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Abstract

The ever-increasing need for more computing and data processing power demands
for a continuous and rapid growth of power-hungry data center capacities all over
the world. As a first study in 2008 revealed, energy consumption of such data centers
is becoming a critical problem, since their power consumption is about to double
every 5 years. However, a recently (2016) released follow-up study points out that
this threatening trend was dramatically throttled within the past years, due to the
increased energy efficiency actions taken by data center operators. Furthermore, the
authors of the study emphasize that making and keeping data centers energy-efficient
is a continuous task, because more and more computing power is demanded from
the same or an even lower energy budget, and that this threatening energy consump-
tion trend will resume as soon as energy efficiency research efforts and its market
adoption are reduced. An important class of applications running in data centers
are data management systems, which are a fundamental component of nearly every
application stack. While those systems were traditionally designed as disk-based
databases that are optimized for keeping disk accesses as low a possible, modern
state-of-the-art database systems are main memory-centric and store the entire data
pool in the main memory, which replaces the disk as main bottleneck. To scale up
such in-memory database systems, non-uniform memory access (NUMA) hardware
architectures are employed that face a decreased bandwidth and an increased latency
when accessing remote memory compared to the local memory.

In this thesis, we investigate energy awareness aspects of large scale-up NUMA
systems in the context of in-memory data management systems. To do so, we pick up
the idea of a fine-grained data-oriented architecture and improve the concept in a way
that it keeps pace with increased absolute performance numbers of a pure in-memory
DBMS and scales up on NUMA systems in the large scale. To achieve this goal, we
design and build ERIS, the first scale-up in-memory data management system that
is designed from scratch to implement a data-oriented architecture. With the help of
the ERIS platform, we explore our novel core concept for energy awareness, which is
Energy Awareness by Adaptivity. The concept describes that software and especially
database systems have to quickly respond to environmental changes (i.e., workload
changes) by adapting themselves to enter a state of low energy consumption. We
present the hierarchically organized Energy-Control Loop (ECL), which is a reactive
control loop and provides two concrete implementations of our Energy Awareness
by Adaptivity concept, namely the hardware-centric Resource Adaptivity and the
software-centric Storage Adaptivity. Finally, we will give an exhaustive evaluation
regarding the scalability of ERIS as well as our adaptivity facilities.
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1 Introduction

“Available energy is the main object at stake
in the struggle for existence and the evolution of the world.”

– Ludwig E. Boltzmann
(Philosopher and Physicist, 1844-1906)

The ever-increasing need for more computing and data processing power demands
for a continuous and rapid growth of power-hungry data center capacities all over the
world. As the first comprehensive analysis of U.S. data centers energy consumption
in 2008 [27] concluded: The energy consumption of such data centers is becoming
a critical problem, since their power consumption is about to double every 5 years.
Moreover, the report stated that in 2006 about 61 billion kilowatt-hours (kWh) –
equal to about $4.5 billion in electricity costs – were consumed by data centers only
in the United States.

Figure 1.1: U.S. data center energy consumption: historic numbers, current
trends, and 2010 energy efficiency scenarios [126].

However, a recently (2016) released follow-up study [126] revealed that this threat-
ening trend was dramatically throttled within the past years, due to the increased
energy efficiency actions taken by data center operators. As Figure 1.1 shows, the
increase of U.S. data centers energy consumption only increased by 24 % from 2005
to 2010 and by 4 % from 2010 to 2014. The results of the study also emphasize that
making and keeping data centers energy-efficient is a continuous task, because more
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1 Introduction

and more computing power is demanded from the same or an even lower energy
budget, and that this threatening energy consumption trend will resume as soon
as energy efficiency research efforts and its market adoption are reduced. For in-
stance, Figure 1.1 additionally shows how the energy consumption would have been
increased, if no additional energy efficiency improvements would have happened
since 2010. Such a lack of innovation would have led to an estimated overall energy
wasting of 620 billion kWh between 2010 and 2020.

Figure 1.2: Historic, current, and predicted energy consumption by data center
components in the United States [126].

The study also provides a breakdown of the overall energy consumption into the
individual components of a data center. Figure 1.2 depicts their respective energy
demand over time. As shown, the servers themselves are responsible for most of
the energy draw and their overall share is predicted to increase in the future. An-
other high fraction of the overall energy consumption accounts for the infrastructure,
which is responsible for getting the power to the servers and most importantly for
getting the generated heat away from them. As the chart shows, the energy costs
for infrastructure already decreased and are predicted to further decrease in future.
The least share of energy is consumed by peripheral equipment such as network
infrastructure and external storage systems. Thus, we can conclude that most of
the energy saving potential arises from the servers themselves, because they are the
most energy consuming components in a data center and every energy saving that
is made within the servers also positively affects the absolute energy costs for infras-
tructure in terms of decreased power transformation losses and less energy consumed
by cooling equipment.

To classify existing techniques that contributed to energy efficiency in data centers
so far, we provide a classification in Figure 1.3. In this classification we distinguish
three different research areas, which are the infrastructure level, the inter-server
level, and the intra-server level. In the following, we will detail on the different
topics:
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Figure 1.3: Classification of energy savings achieved in the past years.

Infrastructure Level. The main contributor for energy consumption at the in-
frastructure level is the cooling equipment that was designed to run at full
speed independently of whether the full cooling power was actually needed
or not. Today, this cooling equipment is designed as an on-demand system
and provides much more sophisticated cooling strategies [103] such as airflow
optimization [31], aisle isolation, economizers, and (warm-)liquid cooling [69].

Inter-Server Level. At the level of multiple servers, virtualization and server con-
solidation are the major complementary technologies that enabled the most en-
ergy savings [92, 136]. The basic idea is to break with the traditional paradigm
of assigning a fixed set of application instances to a physical hardware re-
source. Instead, application instances are dynamically deployed at runtime to
free hardware resources. Using this technology, servers are better utilized and
thus, achieve a better energy efficiency compared to servers that are operated
at a low utilization. For instance, its better to operate one server at 100 % than
10 servers at 10 %. Another major advancement in energy efficiency is the wide
deployment of solid-state-drives (SSD), which provide better performance and
consume less energy compared to mechanical hard drives [121].

Intra-Server Level. Energy efficiency advancements inside of a single server sys-
tem mainly originate from the efforts of hardware manufacturers to build
more energy-efficient hardware. Since higher core clocks became more and
more infeasible because of their disproportional increase of power consump-
tion, hardware vendors focus on alternative techniques such as multi-cores,
superscalar pipelines, out-of-order execution, specialized instruction set ar-
chitectures (ISA), and smaller feature sizes. Additionally, todays processors
provide a rich set of energy-control features like dynamic voltage and frequency
scaling (DVFS), core and processor sleep states, and HyperThreading. From
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1 Introduction

the software application itself, energy efficiency considerations are mostly lim-
ited to energy-efficient algorithms and operating system support for controlling
the energy-control features of the processor. However, the main problem of
leaving energy-control to the operating system only, is that it lacks impor-
tant application-specific knowledge that is necessary for making appropriate
decisions in terms of energy efficiency.

An important class of applications running in data centers are data management
systems, which are an important component of nearly every application stack. While
those systems were traditionally designed as disk-based databases that are optimized
for keeping disk accesses as low a possible, modern state-of-the-art database systems
are main memory-centric. Such in-memory DBMSs store the entire data pool in the
main memory and use hard drives respectively SSDs only for durability purposes.
Due to the high data volume, today’s in-memory database systems have to manage,
either scale-out or scale-up solutions are necessary to provide enough main memory
capacities, because uniform memory access (UMA) architectures are strongly limited
in their scalability. No matter whether a scale-up or a scale-out solution is employed,
those architectures exhibit a non-uniform memory access (NUMA) that faces a de-
creased bandwidth and an increased latency when accessing remote memory, which
needs to be taken into account when considering energy efficiency.

The fundamental difference between scale-up and scale-out approaches is the un-
derlying programming model. While a scale-up system behaves like a single ma-
chine, database systems running on such an architecture are traditionally designed
in a transaction-oriented way, because the scale-up architecture itself resolves mem-
ory accesses to remote memory transparently for the programmer using advanced
cache coherency protocols. Contrary, scale-out systems require the programmer to
do the remote memory access explicitly and thus, database systems on scale-out
systems are commonly designed as data-oriented systems where all data objects are
implicitly partitioned and each partition is placed in a well-known memory loca-
tion. While transaction-oriented architectures let a transaction directly access data
objects, which adds costs for latching data objects as well as for remote memory
accesses, the data-oriented architecture needs to split the transaction into smaller
pieces based on the actual partitioning and requires explicit communication between
those transaction pieces to enable transactions that work on different partitions. The
obvious advantage of such an architecture are less costs for latching data objects and
especially the improved locality when operating on data, which positively affects en-
ergy efficiency, because less time and energy is needed for transaction execution.

While the smallest unit a data partition can be assigned to is a single server in the
scale-up scenario, recent works proposed to push the programing paradigm of the
data-oriented architecture even further and applying it to scale-up systems [104, 106].
The core idea is to use more fine-grained partitioning and make a single hardware
thread the smallest unit a partition can be assigned to. Hence, data object latching
efforts can be almost eliminated, because only one thread is able to access a spe-
cific partition, and the effective data access is guaranteed to happen in local main
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memory. Using this approach, the authors were able to achieve performance and
scalability improvements for disk-based DBMSs on single-socket as well as small-
scale multi-socket architectures. However, the main problem of such a fine-grained
data-oriented architecture is its sensitivity to workloads that do not fit to the current
data partitioning which causes an odd utilization of the individual worker threads.
To solve this issue, the partitioning needs to be adjusted on the fly, which comes at
the cost of increased energy consumption.

In this thesis, we investigate energy awareness aspects of large scale-up NUMA
systems in the context of in-memory data management systems. To do so, we pick
up the idea of a fine-grained data-oriented architecture and improve the concept in
a way that it keeps pace with increased absolute performance numbers of a pure
in-memory DBMS and scales up on NUMA systems consisting of up to 64 sockets
and a total of 768 hardware threads and beyond. To achieve this goal, we design
and build the first scale-up in-memory data management system – namely ERIS –
that is designed from scratch to implement a data-oriented architecture.

With the help of the ERIS platform, we explore our novel core concept for energy
awareness, which is Energy Awareness by Adaptivity. The concept describes that
software and especially database systems have to quickly respond to environmental
changes (i.e., workload changes) by adapting themselves to enter a state of low energy
consumption. We will show that the data-oriented architecture already provides a
solid foundation for quick adaptations, but still misses important changes, which
are covered by our Living Partitions architecture that understands individual data
partitions as evolving objects that are not bound to a specific hardware thread
anymore. Finally, we present the hierarchically organized Energy-Control Loop,
which is an reactive control loop and provides two concrete implementations of our
Energy Awareness by Adaptivity concept:

Resource Adaptivity. As already mentioned, today’s hardware provides a multi-
tude of energy-control knobs (e.g., DVFS, core and package sleep states, and
HyperThreading). Resource Adaptivity is an holistic approach for managing
these hardware energy-control knobs at runtime. The approach is based on
an adaptive socket-local energy profile that is used to quickly reconfigure the
hardware in case of workload changes. Doing so, the Resource Adaptivity is
able find the most energy-efficient degree of parallelism as well as core and
uncore frequency settings for the current workload type and system load.

Storage Adaptivity. An important factor for the query processing performance
of a database system is the physical layout of the data that needs to fit to the
current workload, which is a moving target. Thus, there is not the one-size-
fits-all physical layout and Storage Adaptivity is responsible for continuously
adapting the physical storage to increase query performance and thus, energy
efficiency. Due to the Living Partitions architecture, ERIS is able to switch
the physical data representation at runtime on a fine-grained level without
inducing a severe negative impact on running queries.
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1 Introduction

1.1 Summary of Contributions

The contributions of this thesis can be summarized as follows:

(1) We investigate the opportunities for saving energy in main memory database
systems. Based on these insights, we derive our core concept of Energy Aware-
ness by Adaptivity and name Resource Adaptivity, Storage Adaptivity, and Data
Placement Adaptivity as specific implementations of this concept. We analyze
and formulate the requirements for an energy-aware data management system
architecture.

(2) We improve the data-oriented architecture for scale-up database systems to be
employable for pure in-memory DBMSs and to scale on large NUMA systems.
We provide a comprehensive evaluation including measurements for a proof of
concept implementation showing the overall feasibility of the approach as well
as performance and scalability measurements for a real database system. We
conducted the experiments on a scale-up NUMA system consisting of 64 sockets
and up to 768 hardware threads using our in-memory DBMS ERIS.

(3) Based on our formulated requirements for an energy-aware data management
system architecture, we advance the data-oriented architecture and present the
Living Partitions architecture as the final result. The Living Partitions approach
mainly decouples individual partitions from hardware threads and gives them
the freedom to evolve and adapt at runtime. Moreover, we implemented the
necessary architectural changes in ERIS and present the Energy-Control Loop
as the hosting component for adaptations at runtime.

(4) We analyze the energy tuning knobs of a current mainstream server system and
quantify the impact of the respective knobs on performance and power. We
propose energy profiles and describe how they can efficiently be generated and
maintained at runtime. With the help of such profiles, we show how different
workload types affect the optimal compute resource configuration in terms of
energy efficiency and performance. Furthermore, we present Resource Adaptiv-
ity as an holistic approach for adaptive energy-control on scale-up in-memory
DBMSs. We give an exhaustive evaluation of the Resource Adaptivity imple-
mentation regarding all important aspects including an end-to-end evaluation
using a real world load profile.

(5) We propose our approach of modular and flexible micro storage engines that
operate within the individual Living Partitions and allow a fine-grained Storage
Adaptivity at runtime. We describe the changes that are necessary for the query
processing model to support such adaptations and their impact on the query
processing performance including an end-to-end evaluation using highly variable
workload scenarios.

6



1.2 Outline

1.2 Outline

Figure 1.4: Structure of the thesis.

The structure of this thesis is visualized in Figure 1.4. Starting with Chapter 2, we
present the necessary background for understanding the nature of energy especially
in the context of data management systems. As the main outcome, we describe our
core concept of Energy Awareness by Adaptivity and name possible implementations
of this concept resulting in the formulation of a set of requirements for energy-aware
data management systems. In the succeeding Chapter 3, we classify existing DBMS
architectures with respect to our obtained requirements and argue that the data-
oriented architecture is the best fitting foundation for our needs. We describe the
enhancements that are necessary to transfer this architecture to a massively parallel
in-memory database system and show first experimental results using a large scale-up
NUMA system to demonstrate the feasibility of the approach. Based on our findings
and requirements, we present the Living Partitions architecture, which enables the
classical data-oriented architecture to do fine-grained energy-related adaptations at
runtime and present a sophisticated experimental evaluation using our DBMS imple-
mentation ERIS. Afterwards, Chapter 4 and 5 deal with two implementations of our
Energy Awareness by Adaptivity concept – namely Resource Adaptivity and Storage
Adaptivity – each including a detailed evaluation. Finally, Chapter 6 concludes the
thesis.
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2 Energy Awareness in Data
Management

In this chapter, we specify our target hardware architecture and cover the neces-
sary background for understanding the nature of power and energy, especially in
the context of data management systems. Furthermore, we introduce the topic of
energy awareness in database systems and discuss the important aspects of how to
measure and benchmark energy awareness in practice. As the main contribution
of this chapter, we finally come up with our core concept of Energy Awareness by
Adaptivity and formulate a variety of requirements that a database system architec-
ture needs to fulfill to enable specific implementations of this concept. We derive
those requirements based on three concrete implementations of our concept, which
are Resource Adaptivity, Storage Adaptivity, and Data Placement Adaptivity as well
as the overall concept itself.

