995908
https://docs.timescale.com
https://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://doi.org/10.1145/3126908.3126946
https://www.vernier.com/files/manuals/wu-pro.pdf
https://www.vernier.com/files/manuals/wu-pro.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-010.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-010.pdf
https://doi.org/10.1038/s41592-019-0686-2

153

[Wal+17] Matthew J. Walker, Stephan Diestelhorst, Andreas Hansson, A. K. Das, S. Yang, Bashir
M. Al-Hashimi, and Geoff V. Merrett. “Accurate and Stable Run-Time Power Modeling
for Mobile and Embedded CPUs.” In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 36.1 (Jan. 2017), pp. 106–119. ISSN: 0278-0070. DOI:
10.1109/TCAD.2016.2562920.

[Wea18] Vince Weaver. Linux support for Power Measurement Interfaces. 2018. URL: http://web.
eece.maine.edu/~vweaver/projects/rapl/rapl_support.html (visited on July 9,
2018).

[Web04] John G. Webster. Electrical Measurement, Signal Processing, and Display. CRC Press,
2004. ISBN: 0-8493-1733-9.

[Wel67] Peter D. Welch. “The Use of Fast Fourier Transform for the Estimation of Power Spectra:
A Method Based on Time Averaging Over Short, Modified Periodograms.” In: IEEE
Transactions on Audio and Electroacoustics 15.2 (June 1967), pp. 70–73. ISSN: 0018-
9278. DOI: 10.1109/TAU.1967.1161901.

[WH11] Neil H. E. Weste and David M. Harris. CMOS VLSI Design — A Circuits and Systems
Perspective. 4th ed. Pearson, 2011.

[WI18] Rafael J. Wysocki and Thomas Ilsche. “CPU Idle Loop Ordering Problem.” In: Power
Management and Scheduling in the Linux Kernel (OSPM Summit) II edition. https:
//retis.sssup.it/luca/ospm-summit/2018/Downloads/idle_loop_rework.pdf
(part 1), https://retis.sssup.it/luca/ospm-summit/2018/Downloads/2018_
OSPM_powernightmares.pdf (part 2) (visited on Feb. 11, 2020). 2018.

[Yok16] Yokogawa Electric Corporation. WT1800E Series High performance Power Analyzers.
WT1800E-01EN. Yokogawa Electric Corporation. 2016. URL: https://cdn.tmi.
yokogawa.com/BUWT1800E-01EN.pdf (visited on Feb. 5, 2020).

[Yok17] Yokogawa Electric Corporation. WT1801E, WT1802E, WT1803E, WT1804E, WT1805E,
WT1806E Precision Power Analyzer User’s Manual. IM WT1801E-02EN. 3rd ed. Yokogawa
Electric Corporation. 2017. URL: https://cdn.tmi.yokogawa.com/IMWT1801E-
02EN.pdf (visited on Feb. 5, 2020).

[ZES] ZES ZIMMER Electronic Systems GmbH. 4-Channel Power Meter LMG450. ZES ZIMMER
Electronic Systems GmbH. URL: https://www.zes.com/en/content/download/286/
2473/file/lmg450_prospekt_1002_e.pdf (visited on Feb. 5, 2020).

[ZES15] ZES ZIMMER Electronic Systems GmbH. DualPath explained - Why one A/D converter
per channel is not (always) sufficient. ZES ZIMMER Electronic Systems GmbH. May 2015.
URL: https://www.zes.com/en/content/download/1115/13063/file/DualPath%
20explained.pdf (visited on Feb. 5, 2020).

[ZES16] ZES ZIMMER Electronic Systems GmbH. Instrument Family LMG600 — 1 to 7 phase
precision power analyzer - User Manual. V1.030 R33655. ZES ZIMMER Electronic Systems
GmbH. Feb. 2016.