2.1 Target Hardware Architecture

In this section, we specify the hardware architecture we are aiming at within this
thesis. A schematic view of this architecture is given in Figure 2.1. As shown, we
limit our scope to single-box scale-up symmetric multiprocessor systems and explic-
itly do not cover scale-out architectures. Symmetric multiprocessor architectures
consist of multiple CPUs (also referred to as sockets, processors, or nodes) where
each CPU nowadays implements multiple cores (multi-core processor) and simul-
taneous multithreading (SMT), e.g., Intel HyperThreading, to achieve parallelism
within a single processor.

An important aspect of our target hardware architecture is the memory model.
Here, we distinguish between a uniform memory access (UMA) model and a non-
uniform memory access (NUMA) model. An UMA memory model is usually em-
ployed in single-processor systems due to its limited scalability, which is caused by
a high contention on the memory bus and by increased latencies originating from
an increased physical length of circuit paths when connecting multiple processors to
the same memory. Thus, current multiprocessor systems employ a NUMA memory
model where each processor has its own local main memory. To allow CPUs a trans-
parent access to the remote main memory of another CPU, NUMA systems provide
a globally shared memory by implementing a cache coherence protocol (e.g., MESI)
to ensure consistent cache states across the individual processors. Database systems
running on NUMA multiprocessing systems need to be aware of the physical data
location as we will show in an in-depth analysis in chapter 3. The specific instances
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2 Energy Awareness in Data Management

13

Single Server Box (Scale-Up)

core core core coreSocket core core core coreSocket

…

Local Main Memory Local Main Memory

Shared Memory

Multi-Core Processor

Multiprocessing System

Figure 2.1: Schematic view of our targeted hardware architecture.

of our target hardware architecture range from widely deployed commodity server
systems up to large scale-up systems (e.g., SGI UV familiy [124]).

To address the topic of energy consumption, modern processors offer energy-
control mechanisms that are defined by the Advanced Configuration and Power
Interface (ACPI) [137]. One mechanism defined by the standard are processor states
(C-States) allowing the processor the put certain hardware components into a sleep
mode. The standard includes about 10 C-States ranging from C0 to C7 (e.g., C1
and C1E) where C0 is the operating state and the C7 the deepest available sleep
state. Such a processor state allows the CPU to selectively turn core clocks and
caches on or off depending on their actual usage. Another mechanism defined by
the ACPI standard are performance states (P-States). P-states use the dynamic
voltage and frequency scaling (DVFS) method to control the power consumption
of the processor. The DVFS method enables the CPU to adjust it’s frequency and
supply voltage at runtime to control its power consumption and performance. While
C-States and P-States are mostly standardized, additional energy-control knobs are
available via machine-specific registers (MSR) that depend on the concrete processor
model. We will give an in-depth overview and analysis of all available energy-control
knobs of a current server system in chapter 4 and limit our considerations so far on
performance and processor states.

To summarize, within this thesis we focus on large scale-up multiprocessing
systems that employ a cache-coherent NUMA memory model. Such an architecture
consists of multi-core processors that have a local main memory and provide certain
energy-control features. The most important features for energy-control are proces-
sor states (C-States) to turn off entire hardware components and performance states
(P-States) to adjust frequency and supply voltage at runtime.

10



2.2 Physical Definition of Power and Energy

2.2 Physical Definition of Power and Energy

The physical unit of electrical Energy (E) describes the amount of energy that was
absorbed by an electrical circuit within a specific time span. Such an electrical circuit
can be described using the basic model for discrete current depicted in Figure 2.2.
The model consists of a linear power source, which mainly delivers energy including
some energy losses modeled by an internal resistance (Ri), and the actual energy
consumer (RC) that converts the delivered energy to another type of energy such
as thermal energy. The physical units that can be measured within such a circuit
are the discrete current (I), the discrete voltage (U) and the time (t). To compute
the electrical Power (P) that is drawn by the consumer at a specific point in time,
formula 2.1 is used. As its unit shows, the power describes how much energy is
consumed per second at a certain instant of time.

p(t) = u(t) · i(t) = [V ·A] = [W ] = [J · s−1] (2.1)

To finally calculate the overall energy consumed, equation 2.2 needs to be used.

E =

∫
t

p(t) · dt =

∫
t

u(t) · i(t) · dt = [W · s] = [J ] (2.2)

1

U0

Ri

RC

I

U

A

BLinear Power Source Power Consumer

Figure 2.2: Physical model of a linear power source and a power consumer.

We schematically visualized the formula for electrical energy in Figure 2.3. As
shown, energy is equal to the area under the power curve between certain time
points, which makes it to a unit that can not be directly measured and needs to
be approximated using methods of the numerical integration based on the measure-
ments of voltage and current within the requested time range. One example for
such an approximation is given by formula 2.3, which in practice requires n + 1
measurements of voltage and current at equidistant points in time. The quality of
the approximation depends on the chosen value of n as well as the time span ∆t.
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Figure 2.3: Energy as a function of the power curve.

E(∆t) ≈ P ·∆t ≈ t2 − t1
n

·

(
p(t1)

2
+

n−1∑
k=1

(
p

(
t1 + k · t2 − t1

n

))
+
p(t2)

2

)
(2.3)

Thus, we can summarize that electrical energy denotes the amount of energy
absorbed by a consumer and is equal to the area enclosed by the power curve within
a given time span, which needs to be approximated using frequent measurements of
voltage and current.

2.3 Energy Awareness

In this section, we discuss certain metrics describing the energy awareness of a data
management system. Beforehand, we need to define what energy awareness exactly
is. In our understanding:

Definition 2.1 (Energy Awareness) Energy Awareness is the ability of soft-
ware (e.g., a database system) to be conscious of its energy consumption behavior
related to the amount of work it is executing.

According to the definition, there are two units involved in quantifying the energy
awareness of software and thus, of a database system:

(1) The Energy consumption within a specific time span respectively the Power
consumption at a specific point in time.

(2) The amount of Work executed by the database system within a certain time
range respectively the Performance at a specific instant of time.

Hence, we will discuss in the following how the non-trivial unit of work respectively
performance can be measured in a database system. Afterwards, we will introduce
specific relations of work/performance and energy/power leading to the particular
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metricsforenergyawareness. Thesetwometricsareenergyefficiencyandenergy
proportionalitythatwewilldiscussindetailespeciallyinthecontextoftheenergy-
controlfeaturesavailableinmodernprocessors. Bothspecificmetricsforenergy
awarenessaresubjectoffurtheroptimizationtoimprovetheoverallenergyawareness
ofadatamanagementsystem.

2.3.1 WorkandPerformanceUnits

2

BEGIN
SELECT …
INSERT …
SELECT …
COMMIT

pushpush%ebp
movmov %ebp,%esp
addadd%eax,%edx
shrshr%eax, $8
…
retnretn

2121 MM

3434 FF

1212 FF

3131 MM

Transactions / Transactions / 
StatementsStatements

OperatorsOperators RowsRows InstructionsInstructions GateGate--SwitchesSwitches

Application-Specific Metrics Hardware-Specific Metrics

Whileenergyandpowerarebothunitsthatarephysicallywelldefinedandare
measurableusinghardwaremeasuringdevices,thequantificationofworkandper-
formanceisamoredifficultprocess.AsFigure2.4visualizes,wedistinguishbetween
fivelayersatwhichworkandperformancemeasurementscanbetakenstartingfrom
high-levelapplication-specificlayersrangingtolow-levelhardware-specificlayers.

Figure2.4: Availableperformancemetricsindatabasesystems.

TransactionLayer. Indatabasesystems,thehighestavailablelayerformeasuring
workisthetransactionlayer. Onthislayer,wecanmeasuretheamountof
transactionsthatwereexecutedusingmetricslikenumberoftransactions(#T)
forworkortransactionspersecond(Tps)forperformance.Thisperformance
metricisusedbytheTPCbenchmarks[131]forenergyefficiencyevaluations
andisapplicable,becausethequeriesarewell-definedandalwaysthesame.
Anadditionalmeasurementthatcanbetakenatthislayeristhetransaction
latency,whichisavaluablemetricforquantifyingtheuserexperiencerespec-
tivelythequalityofservice(QoS).However,thetransactionlatencyisnot
asuitablemeasurementforobtainingworkorperformancenumbers,because
itgivesnoinformationabouttheamountofworkthatwasexecutedbythe
DBMS.

OperatorLayer. Indatabasesystems,queriesareusuallycompiledintoquery
plansordataflowsthatconsistofoperators. Thus,thenextavailablelayer
fordoingworkandperformancemeasurementsistheoperatorlayer.Possible
measurementsonthislayerarethenumberofoperators(#Ops)executedfor
quantifyingtheworkorOperatorspersecond(Ops/s)forperformance. Work
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and performance measurements taken at those high-level layers face several
problems. First, the amount of work a transaction or an operator executes
highly depends on the queries that are executed. For instance, obtaining a
performance measurement of 2 Tps or 10 Ops/s gives no information about the
actual amount of work the DBMS was executing within that second, because
neither the content of the transactions nor the executed operator is known.
Another issue of high-level metrics is the measurement of performance, because
transactions or operators are potentially running for a long time exceeding the
measurement time span.

Row Layer. Relational database operators read, process, manipulate, and produce
rows consisting of one ore more fields. Hence, the next lower layer for doing
work and performance measurements is the row layer. Measurements that can
be taken here are the number of rows processed (#Rows) for measuring work
or rows processed per second (Row/s) for quantifying performance. Taking
measurements for work and performance on this layer once again omits what
an operator is actually doing while processing rows. However, measurements
are taken at this layer or at operator layer, when calibrating work-energy
models for energy-aware query optimizer [83, 143, 144].

Instruction Layer. The next available layer is the instruction layer, which is com-
pared to the previous layers not application-specific anymore, because ev-
ery application executes a series of instructions. Metrics that are obtained
at this layer are instructions retired (the number of instructions successfully
completed) for work or instructions retired per second (Ips) for performance
measurements. Besides being application independent, work and performance
measurements at this layer represent the real work that was actually executed
by a hardware thread. An additional performance metric that can be derived
at this layer is the cycles per instruction (CPI) value, which denominates how
good the processor resources were actually utilized, because on modern su-
perscalar CPUs instructions are executed simultaneously in different pipelines
and its execution speed depends on a lot of factors (e.g., data locality and
instruction dependencies). To actually measure the mentioned metrics, mod-
ern processors provide performance counters that can be used for efficiently
obtaining those values [40, 91].

Gate-Switching Level. The lowest available layer for taking work and perfor-
mance measurements is the gate-switching layer. Important metrics obtained
at this layer are the number if cycles (#Cycles) performed by a chip for work or
the frequency (f) for performance. This layer in combination with instruction
layer is usually of interest for processor designers [25].

Hence, we can conclude that the choice of the appropriate work and perfor-
mance measurement depends on the application area as well as measurement do-
main. While high-level application-specific work measurements are a suitable choice

14



2.3 Energy Awareness

for evaluating standardized database benchmarks covering the whole system, they
are a bad choice for evaluating performance and work executed by single hardware
threads or an individual processor as it can be done at the low-level application
independent instruction layer.

2.3.2 Energy Efficiency

In this section, we introduce the first relation between energy and work respectively
power and performance, which is called Energy Efficiency (EE) and is the most
widely known relation of this kind. This metric is calculated as the quotient of work
and energy when considering a certain time range or as the quotient of performance
and power for a specific point in time as shown by Formula 2.4 (higher is better).
For instance, database benchmarks such as the TPC benchmarks use the high-level
Watt per kilo-transactions per hour (W/KQph) [131] unit, which is the inverse of
the EE metric effectively resulting in the same relation except that lower is better
in this case.

EE =
Work

Energy
=

∆Work

∆Energy
=

Performance

Power
= [W−1] (2.4)
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Figure 2.5: Schematic chart showing a low and high energy efficiency.

Thus, the overall goal for increasing the energy efficiency of a database system is
to reduce the amount of energy for the same amount of work that was executed. For
instance, if we assume a constant performance delivered by the DBMS as visualized
in Figure 2.5, the amount of power drawn by the system defines the EE metric.
Hence, a database system that consumes a high amount of power is less energy
efficient compared to a DBMS that draws less power while delivering the same
performance. This increase in energy efficiency can also be expressed by calculating
the areas between the two power curves that is equal to the total saved energy.

To influence the power consumption behavior of a database system, modern pro-
cessors provide different energy efficiency modes, which are known as performance
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states (P-states) [137]. P-states use the dynamic voltage and frequency (DVFS)
method to control the power consumption of the processor. The DVFS method en-
ables the CPU to adjust it’s frequency and voltage at runtime to control it’s power
consumption. However, the assumption of delivering a constant performance in dif-
ferent power modes does not hold anymore, because the performance reached by
a processor – and thus, of the DBMS – actually linearly depends on the current
frequency it is operating at as expressed by Formula 2.5. While there is a linear de-
pendency between performance and frequency as well as voltage, the actual power
dissipation of a CMOS technology chip depends on the frequency and the square of
the supply voltage [98] (Formula 2.6). Additional influencing factors are the capac-
itance (C) and the active area (A) of the chip that is being switched.

Performance ∝ f ∝ V (2.5)

Power ∝ A · C · V 2 · f (2.6)
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High EE Mode

Figure 2.6: Impacts of different energy efficiency (EE) modes.

Due to the non-linear correlation between performance and power, the energy
efficiency is different for varying performance states. Usually, a mode using a low
frequency and thus, a low voltage results in a better energy efficiency according to
Formula 2.5 and 2.6, while a high frequency and voltage results in the opposite effect.
Hence, the logical choice is to use a low performance state to maximize the EE metric.
Nevertheless, limiting the performance state scope to its respective minimum is not
the solution for the problem, because a low performance state negatively affects the
peak query execution performance as well as the query latency and thus, the user
experience. For instance, as Figure 2.6 shows, the peak performance of the database
system can commonly only be reached when applying the highest performance state
that exhibits a low energy efficiency resulting in a low query latency. In contrast,
operating in a low performance state mostly increases the energy efficiency, but
results in higher query latencies.
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To quantify this trade-off, an energy-delay product (EDP) metric is used that
originates from power-performance trade-offs in integrated circuit designs [86, 16].
The general equation for the EDP is given in Formula 2.7. The EDP is the product
of power (P) and latency (t), where the importance of latency is weighted using a
weighting factor (W). A lower EDP value is preferred compared to a higher value.

EDP = P · tW (2.7)

In practice, the weighting factors 1, 2, and 3 are used. A weighting factor of 1
results in the power-delay product (PDP) (Formula 2.8), which is equal to the area
under the power curve (cf., example in Figure 2.6 and 2.3) and thus, to the energy.
Substituting the weighting factor with 2, results in the basic EDP (Formula 2.9),
which prefers latency and thus, performance over power using a squared impact
of latency. Finally, using a weighting factor of 3 gives the EDDP or ED2P (For-
mula 2.10), which is known as the voltage-independent version of the EDP due to
the quadratic dependency of voltage an power (cf., Formula 2.6).

PDP = P · t = E (2.8)

EDP = PDP · t = P · t2 (2.9)

EDDP = EDP · t = P · t3 (2.10)

To summarize, energy efficiency is defined as the quotient of work and energy
respectively performance and power. To improve the metric, modern processors use
performance states (P-states) to adjust the trade-off between performance and power
at runtime. Due to the non-linear correlation of performance and power as well as the
existence of user-defined performance and latency demands, the appropriate choice
a performance state is a non-trivial problem. Moreover, this problem becomes even
more complicated when realizing that the performance of a DBMS depends on even
more factors than just the processor frequency (e.g., memory clock, cache usage, and
hardware contention) as we will show in Chapter 4.

2.3.3 Energy Proportionality

The second metric for energy awareness that is often forgotten or underestimated
is Energy Proportionality. This metric denominates a proportional relationship be-
tween energy and work respectively power and performance as expressed by For-
mula 2.11. For instance, Figure 2.7 shows the performance demand of a database
system over time, which depends on the number of active clients as well as the num-
ber and complexity of the queries that need to be processed. On the one hand, the
chart shows the worst-case scenario in terms of energy proportionality, which is a
constant maximum power draw that is completely independent from the requested
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performance resulting in a high waste of energy. On the other hand, the chart in-
cludes the optimal power consumption behavior that proportionally adjusts itself to
the actual performance needs.

(Energy ∝Work) = (Power ∝ Performance) (2.11)
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Figure 2.7: Worst-case and optimal energy proportionality.

The importance of a good energy proportionality arises from the fact that database
servers are mostly fairly utilized. For instance, a study from 2007 [14] states that the
typical utilization region of a server in operation is between 10 % and 50 %, because
server capacities are usually over-provisioned to provide a reasonable performance
in times of high load. The study also comes to the conclusion that the overall
energy efficiency of a server can be doubled in real-life situations, if the energy
proportionality is significantly improved.

Besides of the already mentioned performance states that allow an adjustment of
voltage and frequency, the ACPI standard defines processor states (C-States) [137].
The standard includes about 10 C-States ranging from C0 to C7 (e.g., C1 and
C1E) where C0 is the operating state and the C7 the deepest available sleep state.
Such a processor state allows the CPU to selectively turn core clocks and caches
on or off depending on their actual usage. The choice of the appropriate C-State
is usually made by the processor itself and the operating system, which is able
to give the processor hints based on scheduler information and is thus acting as an
advisor. To make this issue tangible, Figure 2.8 shows a schematic example including
the idle power consumption, the maximum possible power draw, the actual power
consumption, and the energy efficiency as a function of the number of active physical
cores of a modern processor for a fixed frequency respectively performance state. To
calculate the energy efficiency, we assume an ideal constant performance increase for
each core in operating state. As the example shows, the CPU is able to dynamically
adjust its power consumption by putting idle cores into a deep sleep state.

However, the figure also shows that the energy efficiency is not constant as it
would be optimal for energy proportionality. This non-linear behavior has two main
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Figure 2.8: Schematic chart showing the processor power consumption depending
on the number of active physical cores for a static frequency.

Figure 2.9: Power breakdown of a server in 2010 [134].

causes. First, the idle power consumption of a single server box amounts to a
high fraction compared to the maximum power draw under full load, because of a
static power consumption mainly originating from the power supply unit (PSU), the
motherboard, and peripheral devices. Second, the high power costs for activating the
first core that exist, because the CPU can enter its deepest sleep state only when
all cores are in a sleep state allowing the processor to turn off the power-hungry
last-level cache (LLC). Hence, the processor is only able to achieve it’s peak energy
efficiency, if all cores a fully utilized, but exhibits a bad energy efficiency in the
typical operating range of a low to medium utilization. To put the issue of a high
idle power consumption into numbers, Figure 2.9 shows the results of a measurement
conducted in 2010 [134]. As the power breakdown shows, the server consumes more
than 50 % of the peak power draw in idle mode, which is highly disadvantageous in
terms of energy proportionality.
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To cope with this issue, we classify existing works that contributed to the field
of energy proportionality in cluster-based approaches and single server solutions,
which is the subject of this thesis:

Cluster-Based. The available countermeasure in clusters consisting of multiple
physical servers is the option to completely turn off entire servers with the
overall goal to run only the necessary amount of servers at a high utilization.
Doing so, the servers can operate in an energy efficient mode. When consider-
ing only a single server in isolation, this option of turning it on and off is not
feasible, because of the high costs in terms of energy and time for booting and
shutting down the system.

Figure 2.10: Energy proportionality of a brawny (large scale-up) server compared
to a cluster of wimpy nodes [119].

Within cluster-based approaches for energy proportionality, we distinguish be-
tween single-application scale-out designs such as WattDB [119] and multi-
application scenarios in cloud environments. The authors of WattDB propose
that energy proportionality can not be achieved within a single server, because
of the high static power costs (cf., Figure 2.9) and thus, energy proportion-
ality optimizations are only feasible in clusters consisting of multiple servers
or even wimpy nodes, which was also concluded by Tsirogiannis et al. [134].
As Figure 2.10 depicts, brawny scale-up systems are far away from optimal
energy proportionality, while a cluster-based approach gets very close to the
ideal curve. Nevertheless, this conclusion was valid in 2010, but does not hold
anymore, because modern hardware significantly improved its energy propor-
tionality as we will reveal in chaper 4. A similar approach is taken by works
like GreenHDFS [71, 72, 85, 90] in the field of Hadoop clusters. Once again, the
core idea is to concentrate the individual jobs on a small set of highly utilized
servers to approximate energy proportionality in the large. However, similar to
WattDB, those approaches need to shuffle data between the individual servers

20



2.3 Energy Awareness

to keep the entire data pool available, which faces additional energy costs and
limits the agility of the approaches.

In cloud environments the principle for achieving energy proportionality is still
the same, but the setting is a different one. The overall goal is to concentrate
as many applications – not necessarily scale-out applications – as possible on
a single server to increase its utilization. The main technologies exploited in
this area are virtualization and the mentioned server consolidation [92, 136].
Individual applications are packaged into virtual machine images or lightweight
containers that can dynamically be deployed on physical hardware resources
based on the current server load.
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Figure 2.11: Schematic chart showing the worst-case and race-to-idle (RTI) energy
proportionality.

Single Server. While turning entire servers on or off is a rather slow and energy
consuming task in the scale-out approach, resource reconfigurations happen at
the scale of microseconds within a single server system. Thus, a wide spread
method for improving energy proportionality on a single server is the race-to-
idle (RTI) method [14, 59]. The core concept of RTI is to leverage all available
hardware resources to get a job done as fast as possible and return to idle mode
afterwards until the next work package arrives. Thus, the server is either in
idle mode or in the energy-efficient 100 % utilization mode. We provide an
example for RTI-based execution is Figure 2.11. As the schematic example
shows, every time a unit of work needs to be processed, performance as well
as power consumption reach their respective maximum and the rest of the
time is spent in idle mode, which still consumes the static power and gives a
performance of zero. Nevertheless, since today’s processors are highly parallel,
the technique is only applicable either to highly parallel applications such as
in-memory databases (intra-query parallelism) or applications that run a high
number of requests in parallel (inter-query parallelism). Thus, state-of-the-
art in-memory database systems implicitly implement the race-to-idle method
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even if energy was not considered and can therefore be seen as a baseline for
comparison.

Without the additional support of hardware features, like performance or pro-
cessor states (P/C-States), software is limited in its opportunities for increasing
energy proportionality. Since single servers respectively scale-up systems are
the focus of this thesis, we will investigate the power management features of
current processors in chapter 4 in detail and discuss relevant existing works.

To conclude this section, Energy Proportionality expresses a proportional re-
lation between work and energy or power and performance and is a critical metric
for reducing the energy footprint of a database system. To achieve energy propor-
tionality, modern processors implement processor states to turn off unneeded cores.
However, we also showed that energy efficiency depends on the utilization of a server
and only reaches its respective peak for a high utilization while it is low in the typical
operating range. Thus, the race-to-idle method is typically used to increase energy
proportionality inside of a single server. However, while this method is mostly im-
plicitly implemented, it does not make full use of the available power management
features offered by modern processors.

2.4 Assessing Energy Awareness

So far, we introduced the units (e.g., work and energy) that are required to calcu-
late the energy awareness metrics energy efficiency and energy proportionality. To
provide a database system with the ability to assess its actual energy awareness for
further optimization purposes, it needs to be provided with current measurements
for the units of work or performance and energy or power. Thus, we will discuss
in this section how those units can be monitored at runtime and how a benchmark
for energy awareness must be designed to assess energy efficiency as well as energy
proportionality.

2.4.1 Monitoring Energy Awareness

To enable software and especially database systems to reflect on their own energy
awareness, applications must be capable of monitoring their own energy respectively
power consumption as well as work or performance units to calculate derived metrics
(i.e., energy efficiency and energy proportionality) that are subject of optimization.
This monitoring information typically needs to be accessible for instance, to calibrate
power-performance models or to enable feedback-driven approaches and finally to
evaluate the overall energy savings achieved by a solution. Thus, we will detail in
this section on how both units can be measured and monitored at runtime.

To monitor the energy respectively power draw of a server, hardware provides
multiple measurement points that differ in their accuracy, resolution, domain, and
accountability to specific applications. Figure 2.12 depicts an exemplary dual-socket
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Figure 2.12: Available points for measuring energy or power in a dual-socket
system excluding peripheral equipment (e.g., disks).

system equipped with a single power supply unit (PSU) and the available measure-
ment point, which we will discuss in the following:

External Power Meter. The traditional way of measuring the power consump-
tion of a server is to plug a power meter between the PSU and the electrical
socket. Hence, an external power meter reports the numbers including all
components of a server, which is equal to the effective power drawn by the
entire system and should thus be preferred for an end-to-end evaluation. How-
ever, the usage of an external power meter faces multiple disadvantages. The
most obvious drawback is that a power meter does not belong to the standard
equipment of a server and needs an additional connection to communicate the
measurements to the operating system. Moreover, accuracy and especially the
resolution depend on the quality and therefore on the price of the power meter.
For instance, a “Watts up?” power meter [129] ($100) provides an accuracy of
1.5 % at 1 Hz and a professional LMG450 power meter [147] (price on-demand)
has an accuracy of 0.11 % at 20 kHz. Additionally, an external power meter
gives only a coarse-grained view on the servers power consumption, which lim-
its its applicability for calibrating energy models. Thus, we can conclude that
the usage of an external power meter is not a practical approach that is limited
in its benefit for energy optimizations, but should be used as a reference for
end-to-end evaluations.

ACPI 4.0 Power Meter. The ACPI standard [137] defines a power meter for each
power supply unit in server since version 4.0 to get rid of the need for an
external power meter. An additional goal of the integrated power meter is to
set power limits for server (power capping) to avoid power peaks that exceed
the limits of the power supply infrastructures in a data center. However, the
ACPI 4.0 power meter still faces the remaining drawbacks as the external power
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meter solution does and as an additional obstacle, the ACPI power meter is
mostly not implemented in current server systems and when it is implemented
it mostly exhibits a low resolution.

Table 2.1: Available energy domains in RAPL.

Energy Domain Affected Components

Package The entire package/chip excluding the memory controller

DRAM Memory controller and DRAM

Power Plane 0 (PP0) All cores including L1/L2 caches

Power Plane 1 (PP1) A special uncore device (e.g., integrated GPU)

RAPL. A more fine-grained solution for energy measurements inside of a server
are energy counters, which are implemented per processor. For instance, in
the dual-socket system shown in Figure 2.12, a set of energy counters is inde-
pendently implemented by each of the two processors. Due to the near-total
market dominance of Intel, RAPL counters [38, 68] are the most prominent im-
plementation of such energy counters and are available since the Sandy Bridge
generation. Energy counters are also implemented by AMD processors (APM)
starting with the Bulldozer generation [9]. However, we will limit our scope
to the RAPL implementation, because Intel processors take the major market
share and provide the most sophisticated implementation of energy counters.
RAPL stands for “running average power limit” and allows an application to
obtain the energy consumption of certain CPU components (energy domain)
between two specific points in time. Those energy values are accessible via
machine-specific registers (MSRs) and are updated every millisecond. This
high resolution allows an application to measure even short code paths [53].
Instead of using integrated power meters, processors use a calibrated energy
model to estimate the energy consumption [117].

Table 2.1 enumerates all energy domains that are possibly available in a mod-
ern CPU. The actual availability depends on the processor model. For instance,
a server-class CPU does not include the power plane 0 domain, because they
do not have an integrated graphics unit, which is usually available in desktop-
class processors. As another example, the Haswell-EP generation also does not
include the power plane 0. RAPL counters allow an application to measure
the energy consumption on a more fine-grained level compared to external
or ACPI 4.0 power meters and additionally offer a much higher resolution.
Moreover, RAPL counters are available in all modern Intel CPUs by default
and thus, no additional costs incur. As the name already suggests, another
purpose of RAPL counters is to define power limits (power capping) similar
to the capabilities of ACPI 4.0 power meters. Nevertheless, this power limit is
defined per processor and not per PSU.

24



2.4 Assessing Energy Awareness

Figure 2.13: Comparison of power measurements with RAPL (package and
DRAM) on Haswell-EP and total system power consumption using a
high-accuracy power meter [50].

As already mentioned, RAPL energy counters use a calibrated internal en-
ergy model to estimate the actual energy consumption of the respective en-
ergy domain. Therefore, two questions arise. First, how accurate are those
measurements? And second, how are those numbers correlated to the overall
power consumption of the server (i.e., the measured by an external power me-
ter). While the first question is hard to answer, because on-chip measurement
comparisons are hard to accomplish, Hackenberg et al. answered the second
question, which also gives a good hint for answering the accuracy question.
The authors compared the RAPL energy measurements (package and DRAM
domain) for a variety of different workloads to the numbers reported by a high
precision external power meter (LMG450 [147]). It is worthwhile to note that
the server was only equipped with a SSD as peripheral device and the fans
operated at full speed. While the correlation accuracy was highly workload
dependent for the Sandy Bridge EP generation [51], the newer Haswell-EP gen-
eration turned out to have an almost perfect correlation between RAPL and
PSU energy respectively power measurements [50] as shown by Figure 2.13.