https://doi.org/10.1109/TCAD.2016.2562920
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
https://doi.org/10.1109/TAU.1967.1161901
https://retis.sssup.it/luca/ospm-summit/2018/Downloads/idle_loop_rework.pdf
https://retis.sssup.it/luca/ospm-summit/2018/Downloads/idle_loop_rework.pdf
https://retis.sssup.it/luca/ospm-summit/2018/Downloads/2018_OSPM_powernightmares.pdf
https://retis.sssup.it/luca/ospm-summit/2018/Downloads/2018_OSPM_powernightmares.pdf
https://cdn.tmi.yokogawa.com/BUWT1800E-01EN.pdf
https://cdn.tmi.yokogawa.com/BUWT1800E-01EN.pdf
https://cdn.tmi.yokogawa.com/IMWT1801E-02EN.pdf
https://cdn.tmi.yokogawa.com/IMWT1801E-02EN.pdf
https://www.zes.com/en/content/download/286/2473/file/lmg450_prospekt_1002_e.pdf
https://www.zes.com/en/content/download/286/2473/file/lmg450_prospekt_1002_e.pdf
https://www.zes.com/en/content/download/1115/13063/file/DualPath%20explained.pdf
https://www.zes.com/en/content/download/1115/13063/file/DualPath%20explained.pdf

154 Appendix A. Bibliography

155

B Abbreviations

AC alternating current.

ACPI Advanced Configuration and Power Interface.

ADC analog-to-digital-converter.

AMQP Advanced Message Queuing Protocol.

API application programming interface.

AQP approximate query processing.

BMC baseboard management controller.

CMOS complementary metal–oxide–semiconductor.

COW copy-on-write.

CSV comma separated value.

DC direct current.

DiG Dwarf in a Giant.

DIMM dual in-line memory module.

DRAM dynamic random access memory.

DVFS dynamic voltage and frequency scaling.

FFT fast Fourier transform.

FPGA field-programmable gate array.

GPIO general-purpose input/output.

GPU graphics processing unit.

HDEEM High Definition Energy Efficiency Monitoring.

HPC High Performance Computing.

HTA Hierarchical Timeline Aggregation.

156 Appendix B. Abbreviations

IPMI Intelligent Platform Management Interface.

IVR fully integrated voltage regulator.

JSON JavaScript Object Notation.

LSM-tree Log-Structured Merge Tree.

MIC Many Integrated Core.

MPI message passing interface.

MQTT Message Queuing Telemetry Transport.

MSR model specific register.

NTP network time protocol.

NVMe non-volatile memory express.

OS operating system.

OTF2 Open Trace Format 2.

PAPI Performance application programming interface.

PCG permuted congruential generator.

PCI Peripheral Component Interconnect.

PCIe PCI Express.

PDU power distribution unit.

PHC PTP Hardware Clock.

PSD power spectral density.

PSU power supply unit.

PTP precise time protocol.

PUE power usage effectiveness.

PXI PCI eXtensions for Instrumentation.

RAPL Running Average Power Limiting.

RDBMS relational database management system.

REST representational state transfer.

157

RPC remote procedure call.

SMT simultaneous multithreading.

SUT system under test.

TDP thermal design power.

TLS Transport Layer Security.

TSI Time Series Index.

TSM Time-Structured Merge Tree.

UUID universally unique identifier.

VIF variance of inflation.

VR voltage regulator.

WAL write ahead log.

158 Appendix C. Glossary

C Glossary

compute node The set of components that run one operating system (OS) instance and share a

memory address space. A compunte node can be part of a larger parallel computing system or

an individual smaller system.

core An independant processing unit with dedicated resources for exeuting instructions.

hardware thread A processing unit that shares some resources of a core with other hardware threads.

On systems without simultaneous multithreading, one hardware thread corresponds to one

core.

logical CPU An independent processing unit as seen by the operating system. One logical CPU

corresponds to one hardware thread.

measurand The quantity that is intended to be measured [JCG12].

metric Identifies a specific measurand that is repeatedly measured.

processor package A single physical piece containing the processor cores and other related compo-

nents. A number of DRAM memory DIMMs are associated with each processor package, but not

contained on it.

readout rate The rate at which measuremt values for one measurand are available for further analysis.

readout value The measured value that is available to the user or analysis as opposed to measured

values that are used internally in a layered measuring system.

Slurm The Slurm Workload Manager is a job scheduler used by HPC systems, including taurus.

socket The component on a mainboard hosting a processor package. Socket and processor package

are often used synonymously.

uncertainty In general discussion: An estimation of the upper limit of the absolute value of the total

error. In the context of a formal uncertainty evaluation, uncertainty refers to a characterization

of the dispersion of a measured value [JCG12].