To summarize the opportunities for measuring energy and power at runtime,
we can conclude that energy counters are the best way for obtaining appropriate re-
sults, because the most widely used RAPL implementation provides highly accurate
measurements that correlate to the overall power consumption of a server and thus,
the relative energy savings are highly accurate, too. Moreover, energy counters are
in-built by default, allow fine-grained measurements at the level of single compo-
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nents, and have a high resolution. However, to retrieve absolute values for the entire
server, an external power meter needs to be used.

The other unit of interest that needs to be monitored at runtime is work respec-
tively performance. As already discussed in Section 2.3, there are multiple ways
of measuring those units depending on the actual purpose (cf., Figure 2.4). While
application-specific metrics are usually trivial to obtain, hardware-specific metrics,
e.g., instructions per second, instruction-per-cycle, or memory bandwidth, are hard
or impossibly to obtain using software-based approaches such as static and dynamic
code analysis, because the actual control flow and the time per instruction depends
on so many factors (e.g., out-of-order, cache usage, and cache line contention). Thus,
nearly all processor families implement hardware performance counters [68] (e.g.,
Intel, AMD, ARM, Sparc, and IBM POWER) today. The original intention of
performance counters was to provide a better way to analyze and optimize the per-
formance behavior of applications including database systems [127, 130]. Moreover,
performance counters were initially used to estimate the power consumption of a
processor [34, 146], which is now done via energy counters that also rely on the
internal performance counters of the processor.
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Figure 2.14: Performance counter access methods.

Since hardware performance counters are accessible by software, applications are
able to monitor themselves. Today, performance counters are supported across the
entire software stack ranging from performance counter virtualization [123] in vir-
tualized environments over operating system support to specialized libraries as de-
picted in Figure 2.14. Hence, they are accessible by applications either by directly
accessing the machine-specific registers (MSRs) or via libraries and kernel exten-
sions [3, 28, 133, 141]. Both access methods have their respective advantages and
disadvantages. For instance, while directly accessing the MSRs allows the access to
all machine-specific counters, high-level APIs support features like multiplexing, due
to the limited availability of programming slots, and the accounting to individual
applications, which is only possible for unshared resources.
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Modern processors offer a rich set of performance counters [68], which are ei-
ther hardware thread-specific or socket-specific. Hardware thread-specific counters
are simultaneously measurable for each hardware thread comprising counters for,
e.g., instructions, core cycles, L1/L2 cache, branch events, and C-State residencies.
Socket-specific counters are simultaneously measurable for each processor and in-
clude counters for, e.g., last-level caches, package C-States, uncore cycles, and main
memory events.

Thus, we can conclude that hardware and software provide a sophisticated in-
frastructure for measuring hardware-specific work respectively performance metrics
covering a wide range of component-specific measurements. However, since some
components are shared across an entire processor, some measurements can not be
accounted to a specific hardware thread that runs, for instance, a particular database
operator. Contrary, high-level application-specific metrics such as transactions per
second are trivial to implement in software and do not require additional hardware
support.

2.4.2 Benchmarking Energy Awareness

Benchmarking is a critical step in the process of making data management systems
energy aware, because energy savings need to be assessed in terms of energy efficiency
and energy proportionality. The typical way of benchmarking database systems is
to use a predefined benchmark that exactly describes how data is generated and
which queries including the query parameters should be executed. Well known ex-
amples for such benchmarks are the TATP [62] and TPC-C [112] benchmark that
simulate OLTP workloads and the TPC-H [132] as well as the star schema bench-
mark (SSB) [101] for OLAP workloads. The main metric that is evaluated by such
benchmarks is commonly the amount of queries or transactions processed by the
DBMS within a given time window (e.g., transactions per hour).

6

SuT

TPC-H

TPC-C TPC-DS

SSB

TATP

Time [s]

#
C

lie
n

ts

TPC Energy

 Queries/s
 Energy

Workload +

(a) TPC Energy specification.

7

SuT

TPC-H

TPC-C TPC-DS

SSB

TATP Time [s]
#

Q
u

e
ri

e
s/

s

 Queries/s
 Energy
 Latency

Time [s]

#
Q

u
e

ri
e
s/

s

Time [s]

#
Q

u
e

ri
e
s/

s

Workload Load Profile+

(b) Advanced energy benchmark.

Figure 2.15: Energy benchmarking methods.

27



2 Energy Awareness in Data Management

Due to the increasing relevance of energy concerns in data management, the Trans-
action Processing Performance Council (TPC) specified the TPC Energy exten-
sion [131] for the TPC benchmarks. This energy extension mainly describes how
energy consumption should be measured during the benchmark and uses Watts per
work per unit of time (e.g., W/kTpm) as primary metric for comparison. This
metric is equal to the energy efficiency defined by Formula 2.4. The applicability
of the TPC Energy extension is not limited to TPC-class benchmarks, due to its
simplistic design. For instance, Figure 2.15(a) shows a possible setup for a TPC
Energy benchmark. In the example, we use the TATP benchmark as foundation.
This benchmark defines – the same as others do – that a constant (in terms of time)
number of clients continuously executes the predefined queries so that the database
system is fully utilized. After execution, the number of processed queries and the
total energy consumption is returned. Both metrics can be used to calculate derived
metrics like, average transactions per second and mean energy efficiency.

However, the value of TPC Energy results have a limited value in terms of energy
awareness, because the assessment process completely omits energy proportional-
ity and the fact that energy efficiency depends on the DBMS utilization. This
observation was already criticized by Schall et al. [120], because the TPC Energy
specification only includes energy measurements under full utilization and in idle
mode. Thus, we propose to split benchmarks for energy awareness into the workload
specification (Definition 2.2) and the load profile specification (Definition 2.3).

Definition 2.2 (Workload Specification) The workload specification com-
prises the definition of the data generation process and related parameters like
the scale factor and defines a set of queries executed against the system under
test (SuT) including the query parameter specification.

Definition 2.3 (Load Profile Specification) The load profile specification
defines the amount of transactions or queries per time unit (relative to the max-
imum achievable throughput) that are executed against the system under test
(SuT) as a varying unit over time.

Based on the workload and load profile specification, a valid benchmark for energy
awareness consists of a particular workload and a load profile as visualized in Fig-
ure 2.15(b). Such a load profile is preferably obtained from server logs of real-world
applications. The main difference compared to the TPC Energy extension is that not
a constant number of clients is used to produce a maximum DBMS load. Instead,
the load profile defines a varying number of queries over time that are executed
against the database system. Using this approach, the benchmark considers energy
proportionality and takes the dependency between energy efficiency and system load
into account.

The metrics returned by such an energy awareness benchmark are the energy con-
sumed and additionally the average query latency respectively the query latencies
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of all processed queries. The number of queries or transactions executed metric is
already defined by the load profile and is thus not considered as a result. Instead, the
query latencies are of special focus for benchmark result comparison, which can be
done in two ways. First, an instance of the energy-delay product (cf., Formula 2.7)
can be used for comparison, because the database system can trade energy effi-
ciency for query latency and the EDP quantifies this trade-off and gives priority to
latency. The other way for interpreting the query latencies is to additionally specify
a maximum query latency in the workload specification, which can be considered
as a service-level agreement (SLA) as it is known in the real world. Hence, we
can compare how often and heavy this query latency limit was violated respectively
obeyed.

To conclude this section, we can state that existing benchmark solutions for en-
ergy awareness are very limited in their value, because extensions like TPC Energy
measure energy efficiency of the database system only under full utilization and in
idle mode. However, this benchmarking approach does not consider energy propor-
tionality and the dependency between system load and energy efficiency. Thus, we
propose to use a combination of a workload specification and a load profile specifica-
tion to overcome those weaknesses. While the workload specification is already given
by existing benchmarks, load profiles need to be standardized for valuable compar-
isons. A special focus of such a benchmarking approach for energy awareness are
the query latencies, which can either be compared using the EDP or by quantifying
violations against the SLA.

2.5 Energy Awareness by Adaptivity

“We see beautiful adaptations everywhere
and in every part of the organic world.”

– Charles R. Darwin
(Naturalist and Geologist, 1809-1882)

Research and innovations are often inspired by the time-tested mechanics of nature
as it is done in the area of bionics. One of the most essential and fundamental natural
mechanics is evolution describing the concept that each life form is in a continuous
struggle for negative entropy (free energy) that can only be won by adapting itself to
environmental conditions and changes [37, 122]. As we observe in nature, organisms
adapt themselves to get as much benefit as possible from the available energy (energy
efficiency) and are able to frequently scale their energy expenditures based on the
current performance demand (energy proportionality). A prominent example for
those mechanisms is the human brain that is able to specialize its regions based on
environmental conditions and adjusts its energy draw to the current performance
needs [95].

Thus, we transfer the mechanics of evolution to software and database systems
in particular. The resulting core concept – discussed in this thesis – is Energy
Awareness by Adaptivity, which understands a DBMS as an organism that needs to
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frequently adapt itself to cope with the critical issue of energy awareness. Moreover,
the need for agile adaptivity facilities is not only limited to the energy topic. For
instance, in our data-driven world modern applications call for database systems
that can efficiently cope with a much richer variety and diversity of data beyond
static schemata and static workloads [6]. Hence, adaptivity in database systems
is required all over the place to keep pace with the demands of our ever-changing
colorful world.
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Figure 2.16: Energy Awareness by Adaptivity concept.

An important step for developing our concept of Energy Awareness by Adaptivity
is to find feasible implementations to which we further refer as Adaptivity Facilities
that do hardware-level or software-level adaptations to increase energy awareness.
As a starting point, we have a look at the factors that actively influence energy
awareness. Those factors (cf., Section 2.3) primarily are power consumption (lower
is better) and performance (higher is better) as visualized in Figure 2.16. Hence,
we will discuss possible adaptivity facilities that positively influence the individual
factors including their adaptation time scale in the following:

Power. Decreasing the power consumption of a database system is mainly a matter
of the underlying hardware. As already mentioned, modern hardware provides
a rich set of energy-control knobs that can actively be controlled by software.
Thus, we identify Resource Adaptivity as the first adaptivity facility that aims
at actively doing hardware-level adaptations at runtime. Nevertheless, re-
configuring the hardware leads in certain situation to necessary software-level
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adaptations. For instance, putting a core into a sleep state can force the
database system to reduce its degree of parallelism. Since hardware recon-
figurations happen at the scale of microseconds and the reconfiguration itself
causes almost no additional energy costs, we consider resource adaptivity as a
short-term measure to increase the energy awareness. Regarding the metrics
for energy awareness, resource adaptivity is able to positively affect energy
efficiency as well as energy proportionality (Table 2.2) as we will show in
Chapter 4.

Table 2.2: Contributions of the individual adaptivity facilities to energy awareness.

Adaptivity Facility Energy Efficiency Energy Proportionality

Resource Adaptivity X X
Storage Adaptivity X
Data Placement Adaptivity X X

Performance. Increasing the performance of database systems is a large and old
research field ranging from query optimizers down to physical data layout
optimizations. However, what we are looking for are fine-grained adaptation
mechanisms that can frequently be invoked to increase the DBMS performance
at runtime without the need for blocking entire data objects. While database
systems are a software class that implements a lot of adaptivity features like
different physical operators for a logical operation or different access path im-
plementations, those adaptivity features are still too coarse-grained and lim-
ited in their agility for our requirements. Existing works that come close to
our demands are, for instance, Micro Adaptivity [113] or Column Cracking ap-
proaches [65]. While the first approach is able to exchange the implementation
of a physical operator during each operator call, the latter approach aims at a
step-wise increase of the indexing granularity during query processing.

The first adaptivity facility we identified for increasing the performance of a
database system is Storage Adaptivity, which aims at adapting the physical
layout of data objects on a fine-grained level at runtime similar to the Column
Cracking approach. However, this adaptivity facility is not solely limited to
indexes. Instead, the goal of storage adaptivity is to cover physical layout
optimizations in their entireness, with the overall goal of increasing the energy
efficiency of the DBMS as shown in Table 2.2. Since physical storage adapta-
tions induce additional costs in terms of energy consumption, this adaptivity
facility is considered a mid-term measure. We will describe our approach for
storage adaptivity including a discussion of the related works in chapter 5.

The second adaptivity facility addressing performance increases we want to
outline is Data Placement Adaptivity. Since this thesis aims at large-scale
NUMA systems, the physical location (i.e., on which socket) of data plays an
important role. Thus, the physical placement of the individual data objects re-
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spectively portions of them is crucial for the overall query performance. Using
data placement adaptivity, the DBMS is able to increase the database systems
energy efficiency as well as energy proportionality, because the appropriate
placement depends on the current workload. Since physical data movement
induces high costs in terms of energy, we consider data placement adaptivity
as a long-term measure. Because concepts like data placement adaptivity are
well investigated in database research [75, 104, 106, 111], we will limit the
scope of this thesis to resource adaptivity and storage adaptivity except for a
data placement adaptivity proof of concept on large-scale NUMA systems in
chapter 3.

To summarize, we derived our core concept of Energy Awareness by Adaptivity
inspired by the natural mechanism of evolution. Thus, we understand a database
system as an organism in a continuous struggle for energy and hypothesize that fre-
quent adaptations are the appropriate countermeasure to face this challenge. Based
on our energy awareness considerations, we identified Resource Adaptivity, Storage
Adaptivity and Data Placement Adaptivity as Adaptivity Facilities implementing our
core concept.

2.5.1 Architectural Requirements

Implementing our core concept of Energy Awareness by Adaptivity and the corre-
sponding Adaptivity Facilities requires a database system to fulfill a set of require-
ments, especially to allow adaptations on a fine-grained level at runtime without
significantly affecting simultaneously running queries. Thus, we will use this section
to derive those requirements (referred to as R-XX) for building an energy-aware
DBMS architecture from our three adaptivity facilities as well as from general ob-
servations regarding energy.

To generally improve the energy efficiency metric of a DBMS, data object accesses
need to be fast and thus, disk accesses should be avoided at all costs. Hence, only
main memory-centric (R-01) architectures [128] should be considered when de-
signing an energy-aware database system, since disk accesses slow down the query
processing and thus negatively affect the performance metric. Regarding energy pro-
portionality, a major requirement for the DBMS architecture is scalability (R-02),
because ideal energy proportionality can not be achieved when a database is not able
to take an appropriate performance advantage from additional compute resources
that consume additional energy. To achieve scalability, two extra requirements are
implicitly necessary. First, local data object accesses (R-03) are required on
large-scale architectures that usually implement a NUMA memory model to avoid
costly remote accesses [107]. Second, latch-free data object accesses (R-04) are
necessary for scalability, since locks and atomic instructions do not scale [70].

Resource Adaptivity Requirements. Resource adaptivity is mainly a matter of
hardware reconfigurations. However, since reconfigurations at the hardware-
level can cause single cores to be taken offline, the database architecture should
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avoid explicit thread respectively operator to hardware mappings and thus, a
flexible work to hardware thread assignment (R-05) is required. More-
over, methods like race-to-idle require a high degree of parallelism (R-06)
to allow the DBMS to frequently turn entire processors on and off as well as
keeping them highly utilized when being active.