159

D List of Software Contributions

During the creation of this thesis, I developed several open source software packages. I am the lead

developer for the following packages with support and contributions of my colleagues:

Name License Referenced in

MetricQ BSD-3-Clause Section 4.2.2, Section 4.2.3
C++ and Python library for MetricQ as well as protocol definitions and RPC abstractions.

https://github.com/metricq/metricq

MetricQ management agent GPL-3.0 Section 4.2
Python management agent implementation to orchestrate the MetricQ instance.

https://github.com/metricq/metricq-manager

MetricQ aggregator GPL-3.0 Section 4.3.7
Agent to aggregate high-resolution measurement data for storage in the database.

https://github.com/metricq/metricq-aggregator

MetricQ Grafana endpoint GPL-3.0 Section 5.1.2
HTTP(S) endpoint for visualizing historic metric charts with Grafana.

https://github.com/metricq/metricq-grafana

MetricQ WebSocket endpoint GPL-3.0 Section 5.1.1
WebSocket endpoint for live visualization; The included JavaScript client library was developed by Mario Bielert.

https://github.com/metricq/metricq-sink-websocket

HTA library BSD-3-Clause Section 4.2.5
C++ library to access data in a file-based Hierarchical Timeline Aggregation (HTA) time series database.

https://github.com/metricq/hta

MetricQ HTA DB agent GPL-3.0 Section 4.2.5
C++ agent on top of the HTA library to provide persistent storage for MetricQ.

https://github.com/metricq/metricq-db-hta

lo2s GPL-3.0 Section 2.5, Section 5.3.1, Section 5.3.2
Linux OTF2 Sampling — a lightweight node-level monitoring software.

https://github.com/tud-zih-energy/lo2s

Score-P MetricQ plugin BSD-3-Clause Section 5.1.3, Section 5.3.1, Section 5.3.2
Metric plugin for integrating measurement data from MetricQ in Score-P and lo2s.
Includes the robust automatic time synchronization based on signal processing.

https://github.com/score-p/scorep_plugin_metricq

Score-P HDEEM plugin BSD-3-Clause Section 5.1.3, Section 5.3.1
Metric plugin for integrating measurement data from HDEEM in Score-P and lo2s.

https://github.com/score-p/scorep_plugin_hdeem

Linux fallback-timer GPL-3.0 Section 5.3.1
Proof-of-concept implementation of a fallback timer in the Linux menu idle governor to prevent Powernightmares.

https://github.com/tud-zih-energy/linux/tree/menu_idle_fallback_timer

roco2 GPL-3.0 Section 3.6
Main development by Mario Bielert [Bie15]; Enhanced for the RAPL evaluation on ariel.

https://github.com/tud-zih-energy/roco2/tree/tilsche-diss

https://github.com/metricq/metricq
https://github.com/metricq/metricq-manager
https://github.com/metricq/metricq-aggregator
https://github.com/metricq/metricq-grafana
https://github.com/metricq/metricq-sink-websocket
https://github.com/metricq/hta
https://github.com/metricq/metricq-db-hta
https://github.com/tud-zih-energy/lo2s
https://github.com/score-p/scorep_plugin_metricq
https://github.com/score-p/scorep_plugin_hdeem
https://github.com/tud-zih-energy/linux/tree/menu_idle_fallback_timer
https://github.com/tud-zih-energy/roco2/tree/tilsche-diss

160 Appendix D. List of Software Contributions

161

Acknowledgments

At the end of this journey, I want to express my deepest gratitude for the generous support that I

received throughout the making of this thesis.

First and foremost, my thanks go to my doctoral advisor Prof. Dr. Wolfgang E. Nagel, who supported

me throughout my academic career and always showed patience with this thesis. I thank Prof. Dr.

Wolfgang Lehner for sharing his expertise as additional supervisor.

The invaluable critical feedback from Dr. Andreas Knüpfer, Mario Bielert, and Dr. Robert Schöne has

been instrumental for this work — thank you. My colleagues from the energy efficiency research

group and the ZIH are the reason for the productive and enjoyable working environment. In particular,

I appreciate the prolific discussions with Andreas Gocht on electrical engineering. Moreover, I thank

Daniel Hackenberg, who always has my back and Prof. Dr. Florina M. Ciorba for stimulating the

beginnings of this thesis. I am very grateful for the collaboration with Robin Geyer and Joseph

Schuchart on the HDEEM acceptance test measurements, particularly during my parental leave. I

also thank my exceptional student assistants Franz Höpfner and Philipp Joram for contributing to

the implementation of MetricQ as well as Christian von Elm for his support with the development of

lo2s.

At TU Dresden, I have the pleasure of excellent interdisciplinary support. My thanks go to Stefan Graul

for the implementation of the measuring systems of artemis and diana. I thank Dr. Christian Scheunert

and Axel Schmidt, who shared their knowledge of electrical engineering and signal processing in

particular. I also thank Dr. Christoph Lehmann and Dr. Taras Lazariv for their input on statistical

evaluations and mathematical modeling. Moreover, I thank Dr. Claudio Hartmann for his insight into

time series databases. Being part of the collaborative research team Highly Adaptive Energy-efficient

Computing (HAEC) has been a unique and stimulating experience. I thank the German Research

Foundation (DFG) for funding this CRC 912.

Finally, my deepest gratitude goes to my wonderful family — especially my mother, who nurtured

my passion for science, my wife, who found the right balance of patience and motivation, and my

daughter — stay curious.

162 Acknowledgments

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Basic Concepts of Energy Measurements
	Basics of Metrology
	Measuring Voltage, Current, and Power
	Measurement Signal Conditioning and Analog-to-Digital Conversion

	Power Measurements for Computing Systems
	Measuring Compute Nodes using External Power Meters
	Custom Solutions for Measuring Compute Node Power
	Measurement Solutions of System Integrators
	CPU Energy Counters
	Using Models to Determine Energy Consumption

	Processing of Power Measurement Data
	Time Series Databases
	Data Center Monitoring Systems

	Influences on the Energy Consumption of Computing Systems
	Processor Power Consumption Breakdown
	Energy-Efficient Hardware Configuration

	HPC Performance and Energy Analysis
	Performance Analysis Techniques
	HPC Performance Analysis Tools
	Combining Application and Power Measurements

	Conclusion

	Evaluating and Improving Energy Measurements
	Description of the Systems Under Test
	Instrumentation Points and Measurement Sensors
	Analog Measurement at Voltage Regulators
	Instrumentation with Hall Effect Transducers
	Modular Instrumentation of DC Consumers
	Optimal Wiring for Shunt-Based Measurements
	Node-Level Instrumentation for HPC Systems

	Analog Signal Conditioning and Analog-to-Digital Conversion
	Signal Amplification
	Analog Filtering and Analog-To-Digital Conversion
	Integrated Solutions for High-Resolution Measurement

	Accuracy Evaluation and Calibration
	Synthetic Workloads for Evaluating Power Measurements
	Improving and Evaluating the Accuracy of a Single-Node Measuring System
	Absolute Accuracy Evaluation of a Many-Node Measuring System

	Evaluating Temporal Granularity and Energy Correctness
	Measurement Signal Bandwidth at Different Instrumentation Points
	Retaining Energy Correctness During Digital Processing

	Evaluating CPU Energy Counters
	Energy Readouts with RAPL
	Methodology
	RAPL on Intel Sandy Bridge-EP
	RAPL on Intel Haswell-EP and Skylake-SP

	Conclusion

	A Scalable Infrastructure for Processing Power Measurement Data
	Requirements for Power Measurement Data Processing
	Concepts and Implementation of Measurement Data Management
	Message-Based Communication between Agents
	Protocols
	Application Programming Interfaces
	Efficient Metric Time Series Storage and Retrieval
	Hierarchical Timeline Aggregation

	Performance Evaluation
	Benchmark Hardware Specifications
	Throughput in Symmetric Configuration with Replication
	Throughput with Many Data Sources and Single Consumers
	Temporary Storage in Message Queues
	Persistent Metric Time Series Request Performance
	Performance Comparison with Contemporary Time Series Storage Solutions
	Practical Usage of MetricQ

	Conclusion

	Energy Efficiency Analysis
	General Energy Efficiency Analysis Scenarios
	Live Visualization of Power Measurements
	Visualization of Long-Term Measurements
	Integration in Application Performance Traces
	Graphical Analysis of Application Power Traces

	Correlating Power Measurements with Application Events
	Challenges for Time Synchronization of Power Measurements
	Reliable Automatic Time Synchronization with Correlation Sequences
	Creating a Correlation Signal on a Power Measurement Channel
	Processing the Correlation Signal and Measured Power Values
	Common Oversampling of the Correlation Signals at Different Rates
	Evaluation of Correlation and Time Synchronization

	Use Cases for Application Power Traces
	Analyzing Complex Power Anomalies
	Quantifying C-State Transitions
	Measuring the Dynamic Power Consumption of HPC Applications

	Conclusion

	Summary and Outlook
	Bibliography
	Abbreviations
	Glossary
	List of Software Contributions