Storage Adaptivity Requirements. To enable fine-grained storage layout adap-
tations at runtime, data objects need to be split into small partitions (R-
07) to avoid a locking of the entire data object during the adaptation process.
Furthermore, a serialized partition access (R-08) is necessary to allow the
adaptation process to operate efficiently and to avoid additional latches inside
of a partition. Since the physical storage layout is subject of change at possibly
any point in time on a partition level, physical operators can not be bound at
query compile time. Thus, a late binding of physical operators (R-09)
is required where the actual binding can differ on a per partition level.

Data Placement Adaptivity Requirements. The workload of a database sys-
tem is mostly a moving target. Thus, the internal partitioning of data objects
should be adjusted to the current workload demands [106]. Hence, the DBMS
architecture needs to support a flexible partitioning scheme (R-10) as well
as flexible partition to processor mapping (R-11) on NUMA systems.

To summarize, a lot of requirements need to be fulfilled to build an energy-aware
database system (summarized in Table 3.3). Those requirements either originate
from general observations in terms of performance or from the individual Adaptivity
Facilities of our Energy Awareness by Adaptivity concept. In Chapter 3, we will
pick up these requirements and compare existing architectures for their ability to
fulfill them. Additionally, we will propose the necessary extensions to the best fitting
architecture.

2.5.2 Energy-Control Loop

To integrate our adaptivity facilities into the overall DBMS infrastructure, we use the
Energy-Control Loop (ECL) as the hosting framework. The ECL follows the design
principle of a closed reactive control loop [43] as depicted in Figure 2.17. Hence,
the ECL is continuously monitoring the database system to respond to changes in
the workload (cf., Definition 2.2) as well as in the system load (cf., Definition 2.3).
Such monitoring information, for instance, comprises the current power draw and
the query latency. The actual decision for an appropriate actuation (e.g., reduction
of the degree of parallelism, frequency adjustments, or storage layout adaptations) is
done by the controller, which knows how to steer the database system into a direction
that may improves its target metrics. Because the ECL tries to optimize the energy
awareness of the DBMS, power minimization and performance maximization are the
main objectives (cf., Figure 2.16).
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Figure 2.17: Block diagram of a closed reactive control loop in DBMS context.

The main issue of a closed reactive control loop is that it relies on periodic feedback
(i.e., the monitoring data) that arrives within a static or dynamic interval ∆t, which
induces a delay ≤ ∆t before the actual response to a change can happen. Moreover,
the approach of a closed reactive control loop does not know the optimal response
to a change, instead, it tries to steer the DBMS into a specific direction and in
the next loop invocation the impact of the previous actuation can be assessed. To
cope with the first issue (the delay), a look into the future is required to proactively
prepare the database system for upcoming changes of influencing factors like the
workload. This issue is typically addressed using forecasting techniques [26] that
estimate the future based on the knowledge of the past. The second problem can
be addressed by constructing a sophisticated model for the target metrics including
a dependency of the influencing factors (i.e., workload and system load). However,
for a complex dynamic system such as a DBMS, this model would depend on a vast
amount of additional hardware-specific and DBMS-specific factors making it nearly
impossible to construct and to maintain in practice. Thus, we will stick with self-
learning coarse-grained models that are obtained using the feedback information of
the database system as well as benchmarking-based approaches for the initial model
construction.

As already discussed in Section 2.3, certain performance and power metrics are
only available at a specific level of the software stack respectively for particular
hardware components. Moreover, the implementations of our adaptivity facilities
also address different software components. Thus, it is a natural decision to design
the energy-control loop in a hierarchical fashion as visualized in Figure 2.18. The
highest level in this hierarchy is the system-level ECL that exists once per DBMS
instance. On this level, we are able to measure performance metrics of the trans-
action respectively query manager (cf., Figure 2.4), because such metrics are only
available for the whole database system instance. For the resource adaptivity fa-
cility, the power consumption is the main focus and as outlined in Section 2.4.1,
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Figure 2.18: Hierarchical organization of our Energy-Control Loops (ECL).

RAPL energy counters use a single CPU as the smallest domain for power and
energy measurements. Hence, resource adaptivity uses a specialized ECL instance
per physical processor. Another available level from the perspective of a database
system are either data objects or single data object partitions. At this level, the
storage adaptivity facility operates resulting in an additional specialized ECL for
each partition, because control decisions are local to this scope. Nevertheless, while
all ECL instances and specializations operate at different level and time scales, they
still need to communicate with each other. For instance, a resource adaptivity ECL
needs information about the current query latency to avoid violations of the latency
limit or a storage adaptivity ECL needs additional hardware resources for adapting
a partitions storage format and the control of available hardware resources is up to
the resource adaptivity ECL.

To summarize, we employ the design principle of a closed reactive control loop
for our adaptivity facilities, which is the Energy-Control Loop (ECL). The ECL
continuously monitors certain database system metrics and responds to workload
and system load changes using the measures of the respective adaptivity facility
implementation. Moreover, the ECL is organized hierarchically to consider the scope
of available DBMS metrics, of their time scale, and of the adaptation itself.
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2.6 Summary and Conclusions

In this chapter, we started with the specification of target hardware architecture,
which addresses large scale-up multiprocessing systems that employ a cache-coherent
NUMA memory model and consists of multi-core processors that have a local main
memory and provide certain energy-control features. The most important features
for energy-control we identified are processor states (C-States) to turn off entire
hardware components and performance states (P-States) to adjust frequency and
supply voltage at runtime.

Subsequently, we discussed the physical unit of electrical energy denoting the
amount of energy absorbed by a consumer that is equal to the area enclosed by
the power curve within a given time span. To measure energy and power consump-
tion at runtime, we concluded that energy counters are the best way for obtaining
appropriate results, because the most widely used RAPL implementation provides
highly accurate measurements that correlate to the overall power consumption of
a server and thus, the relative energy savings are highly accurate, too. Moreover,
energy counters are built-in by default, allow fine-grained measurements at the level
of single components, and have a high resolution.

Afterwards, we introduced the notion of energy awareness, which expresses the
relationship of work and energy respectively performance and power. Hence, we
discussed possible metrics for determining the work respectively performance of a
database system and concluded that the choice of the appropriate work and perfor-
mance measurement depends on the application area. While high-level application-
specific work measurements are a suitable choice for evaluating standardized ap-
plication benchmarks (e.g., the TPC family), they are a bad choice for evaluating
performance and work executed by hardware threads as it is done at the low-level
application independent instruction layer. For such low-level performance measure-
ments, we discussed performance counters that are implemented in mostly all modern
processors and cover a wide range of component-specific measurements.

As the main metrics for energy awareness, we introduced energy efficiency and
energy proportionality. Energy efficiency is defined as the quotient of work and en-
ergy respectively performance and power. To improve the metric, modern processors
use performance states (P-states) to adjust the trade-off between performance and
power at runtime. Due to the non-linear correlation of performance and power as
well as the existence of user-defined performance and latency demands, the appropri-
ate choice a performance state is a non-trivial problem. Hence, a widely used metric
for expressing this trade-off is the energy-delay product (EDP). The second metric
for energy awareness is energy proportionality, which expresses a proportional rela-
tion between work and energy or power and performance and is a critical metric for
reducing the energy footprint of a database system. To achieve energy proportion-
ality, modern processors implement processor states (C-States) to turn off unneeded
cores. However, we also showed that energy efficiency depends on the utilization of
a server and only reaches its respective peak for a high utilization while utilization
is low in the typical operating range.
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In the next logical step we discussed benchmarks for energy awareness and con-
cluded that existing benchmark solutions for energy awareness are very limited in
their value, because extensions like TPC Energy measure energy efficiency of the
database system only under full utilization and in idle mode. Nevertheless, this
benchmarking approach does not consider energy proportionality and the depen-
dency between system load and energy efficiency. Thus, we proposed to use a com-
bination of a workload specification and a load profile specification to overcome
those weaknesses. While the workload specification is already given by existing
benchmarks, load profiles need to be standardized for valuable comparisons. A
special focus of such a benchmarking approach for energy awareness are the query
latencies, which can either be compared using the EDP or by quantifying violations
against the service-level agreement (SLA).

Based on our in-depth discussions of energy awareness, we derived our core concept
of Energy Awareness by Adaptivity, which is inspired by the natural mechanism of
evolution. Thus, we understand a database system as an organism in a continuous
struggle for energy and frequent adaptations are the appropriate countermeasure
to face this challenge. We identified Resource Adaptivity, Storage Adaptivity and
Data Placement Adaptivity as Adaptivity Facilities implementing our core concept.
Nevertheless, to enable a DBMS for those fine-grained adaptations at runtime, a lot
of requirements need to be fulfilled. Those requirements either originate from general
observations in terms of performance or from the individual adaptivity facilities of
our energy awareness by adaptivity concept. In the following chapter, we will pick
up these requirements and compare existing architectures for their ability to fulfill
them. Additionally, we will propose the necessary extensions to the best fitting
architecture.

Finally, we proposed the Energy-Control Loop (ECL) as the hosting vessel for
our adaptivity facilities as we proposed within our collaborative research center
“HAEC” [4]. The ECL employs the design principle of a closed reactive control
loop. Hence, the ECL continuously monitors certain database system metrics and
responds to workload and system load changes using the measures of the respective
adaptivity facility. Moreover, the ECL is organized hierarchically to consider the
scope of the specific adaptation facilities including the availability of DBMS metrics
and the respective time scale of adaptation.
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3 Adaptivity-Enabling Scale-Up
Architecture

In this chapter1, we pick up the requirements for an energy-aware database system
that we derived in the previous chapter and propose – based on our requirements
– the Living Partitions DBMS architecture, which is mainly designed for vertical
scalability and adaptivity. Hence, we start with an exploration of current medium
and large scale-up NUMA system architectures to especially assess the impact of
remote main memory accesses. Based on those insights, we classify existing DBMS
architectures in terms of their ability to scale-up on large NUMA systems as well
as their ability to allow fine-grained adaptations at runtime. We conclude that the
data-oriented architecture (DORA) provides us with the best foundation for fulfilling
our requirements.

Nevertheless, this architecture still lacks (1) an investigation and appropriate con-
cepts for in-memory DBMSs on large-scale NUMA systems as well as (2) certain
requirements originating from our adaptivity facilities. To cope with the first issue,
we will transfer existing concepts of the data-oriented architecture from medium-
scale disk-based systems to large-scale in-memory systems, which is mainly a matter
of the DORA-specific message passing subsystem that needs to keep pace with the
increased speed of data object accesses. Moreover, we will give an in-depth eval-
uation of our prototypical implementation with regard to database primitives such
as scans and index accesses. To address the second issue, we will extend the data-
oriented architecture to enable adaptivity. Thus, we come up with the concept of
Living Partitions. We will discuss the necessary changes to the previously discussed
data-oriented architecture for large-scale in-memory database systems. Finally, we
introduce our in-memory data management system ERIS, which was designed from
scratch to implement the Living Partitions architecture as well as our Adaptivity
Facilities. Furthermore, we will evaluate ERIS mainly in terms of scalability and
compare the results to our previous proof of concept.

3.1 Scale-Up NUMA Architectures

As a consequence of the high main memory capacities in today’s servers, modern
database systems are very often in the position to store their entire data in main
memory. Latency and bandwidth of the main memory are the major bottlenecks of
such in-memory DBMSs. The significance of these bottlenecks increases when we

1Parts of this chapter are published in [78]
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Figure 3.1: NUMA machines used for evaluation in the thesis.

consider the current trend towards tera-scale multiprocessor systems that exhibit
a non-uniform memory access (NUMA). On NUMA platforms, each multiprocessor
has its own local main memory that is accessible by other multiprocessors via a com-
munication network. Database systems running on NUMA platforms face several
issues such as the increased latency and the decreased bandwidth when accessing
remote main memory. Additionally, we observe a worsening of the scalability of
latches and atomic instructions. This is a result of the cache coherence maintenance
overhead induced by the NUMA system. These issues are already measurable on
wide-spread server systems consisting of four or eight multiprocessors. The demand
for more parallel hardware forces vendors to put even more multiprocessors into a
single server system (e.g., Oracle SPARC M6-32 [102] with up to 32 multiproces-
sors or the SGI UV family [124] that are sold as SAP HANA or Oracle In-Memory
Machines). We also expect emerging technologies like 3D DRAM/CPU stacking to
let NUMA characteristics appear in a single multiprocessor, where each core has
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2-Socket Intel 4-Socket Intel 8-Socket AMD

2x Intel Xeon E5-2690 v3 4x Intel Xeon E7-4860 4x AMD Opteron 6274
(dual node)

24 cores (48 HW threads) 40 cores (80 HW threads) 64 cores

256 GB memory
(128 GB per node)

128 GB memory
(32 GB per node)

64 GB memory
(8 GB per node)

30 MB LLC per sockets 24 MB LLC per sockets 12 MB LLC per socket

QPI: 19.2 GB/s per link QPI: 12.8 GB/s per link HyperTransport:
12.8 GB/s per link

SGI UV 2000 SGI UV 3000

64x Intel Xeon E5-4650L 64x Intel Xeon E5-4655 v3

256 cores (512 HW threads) 384 cores (768 HW threads)

8 TB memory (128 GB per node)

20 MB LLC per socket 30 MB LLC per socket

QPI: 16 GB/s to HARP

NumaLink6: 2x 6.7 GB/s between HARPs

Table 3.1: Specification of evaluation machines used in this thesis.

its local low latency and high bandwidth main memory [77, 94]. Moreover, current
Intel processors starting with the Haswell-EP generation already exhibit NUMA
characteristics within a single processor. To allow database systems to scale-up on
today’s and future platforms, NUMA awareness has to be considered as a major
design principle for the fundamental architecture of a database system.

In the following, we introduce NUMA system architectures and present low level
benchmark results of the NUMA machines used in our experimental setup. As a
reference throughout the section, the architectures of these systems are depicted
in Figure 3.1. As bottom line of this section, we will derive fundamental design
principles for NUMA-aware database system architectures.

3.1.1 NUMA System Architecture

NUMA systems consist of several interconnected multiprocessors, that are also re-
ferred to as nodes, processors, sockets, or CPUs. Each multiprocessor contains mul-
tiple processing units (cores) and an integrated memory controller (IMC). Con-
sequently, the installed main memory is distributed among the IMCs in different
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3 Adaptivity-Enabling Scale-Up Architecture

multiprocessors. However, each multiprocessor can access each memory location.
Thus, latency and bandwidth of memory accesses depend on the distance between
the requesting multiprocessor (source node) and the multiprocessor that contains
the data (home node). The local memory associated with each multiprocessor is
accessed with low latency at a high bandwidth. In contrast, remote memory is ac-
cessed via point-to-point connections [60, 66] between the multiprocessors that add
latency and limit the achievable bandwidth. In the worst of our cases the latency
of remote access is approximately 10 times higher and the bandwidth is limited to
about 11% in comparison to local accesses.

Multiple levels of caches are commonly used to mitigate the performance impact of
the above-mentioned latency and bandwidth constraints. The caches are distributed
over the multiprocessors as well. All currently available NUMA systems enforce
cache coherence to maintain a consistent view of all processing units on the shared
address space. Small-scale NUMA systems with a manageable amount of nodes
typically rely on snooping based cache coherence protocols that involve frequent
broadcasts of requests to all multiprocessors. It has been shown in prior work [52]
that the overhead of the coherence protocol caused by accesses to shared data can
be very severe in such systems. In contrast, larger systems like the SGI UV 2000
or 3000 usually implement directory based cache coherence protocols between the
nodes. SGI, e.g., uses NumaLink to connect blades with one another while the two
nodes in each blade are connected to a hub via their Intel QPI links. The hub
presents itself to the nodes as an external memory controller that participates in the
snooping based coherence protocol. However, the requests are not broad-casted to
all the hubs in the system. Instead, requests are only forwarded if the corresponding
directory entry indicates a remote copy.

Naturally, data placement is an important aspect to consider with NUMA systems
and data should be located close to the multiprocessor that accesses it frequently.
The default data placement policy of Linux is called first touch. Newly allocated
memory is placed local to the thread that actually writes (touches) it for the first
time. It is, however, possible that memory is allocated on remote memories. More-
over, the default thread scheduler in Linux operating systems may migrate threads
frequently to different multiprocessors, although it prefers intra-node thread migra-
tions to inter-node migrations. This leads to remote memory accesses, even when the
memory was allocated locally in the first place. Hence, the operating system leaves
many opportunities for suboptimal (i.e., remote) memory access patterns. This is
especially true, when many threads access a large portion of the main memory.

42



3.1
S

cale-U
p

N
U

M
A

A
rch

itectu
res

4-Socket Intel Machine 8-Socket AMD Machine SGI UV 2000/3000

distance bandwidth
(GB/s)

latency
(ns)

distance (link width) bandwidth
(GB/s)

latency
(ns)

distance bandwidth
(GB/s)

latency
(ns)

local 26.7 129 local 16.4 85 local 36.2/58.0 81
1 hop
QPI

10.7 193 1 hop HT (full link) 5.8 136 2nd processor 9.5/11.9 400

1 hop HT (split,single) 4.2 152 1 hop NUMALink 7.5 505 - 515
1 hop HT (split,dual) 2.9 152 2 hop NUMALink 7.5 625 - 635
2 hop HT (split,single) 3.7 196 3 hop NUMALink 7.1 745 - 755
2 hop HT (split,dual) 1.8 196 4 hop NUMALink 6.5 870

Table 3.2: Memory Read Bandwidth in GB/s and Read Latency in ns. Bandwidths are measured with concurrent sequential
reads from all cores of the multiprocessor in order to maximize the amount of outstanding requests. Latencies
are measured with a single thread that performs a pointer-chasing routine on memory allocated at different
multiprocessors.
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3.1.2 Low-Level Benchmark Results

Within this thesis, we use five different NUMA systems ranging from 2-socket ma-
chines to 64-socket machines with a total of 8 TBs of main memory. In Table 3.1,
we summarized the hardware specifications of all machines. For our NUMA-related
experiments, we use the 4-socket Intel machine, the 8-socket AMD machine, and
the 64-socket SGI UV systems. For our energy-related evaluations, we use the 2-
socket Intel machine, because the other systems either lack the implementation of
RAPL counters or administrative issues deny us the access to them. To gain deeper
insights in the performance of the four NUMA machines, we conducted several low
level benchmarks. The best-case bandwidth and latency performances are an upper
bound for the achievable performance and will help us to reason about the perfor-
mance of our own algorithms. All measurements are performed with the BenchIT
tool [52]. The results are shown in Table 3.2.

4-Socket Intel Machine. The 4-socket Intel machine with 4 multiprocessors is the
smallest system we are considering for our NUMA experiments. The nodes
of the Intel machine are fully connected via QPI links [66] as depicted in
Figure 3.1(a). The results of our experiments show that the latency of remote
memory accesses is only 50% higher than for local accesses. The impact of
the QPI link on the achievable bandwidth is more severe as it results in 2.5
times lower data rates compared to local memory. However, the effects of the
non-uniform memory access are small compared to the other two machines
as communication between any two multiprocessors requires only one hop via
QPI.

8-Socket AMD Machine. The second machine in our setup is an AMD machine.
As shown in Figure 3.1(b), it is actually a 4-socket system where each socket
houses a dual node package. The two nodes in a package communicate via
HyperTransport [60], which practically results in a system with 8 multiproces-
sors. Each multiprocessor has four HyperTransport ports to connect to either
the I/O subsystem or to other multiprocessors. As a unique feature of the
AMD machine, HyperTransport links can be split into sublinks to connect a
node with two other nodes with just one HyperTransport link. However, this
results in different link bandwidths for different links. Additionally, even with
split links, the AMD machine is not fully connected and certain routes require
two hops.

As indicated in Figure 3.1(b), the two nodes that share a socket are connected
via a dedicated (not split) HyperTransport link and can therefore utilize the
full 16 bit link widths. Connections between other nodes are realized with 8 bit
sublinks and hence have a lower connection bandwidth. Furthermore, some of
the split links only have one sublink populated (denoted by split,single in Ta-
ble 3.2) while both sublinks are occupied on other links (denoted by split,dual).
Our experiments mirror these characteristics; depending on the distance of
memory and accessing thread, we measure six different bandwidths and four
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different latencies. The disparities between local access and the furthest remote
access are a factor of 9.1 in bandwidth and 2.3 in latency.

64-Socket SGI Machines. The third and fourth machines in our setup is are a
SGI UV 2000 respectively 3000 with 64 multiprocessors and a total of 8 TBs
main memory. An overview of the topology is shown in Figure 3.1(c). Our
system consists of 1 rack that houses 4 Individual Rack Units (IRUs). Each
IRU consists of 8 Compute Blades, that in turn contain 2 multiprocessors each.
Each socket is equipped with an Intel Xeon CPU with 128 GBs of local main
memory. Both machines differ only in the CPU model, but share the same
topology and communication network.

The two multiprocessors in a Compute Blade are connected via QPI to a com-
munication hub called HARP. The HARPs are NumaLink hubs that connect
the multiprocessors in a Compute Blade to other Compute Blades in the same
as well as in other IRUs. As shown in Figure 3.1(c), each blade in our system
has 8 connections to other blades. Each connection consists of two NUMA-
Link6 links, one for each multiprocessor in the blade. The 8 blades in an IRU
are connected as a 3D enhanced hypercube [125]. Each blade in an IRU is
additionally connected to two blades in other IRUs. This topology leads to
connections with up to four hops and six different bandwidths.

Measuring all possible distances reveals that the differences in bandwidth and
latency between local access and the furthest remote access are as high as
factor 5.5 and 10.7, respectively.

3.1.3 Design Principles for NUMA-Aware Database Systems

From the general NUMA architecture as well as our benchmark results, we derive
that NUMA systems should be treated like a distributed system and that a scalable
in-memory database system must be designed to maximize local memory accesses.
Reading from or writing to remote memory suffers from up to ten times higher la-
tencies and significantly lower bandwidths, hence remote accesses should be avoided
whenever possible and batching should be considered for inevitable accesses to hide
the bad latency. Furthermore, remote and concurrent memory accesses lead to cache
concurrency as well as worse cache locality and hence, higher cache coherence over-
head. However, small amounts of data that are mostly read from different sockets
are unproblematic, because caches are able to hide the remote memory accesses.

As a conclusion, a scalable DBMS architecture for NUMA systems must provide
partitioning of data objects that adapts quickly to changing workloads by employ-
ing efficient load balancing algorithms. Moreover, by means of data and thread
placement, the storage engine must minimize remote memory accesses by primarily
working in data object partitions that are located in the local main memory. In
turn, this leaves sufficient link capacities for remote accesses caused by inevitable
communication during query processing and by load balancing operations.
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3.2 Classification of DBMS Architectures

In this section, we classify existing database system architectures including their
respective query processing models and primarily compare them for their ability to
scale up on large NUMA systems and to allow fine-grained adaptations at runtime.
Additionally, we compare the DBMS architectures for the remaining requirements
of an energy-aware database system from the previous chapter and introduce the
core concepts of our Living Partitions architecture.

As we have shown in Section 3.1, scalability on large scale-up systems is mainly a
matter of a local data object access (R-03) as well as a latch-free data object access
(R-04), because remote memory accesses are costly on NUMA systems and latches
(including atomic instructions) do not even scale on a single processor when being
frequently accessed by different hardware threads in parallel. To enable fine-grained
runtime adaptations, we have to consider more requirements. For instance, to enable
Resource Adaptivity, the DBMS architecture mainly needs to be elastic in terms of
work to hardware thread assignment (R-05), which is the antagonist of an always
local data object access (R03) that is needed to provide scalability. Nevertheless,
to enable Storage Adaptivity, a latch-free data object access (R-04) is once again
beneficial, since latching is the natural blocker for physical storage transformations.
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Figure 3.2: High-level comparison of DBMS architectures.

In Figure 3.2, we visualized the mentioned high-level characteristics, i.e., locality
vs. elasticity and latching vs. adaptivity, and classify existing database system
architectures as well as our Living Partitions architecture accordingly. Note that
this classification only covers high-level aspects and we will give a more detailed
classification in Table 3.3 considering all of our requirements. In the following, we
will discuss the individual architectures and their ability to fulfill our requirements.
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Table 3.3: Comparison of architectures regarding their ability to fulfill our require-
ments for energy awareness. Highlighted cells mark open points of the
data-oriented architecture.

# Requirement TORA Morsel-
Driven
TORA

DORA Living
Partitions

01 Main memory-centric X X (X) X
02 Scalability ◦ (X) X
03 Local data object access ◦ X X
04 Latch-free data object access X X
05 Flexible work to hardware

thread assignment
X X X

06 High degree of parallelism ◦ X X X
07 Small partitions X X X
08 Serialized partition access X X
09 Late binding of physical oper-

ators
X

10 Flexible partitioning scheme X X X
11 Flexible partition to processor

mapping
X X X

We focus on the traditional transaction-oriented architecture as well as its morsel-
driven extension and the data-oriented architecture including our Living Partitions
extension.

3.2.1 Transaction-Oriented Architecture

The traditional transaction-oriented architecture (TORA) is the most widespread
way of designing a database system. As depicted in Figure 3.3, TORA treats trans-
actions as the first-class citizens, which corresponds to the natural anticipation of
a human. Hence, transactions (the actual work) are directly executed by threads,
which are assigned to physical hardware contexts. This assignment is either done
by the operating system or by the DBMS itself. Since the basic transaction-oriented
architecture does not enforce a local data object access on NUMA systems, this
assignment is flexible and can easily be changed during execution. However, the
references to non-local data object accesses mostly cause remote memory accesses
on NUMA systems, which strongly limits the scalability of this architecture [106].
Moreover, transaction threads can access every available data object in the pool,
which requires latches to protect simultaneously running threads against each other
when reading or modifying a data object concurrently.

Thus, we consider TORA as an architecture that is highly elastic with a strong
tendency to non-local data object accesses and high latching efforts according to our
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Figure 3.3: Query processing in a transaction-oriented architecture.

high-level classification in Figure 3.2. Regarding our requirements list in Table 3.3,
we can conclude that the basic transaction-oriented architecture only fulfills the
following requirements:

Main Memory-Centric (R-01). Transaction-oriented in-memory database sys-
tems were and still are subject of database research ranging from optimized
data structures [79, 88, 115] over efficient snapshotting algorithms [97] to query
execution plan (QEP) optimizations [113, 99]. The results show that the move
from a disk-centric to a main memory-centric database system requires funda-
mental changes, but is not in conflict with the transaction-oriented architec-
ture.

Flexible Work to Hardware Thread Assignment (R-05). Because the basic
TORA approach does not enforce a local data object access (R-03), the trans-
action thread to hardware thread assignment can easily be adjusted at runtime.

High Degree of Parallelism (R-06). The basic transaction-oriented architecture
is able to run multiple queries simultaneously (inter-query parallelism) as
well as multiple independent operators in parallel (inter-operator parallelism).
However, the basic TORA approach lacks the ability to internally parallelize
single operators (intra-operator parallelism), which potentially leads to a small
degree of parallelism when executing a small amount long running analytical
queries.

To bypass most of the issues leading to a bad scalability behavior of the transaction-
oriented architecture on modern massively parallel hardware and especially on NUMA
systems, the morsel-driven TORA [87] approach respectively other partitioning-
based approaches [110, 111] for the transaction-oriented architecture were proposed.
The idea of morsel-driven TORA and similar solutions is to split data objects into
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small morsels (partitions), which are placed in the local memory of a specific proces-
sor, and schedule plan operators as close as possible to the respective data location.
Additionally, the approach tries to store intermediate results that occur during the
query processing in the local memory of the processor the current operator is run-
ning on. However, a local data object access can not be guaranteed anymore when
operating on those intermediate results or when communication between operators
is required (e.g., in a join). Thus, the morsel-driven TORA approach is located close
to the basic transaction-oriented architecture within our high-level classification (cf.,
Figure 3.2) with the difference that it has a stronger tendency to a local data ob-
ject access, while still providing the same elasticity as the basic TORA. In terms
of our requirements for an energy-aware database system, the morsel-driven TORA
approach addresses the following requirements:

Scalability (R-02). As already mentioned, scalability on NUMA systems is mainly
a matter of a local data object access (R-03) and a latch-free data object access
(R-04). Thus, the TORA extension improves the scalability behavior, because
the local data object accesses are more likely to happen. Nevertheless, the
high latching efforts are still remaining.

Local Data Object Access (R-03). Since the approach tries to schedule plan
operators as close as possible to the physical location of a morsel, the local
data object access is significantly improved. However, communication between
operators respectively operators that work on multiple morsels once again re-
quires remote data object accesses. The same issue holds for operators that
work on intermediate results that are scattered to multiple physical memory
locations.

High Degree of Parallelism (R-06). The concept of processing morsels implic-
itly enables internal parallelism inside of a single operator and thus, the ap-
proach is able to reach a high degree of parallelism, since all levels of parallelism
are now available staring from the coarse-grained inter-query parallelism to the
fine-grained intra-operator parallelism.

Small Partitions (R-07). The concept of a morsel is equivalent to a horizontal
partitioning approach. Nevertheless, the size of morsel is chosen small enough
to be processable by a single hardware thread and thus, small partitions are
available for fine-grained runtime adaptations. However, the morsel-driven
TORA approach assumes an optimal partitioning of base data objects, which
leads to an odd data distribution over the sockets of a NUMA system in case
of a varying workload. Hence, this architecture also requires Data Placement
Adaptivity, which is hard to achieve due to the high latching costs.

Flexible Partitioning Scheme and Partition Mapping (R-10/11) While the
original morsel-driven TORA approach assumes a static partitioning, other
works addressed this issue by proposing different online partitioning strategies.
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The first approach [110] uses the move_pages functionality of Linux to trans-
parently move physical pages of a data object to another processor. Another
approach [111] employs an explicit partitioning to move and resize partitions
at runtime based on the access pattern of operators. Moreover, both works also
discuss the issue of scheduling operators close to the data depending on their
memory access pattern. A drawback of those approaches is that partitions
become inaccessible during the repartitioning process.

The basic as well as the morsel-driven transaction-oriented architecture support a
multitude of query processing models that mainly differ in the type and the size of a
chunk that is processed by a physical operator. The traditional tuple-at-a-time pro-
cessing model follows the Volcano iterator model [45] where each operator pulls tuple
by tuple from its preceding operators. This tuple-wise processing approach naturally
fits to the row-oriented database systems of the early days. Due to the emergence
of column-oriented DBMSs especially in the context of main memory database tech-
nology, the column-at-a-time processing model [22] gained a lot of attention. In this
model, columns serve as input and output of single operators, because the base data
objects in column-stores are organized column-wise instead of row-wise. Hence, the
column-at-a-time processing model is the logical consequence for a column-oriented
database system, which turned out to show significant performance increases for
analytical workloads. An extension of the column-at-a-time approach is the vector-
at-a-time processing model [24] that passes portions of a column between operators.
The key concept is that those portions are small enough to fit into the processor
cache to preserve locality when processing the same data by different operators.
While the mentioned approaches pass raw tables/rows or columns/vectors between
the operators of the query execution plan, the indexed table-at-a-time processing
model produces only indexed tables as intermediate results to support succeeding
operators in doing their respective work. The processing model is considered as a
cooperative model, because the indexed columns of the intermediate results depend
on demands of the consuming operator.

To summarize, the transaction-oriented architecture is the most widespread
foundation of existing DBMS implementations and sees transactions as the first-class
citizens supporting multiple query processing model flavors whose feasibility mainly
depends on the physical organization of the storage (e.g., row-wise or columnar). As
we have discussed, this architecture issues a lot of remote data object accesses and
requires high latching efforts when accessing data objects in parallel, which leads
to a bad scalability of large NUMA systems. Thus, the morsel-driven extension of
TORA tries to improve those scalability limitations by increasing the number of
local data object accesses, which is only possible to a certain degree. Based on our
analysis, we conclude that even the morsel-driven TORA approach only fulfills a
small set of our requirements for an energy-aware DBMS making it a bad candidate
for further investigations.
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3.2.2 Data-Oriented Architecture

The counterpart of the transaction-oriented architecture is the data-oriented archi-
tecture (DORA), which turns the entire architectural paradigm upside down. For the
data-oriented architecture, data is the first-class citizen instead of a transaction. As
depicted in Figure 3.4, each data object is horizontally split into disjoint partitions
(circles in the figure) and each of the partitions is placed in the local memory of a
processor. To keep the access to those partitions local and latch-free, each partition
is assigned to exactly one worker thread that can exclusively access the respective
partition. A data-oriented database system typically uses as many worker threads
as available hardware threads on the system (each pinned to a unique hardware
thread) and thus, a worker thread is in charge of multiple partitions that belong to
different data objects.

Figure 3.4: Query processing in a data-oriented architecture.

This kind of data-oriented transaction execution is similar to shared nothing archi-
tectures employed for scale-out scenarios where data objects (including intermediate
results) are horizontally partitioned across multiple servers and a partition can only
be accessed by server-local compute resources. The bottleneck in such a scale-out
setup is usually the communication network between servers and thus, data object
accesses should preferably be local. The same problem applies for NUMA systems
except for the difference that the communication network between the individual
processors is the bottleneck in such a scale-up architecture. Moreover, the data-
oriented architecture for scale-up system goes even a step further and considers a
single hardware thread instead of a processor or server as the smallest execution
unit that is in charge of its exclusive partitions [104] (R-07). Using this fine-grained
execution quantum, DORA addresses the problem of the bad scalability of latches
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even inside of a single processor, because each partition can only be locally accessed
by a single thread (R-03/04/08).

Nevertheless, the latch-free and local data object access comes for additional costs
at other spots of the architecture. In opposite to the transaction-oriented architec-
ture, the DORA approach needs an explicit communication facility to enable the
message exchange between worker threads that effectively execute operators on their
partitions. For instance, while a transaction in a TORA environment can simply
latch and access a data object, a transaction in a DORA environment needs to
issue messages to the responsible worker threads that finally access the data ob-
ject. Hence, the data-oriented architecture requires a distributed query processing
model. Another disadvantage of the data-oriented architecture is its sensitivity to
workloads that do not fit to the current partitioning scheme, which results in an
odd utilization of worker threads and a reduced query execution performance. To
cope with this issue, DORA systems usually implement a Data Placement Adaptivity
mechanism [104, 106] to adjust the partitioning scheme at runtime (R-10/11).

Based on the discussed characteristics of the data-oriented architecture, we place
it in our high-level classification in Figure 3.2 in the opposite corner of the competing
transaction-oriented approach, because data object accesses are always guaranteed to
be local, which results in a bad elasticity, and data objects do not need to be latched,
which makes DORA suitable for fine-grained runtime adaptations. Nevertheless, also
the data-oriented architecture requires latches, which moved from the data object
access layer to the message passing layer making it the most critical component
within a DORA-based database system. Regarding our requirements list for an
energy-aware DBMS, Table 3.3 shows that the data-oriented architecture already
fulfills most of the requirements except for the following ones:

Main Memory-Centric (R-01). So far, the data-oriented architecture has only
been investigated in the context of disk-based database systems [104]. While
TORA as well as DORA-based DBMSs profit from the general advancements
of general in-memory technology (e.g., cache optimized data structures), per-
formance and scalability of a DORA-based system highly depend on the design
of the message passing layer, which needs to keep pace with the increased data
object access speed to avoid worker threads that starve from messages. This
message passing layer has not been investigated so far and will be subject of
our further considerations in the context of the data-oriented architecture.

Scalability (R-02). The data-oriented architecture has already been evaluated in
the context of medium-scale (8 sockets) NUMA systems including the propo-
sition of corresponding architectural concepts [106]. The evaluation revealed
that the DORA approach exhibits an almost linear scalability on such scale-up
systems. However, as we showed in our NUMA systems evaluation (cf., Ta-
ble 3.2), communication related bottlenecks become even more critical when
moving to large-scale NUMA systems. Additionally, the move from disk-based
to an in-memory system increases to overall performance and thus, the pressure
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on potential contention points. Hence, the scalability of the data-oriented ar-
chitecture will be subject of our further investigations especially in the context
of an in-memory database system.

Flexible Work to Hardware Thread Assignment (R-05). Compared to the
transaction-oriented architecture, the DORA-approach imposes a static map-
ping of partitions to worker threads, which are pinned to a specific hardware
thread. Since the execution of an operator, which does the actual work, is
bound to a specific partition, the work to hardware thread assignment is stat-
ically fixed. Hence, the only option to deal with workload imbalances is to
adapt the partitioning scheme of the data objects, which comes at high energy
costs.

Late Binding of Physical Operators (R-09). Similar to the TORA approach,
the data-oriented architecture for scale-up systems binds physical operators at
query compilation time. However, because the message passing layer already
decouples data objects accesses from the actual transaction execution, DORA
provides a good foundation for fulfilling this requirement.

To summarize, compared to the transaction-oriented architecture, which was
sufficient in times a low parallelism, the data-oriented architecture is designed for
scalability and has already been investigated in terms of medium-scale NUMA sys-
tems and showed an almost linear scalability. Moreover, the DORA approach fulfills
a lot of our requirements for an energy-aware DBMS making it an excellent foun-
dation for our further considerations. However, DORA still misses some important
requirements and lacks an investigation as well as appropriate concepts for scala-
bility on large scale-up NUMA systems, which is mainly a question of the message
passing layer especially in the context of in-memory database technology. We will
address this specific topic in Section 3.3.

3.2.3 Living Partitions Architecture

In this section, we present our novel Living Partitions architecture, which is based on
the data-oriented architecture and mainly enables fine-grained adaptivity at runtime.
While the traditional transaction-oriented architecture assumes data objects as a
passive lifeless state in main memory transactions are operating on, the data-oriented
architecture already perceives data objects as something central and active that is
composed of small partitions, which adapt its partitioning scheme according to the
current workload.

The Living Partitions architecture goes an important step further and understands
a partition of a data object as a living organism that needs to evolve over time to
minimize its energy footprint by quickly responding to environmental influences
by changing its location, size, or by specializing itself. Hence, the data-oriented
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architecture is a good foundation for achieving this goal, because all data objects are
implicitly partitioned into small chunks. However, DORA enforces a static partition
to hardware thread mapping, which is a blocker for our Resource Adaptivity. For
that reason, the Living Partitions architecture relaxes this mapping as shown in
Figure 3.5. In the following we describe how this flexible work to hardware thread
assignment (R-05) is achieved (the numbers of the items correspond to the numbers
in the figure):

Figure 3.5: Query processing in the Living Partitions architecture.

(1) In the Living Partitions architecture, the Living Partitions are located in the
local memory of a home processor. Instead of assigning partitions to a specific
hardware thread of the processor, all hardware threads are able to process a
partition in the local memory with the limitation that only one thread pro-
cesses a partition at a specific point in time (R-08). Therefore, we run Living
Partition Vitalizers (LPV) on each hardware thread of the respective proces-
sor that effectively bring partitions to life by granting compute resources to
them. Thus, Living Partitions are latched very coarse-grained to enforce a
serial access to them.

(2) To push elasticity respectively resource adaptivity even further, the Living
Partitions architecture allows an LPV to process living partitions that are
located in the local memory of a remote processor. Since resource adaptivity
is a short-term measure, we use this remote processing mechanism to cope
with temporary imbalances originating from a partitioning that does not fit
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the current workload demands. Conceptually, this mechanism is equivalent to
the morsel-driven TORA approach.

The next feature set addresses the requirements of Data Placement Adaptivity,
which requires a flexible partitioning scheme (R-10) as well as a flexible partition to
processor mapping (R-11). The original DORA approach already includes adaptive
data placement facilities in terms of a variable partitioning scheme. Nevertheless,
the Living Partition architecture goes a step further and is able to regulate the
degree of parallelism at runtime, which is mainly a dependency of the number of
living partitions a data object is split into. Moreover, entire living partitions can be
physically moved between the local main memories of the individual processors. In
the following, we describe the three mechanisms in detail:

(3) The first mechanism regarding data placement adaptivity is the ability of the
architecture to physically migrate living partitions at runtime between the
main memory of single processors (R-11). As we already outlined, migrating
living partitions induces additional costs in terms of resource usage and energy
consumption, because data needs to be physically copied and is thus considered
as a long-term measure. Moreover, a living partition can not be modified
during this process, which negatively affects query processing performance.
However, since a living partition only comprises a small amount of the actual
data object, this process can happen on a partition by partition basis resulting
a low impact on the actual query processing throughput.

(4) The next mechanism of the Living Partitions architecture allows living parti-
tions to be split into multiple child partitions at runtime. This process effec-
tively results in an increase of the number of living partitions a data object is
split into. Hence, the possible degree of parallelism can be increased using this
process as long as the previous living partition count of a data object was lower
than the total number of LPVs. Moreover, the mechanism of splitting living
partitions is used to distribute hot spots, for instance, if a living partition is
accessed unproportionally often.

(5) The last mechanism regarding data placement adaptivity is the merge op-
eration, which is the reversal of the split operation. The merge operation
effectively reduces the possible degree of parallelism, which is typically not
desired on massively parallel hardware. Nevertheless, the merge has its right
to exist, because a high number of living partitions induces higher costs in
terms of infrastructure and maintenance (e.g., message passing costs and par-
tition table size). Hence, this mechanisms makes sense for data objects that
are not frequently accessed compared to others. Moreover, the combination of
the split and merge mechanism actually enables a flexible partitioning scheme
(R-10).

The remaining requirement for an energy-aware database system that is missing
in the TORA as well as the DORA approach is the late binding of physical opera-
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tors (R-09), which mainly addresses Storage Adaptivity. Since the Living Partitions
architecture perceives a living partition as an autonomous organism that can change
its physical data representation at any point in time, the storage layout-dependent
physical operator can not be determined at query compilation time, because the
physical representation may be changed between query compilation and the actual
execution. Furthermore, the physical data format can be different across the indi-
vidual living partitions. Hence, our last mechanism addresses exactly this issue:

(6) To cope with this issue, the Living Partitions architecture imposes an indirec-
tion layer between the logical operator and the actual physical data represen-
tation. Thus, a living partition exposes logical data access primitives such as a
scan (with filter), an insert, and a delete. The actual decision on which phys-
ical operators are used for the data access are solely up to the living partition
itself. For instance, a logical filtered scan operation can be physically executed
using an index scan on living partition A and using a column or row scan on
living partition B.

To classify our Living Partitions architecture in the high-level comparison in Fig-
ure 3.2, we place it close to the data-oriented architecture in the bottom right corner.
Nevertheless, the Living Partitions architecture is able to provide a better elasticity
compared to the basic DORA approach, which comes at the cost of additional latch-
ing costs, because partitions are not statically mapped anymore to a specific thread.
However, this additional latching is very coarse-grained on a per-partition level and
is thus, not very frequently invoked. Regarding our complete list of requirements
for an energy-aware DBMS, the Living Partitions architecture fulfills all of the re-
quirements assuming scalability on large scale-up NUMA systems in the context of
in-memory database technology, which we will investigate in Section 3.3.

To summarize, our Living Partitions architecture is based on the data-oriented
architecture and inherits its superior scalability characteristics, which still need to
be proved on large-scale NUMA systems especially for in-memory database systems.
Our extensions mainly comprise the necessary requirements for enabling fine-grained
adaptivity at runtime such as the flexible work to hardware thread assignment and
the late binding of physical operators on a per-living partition basis.

3.3 DORA for In-Memory DBMSs on Large-Scale NUMA
Systems

The research question we want to answer within this section is whether the data-
oriented architecture is able to scale up on large-scale NUMA systems (R-01) such as
the SGI UV family [124] presented in Section 3.1 especially when being employed in
a main memory-centric database system (R-02). Hence, we will design and evaluate
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a prof of concept of our in-memory database system ERIS that focuses on the
basic data object access primitives (i.e., the full table scan and the index scan)
and implements a data-oriented architecture. As already outlined, the message
passing layer is the most critical component of such an architecture, because the local
data object accesses need to amortize the additional messaging costs. Moreover, we
will prototypically investigate the load balancing component, to prove the overall
feasibility of Data Placement Adaptivity in such an environment.
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Figure 3.6: Architectural overview of the ERIS PoC and AEU details.

We start with a description of the architecture of our ERIS proof of concept (PoC)
and its individual components as visualized in Figure 3.6. The central components of
the PoC are the worker threads, which we call Autonomous Execution Units (AEU).
Each core, respectively hardware context, of the platform runs exactly one AEU. All
AEUs pinned on the same multiprocessor use a common memory manager, because
they share the same local main memory and are thus able to quickly exchange
data partitions during load balancing. A set of partitions – each belonging to a
different data object – is evenly assigned to each AEU. The AEU’s main task is
to manage its partitions and to process incoming data commands (i.e., full table
scans and index scans) on these partitions. To efficiently route data commands
during query processing between AEUs, our PoC includes a NUMA-optimized high-
throughput message passing layer. The NUMA-aware load balancer of the PoC

57



3 Adaptivity-Enabling Scale-Up Architecture

observes the current load of the AEUs via a monitoring component and triggers
balancing commands in case of an odd AEU utilization. In the following we describe
the central components of our PoC in more detail.

3.3.1 AEUs and Memory Management

Traditional architectures (i.e., TORA) bind transactions to a number of threads
and use a global memory manager (per data object). This way of accessing and
storing data is highly discouraging when running on NUMA platforms, because
data is distributed in an uncoordinated way across the memory of the different
multiprocessors. In turn, this causes a high number of remote memory accesses by
the transaction threads that are accessing the data object.

For that reason, our PoC employs a data-oriented architecture where each data
object is logically partitioned. Each available core of the system runs an AEU, which
is bound to be only executed on this single core or hardware context respectively.
Every single AEU gets assigned a set of disjoint partitions and is exclusively respon-
sible for that portion of the data object. This approach restricts memory accesses of
an AEU to the multiprocessor’s local main memory and data objects do not have to
be protected against concurrent accesses via latches. Our PoC primarily uses range
partitioning to split data objects into partitions. We decided against hash partition-
ing, because it is not order preserving and thus disallows efficient range scans and
hinders an efficient load balancing. In scenarios where a table is solely completely
scanned, we employ physical data size partitioning instead of range partitioning,
because there is no suitable attribute as partitioning criteria available. Here, our
ERIS PoC only keeps track of those AEUs that actually store a partition of the
corresponding data object and uses the multicast capabilities of the message passing
layer to distribute data commands.

Regarding memory management, a global memory manager (per data object) is
not feasible on a NUMA platform. Instead, our PoC employs one memory manager
per multiprocessor and data object (i.e., a table or index). Per-multiprocessor mem-
ory managers help to reduce the contention on the memory management subsystem,
which is often the bottleneck during write operations to a data object. Moreover,
this approach limits allocations of AEUs to the local main memory and enables the
load balancer to perform an efficient intra-node balancing. To scale with a high
number of cores per multiprocessor, our memory managers use thread-local caching
mechanisms and thus, decrease contention on the local memory management.

At the bottom of Figure 3.6 we illustrate the AEU loop as well as the local memory
organization of an AEU. The AEU mainly keeps local data command buffers and
the actual data object partitions, which are either stored as a column-store for a
full table scan or as an index for point queries). In the first stage of the loop, the
AEU scans its data command buffer, which is periodically filled by the message
passing layer, and groups commands by the accessed data object and the command
type. This optimization step is beneficial to coalesce the same type of access to the
same partition. Following the grouping step, the AEU actually processes its data
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command buffer, which is the most time consuming part of the loop. Afterwards,
the AEU checks its command buffer for pending balancing or transfer commands.
Such commands force an AEU to grow or shrink its partition or to transfer a range
of its partition to another AEU. We discuss the details of the load balancing process
in Section 3.3.3.

3.3.2 NUMA-Optimized High-Throughput Message Passing Layer

The message passing layer is the most essential component of our ERIS PoC, because
AEUs have to be supplied with data commands just in time. Especially during the
execution of analytical queries, large amounts of data commands have to be routed
between AEUs (e.g., lookup operations during a join). Thus, the main goal of the
message passing layer is to distribute data commands at a high throughput. A data
command consists of a storage operation type (i.e., full table scan or index scan),
a data object identifier, a reference to a callback function, a data segment that
contains all the necessary parameters for the storage operation (e.g., a batch of keys
for the lookup or filters for an index scan), and additional data that is necessary for
the query processing. Our message passing layer is shown in Figure 3.7. The core
components are the partition tables, which keep track of the partitioning scheme
of individual data objects. As already mentioned, a data object is either clustered,
respectively sorted, on one or more of its attributes or it is distributed without any
partitioning criteria. In the clustered case, the routing table stores the attribute
range to AEU mapping (range partition table). If the data object is not partitioned
on any attribute, the routing table only saves whether or not an AEU stores a
partition of that data object (bitmap partition table). Since the routing tables are
small data structure that are rarely updated (only during load balancing) and are
frequently read, they usually fit into the caches of all multiprocessors and are thus
not causing any remote memory accesses.
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Figure 3.7: NUMA-optimized high-throughput message passing layer.

Besides the routing tables, our message passing layer uses a comprehensive buffer-
ing strategy to reduce the contention and to increase batch sizes. Each AEU uses
a set of outgoing buffers – one unicast buffer and one multicast reference buffer for
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each running AEU in the system – , a multicast buffer, and two bigger incoming
buffers. All buffer types are stored in the local main memory of each AEU to provide
fast access to them.

Every time an AEU generates a data command during the processing stage, it
starts with a batch lookup of the responsible AEUs for that data command in the
corresponding routing table of the target data object (step 1 in Figure 3.7). The
routing tables use the content of the data segment of the data command to lookup
the designated target AEUs. As soon as the target AEUs are determined, the routing
layer splits the command into smaller pieces, for instance if a lookup data command
contains keys in its data segment that belong to different partitions. Data commands
for a single AEU are written to the corresponding outgoing buffer of the source AEU
(step 2). If multiple AEUs are responsible for a data command (e.g., a full table scan
that needs to be distributed to different AEUs), the command itself is written to the
multicast buffer and references to this data command are stored in the individual
multicast reference buffers. If an outgoing buffer is either full or the AEU starts
over its processing loop, the specific outgoing buffer including its multicast data
commands is copied to the incoming buffer of the target AEU (step 3). This local
pre-buffering dramatically increases the data command routing throughput, because
the contention on the incoming buffers is reduced and multiple data commands can
be copied sequentially. Thus, the high latency of remote memory accesses on the
NUMA platform does not become the bottleneck.

While outgoing buffers are private to an AEU and thus, do not require any con-
currency control, incoming buffers are written by different AEUs and are read by
the host AEU at the same time. Hence, incoming buffers need an efficient and
lightweight concurrency control mechanism. We employ an adapted version of the
lightweight multi-buffer proposed in LLAMA [89]. Each AEU has two incoming
buffers of an equal size. One buffer is currently writable for all AEUs and the other
one is currently the processed data command buffer of the owning AEU. To imple-
ment incoming buffers using a lightweight latching, each of them contains a 64bit
wide buffer descriptor that uses 1bit for determining whether the buffer is still active
or not, 32bit to save the current offset inside the buffer, and the remaining 31bit
for storing the number of active writers to the buffer. If an AEU wants to write
to an incoming buffer, it first determines the writable buffer, increases the offset by
the size of data that needs to be written, increments the number of active writers,
and finally atomically updates the buffer descriptor using an atomic compare-and-
swap instruction. If the atomic buffer descriptor update fails, the entire process is
repeated. This approach allows multiple AEUs to write to the incoming buffer in
parallel. After the AEU has successfully written its data commands, it atomically
decrements the number of active writer to the buffer. The owning AEU of the in-
coming buffers swaps both buffers each time it enters the data commands processing
stage. The AEU updates the pointer to the new writable buffer and atomically flips
the active bits of both buffers. Afterwards, it holds on until all AEUs have finished
writing their data to the new data command processing buffer.
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Figure 3.8: Message passing throughput as a function of the local buffer size on an
8-socket NUMA system.

We evaluated the effect of the outgoing buffer size on the routing throughput on
the AMD machine (see Section 3.1) and visualize the results in Figure 3.8. Regarding
the raw routing throughput, where AEUs skip the processing phase, we observe that
the throughput doubles with the size of the outgoing buffers until the bandwidth
of the NUMA interconnects start to saturate. If we enable the processing phase
and generate index lookup data commands, the peak throughput is already reached
for an outgoing buffer size of 128 data commands, because the throughput is now
dominated by the index lookups during the processing stage of the AEUs. A compar-
ison of both measurements demonstrates the effectiveness of our NUMA-optimized
high-throughput message passing layer.

3.3.3 Load Balancing

Besides the message passing component, our PoC includes a NUMA-aware load
balancer component to evaluate the Data Placement Adaptivity mechanism in case
of changing workload that does not fit the current partitioning scheme. The main
objective of the load balancer is the maximization of parallelism. We distinguish
between two major scenarios:

(1) The data object is always scanned in its entireness and is thus not partitioned
by a specific attribute.

(2) The data object faces lookups or scans in certain ranges and is thus partitioned
by one or more attributes.

In the first case, the physical partition size is the considered metric for the load
balancer, because the scan works only efficient, if all AEUs have to scan the same
amount of data. In the second scenario, we use the access frequency as primary met-
ric, because lookups and range scans only involve a certain set of AEUs. Additional
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Figure 3.9: Configurable load balancing algorithm of our ERIS PoC.

metrics for the latter scenario are the mean execution time of a data command for a
specific partition. Different execution times are mostly a result of different depths of
tree-based index structures, or column store partitions that are frequently accessed
but fit into the cache of a multiprocessor, or effects of data command coalescing.

The adaptation loop of our PoC starts with the monitoring of the different metrics
on a per partition level. Based on the captured metrics, the load balancer periodi-
cally checks the load for imbalances. If the standard deviation between the different
AEUs exceeds a given threshold, the load balancer executes a load balancing algo-
rithm that calculates a new target partitioning. With the help of the current and
the targeted partitioning, the load balancer computes a series of balancing com-
mands that are routed to the involved AEUs. Such balancing commands include
the new data respectively key range the AEU is responsible for and a set of transfer
commands that instruct the AEU where it has to fetch the missing partition data
from. Next, we will describe our configurable load balancing algorithm and the
NUMA-aware partition transfer mechanisms in more detail.

Configurable Load Balancing Algorithm

The load balancing algorithm receives the approximated metric distribution of a
single data object of the recent sampling period as well as the current partitioning
as input and outputs the targeted partitioning for the respective data object. Fig-
ure 3.9 shows an exemplary metric distribution measurement (the access frequency
in this specific case) that was sampled per partition and is represented as a his-
togram. In this specific scenario, partitions 3 to 6 each received 25 % of the accesses,
which is a severe imbalance. The most aggressive, but also most expensive approach
is taken by the One-Shot load balancing algorithm configuration. This algorithm
configuration computes the average access frequencies of all partitions and calcu-
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lates a target partitioning that is fully balanced. The One-Shot configuration is
suitable for workloads that change rarely but heavily. An alternative configuration
uses the moving average (MA). For instance, the MA1 configuration computes for
each partition the moving average of the partition’s direct neighbors including itself
and adjusts the target partitioning appropriately using a series of merge and split
operations. The MA configuration adapts more slowly to the new workload, but
does not cause as much balancing overhead as the One-Shot algorithm and is thus
suitable for highly dynamic workloads. As depicted in Figure 3.9, the aggressiveness
of the MA configuration depends on the range the moving average is calculated over
and turns into the One-Shot algorithm when configured as MA7 in our setup, be-
cause it equally calculates the full average across all partitions. As soon as the load
balancing algorithm has finished the calculation of the target partitioning, the latter
is compared to the current partitioning and the load balancer generates a series of
balancing commands for that data object.

NUMA-Aware Partition Transfer

If the load needs to be balanced, each AEU that has to split or merge its local
partition of the data object receives a balancing command. Such a balancing com-
mand first includes the new partition ranges for the AEU. The AEU updates the
corresponding routing tables and saves the lower and upper bounds of its ranges in-
ternally, because it has to compare each incoming data command against its bounds
to check its validity. If the AEU encounters an invalid data command (i.e., a data
command that references keys outside its updated range) it forwards this data com-
mand to the AEU that is now responsible for the range. If a data object is balanced
that is not partitioned by a specific criteria, the balancing command includes the
number of tuples that have to be fetched or handed over to another AEU. To avoid
situations of overlapping partition ranges, all AEUs that are involved in the current
balancing cycle have to be shortly synchronized for updating a data object’s routing
table.

Besides the information about the new partition ranges, a balancing command
includes a set of transfer commands. We continue with the example of Figure 3.9
and look at the balancing of partitions 1 to 4 using the One-Shot load balancing
algorithm. The balancing of partitions 5 to 8 is very similar, because this specific
workload is symmetric. In Figure 3.10, we illustrate the corresponding partition
transfer process for that example. For reasons of simplicity, we assume a NUMA
system consisting of four multiprocessors and two cores per multiprocessor in the
example. Because the current range of partitions 1 and 2 is not accessed by the new
workload, partition 1 receives a first transfer command instructing the AEU to take
over the entire range of partition 2. Since both partitions reside in the same local
memory and thus, in the same memory management domain, AEU 1 uses the cheap
link mechanism to transfer partition 2. To do so, AEU 1 firstly unlinks the respective
portion of the partition (the complete partition in our case). Afterwards, AEU 1
simply links (e.g., in case of a tree-based index) respectively appends (in case of a

63



3 Adaptivity-Enabling Scale-Up Architecture

© Prof. Dr.-Ing. Wolfgang Lehner | | 3

> Load Balancer

A1 Datenbanksysteme: Was? Wie? Warum?

Multiprocessor 1

Local Memory

Multiprocessor 2

Local Memory

Intra-Node 
Transfer

link

Inter-Node 
Transfer

copy

…

…

AEU AEU AEUAEU

Transfer Command

Raw Data Stream

Figure 3.10: NUMA-aware partition transfer via link and copy.

column-store) partition 2 to its own partition 1. For the transfer of half of partition
4 to partition 3, our PoC also uses the link mechanism, because both partitions
are located on multiprocessor 2. The remaining two transfers from partition 3 to
partitions 1 and 2 are inter-node transfers and thus use the copy mechanism for the
partition transfer. Such a copy operation requires a cooperation between source and
target AEU, if the data object is stored as an index to avoid the high latency of
remote memory accesses while traversing through the tree-based index. In this case,
the source AEU forwards the transfer command to the source AEU, which flattens
the partition to an exchange format and streams it sequentially to the target AEU.
The target AEU converts the data stream back to an index and links it to its existing
partition. If the data object is already stored in a flat format such as a column store,
the target AEU directly copies the data from the source AEU. As soon as an AEU has
processed all its transfer commands, it becomes ready to continue normal operation
and when all AEUs have completed their balancing command, the balancing loop
starts over again.

3.3.4 Implementation Details and Evaluation

In this section, we detail our implementation of an AEU and investigate the behavior
of our ERIS PoC. We evaluate the PoCs’ scan, lookup, and upsert performance
by comparing it to the NUMA-agnostic shared index respectively shared scan as
baseline, which corresponds to the basic transaction-oriented architecture. For the
baseline experiments we use the same data structures as for the AEUs. The difference
is that those data structures are not partitioned and are thus, synchronized via
atomic instructions for updates, because they are accessed by different transaction
threads in parallel.

An AEU implements a simple column store as well as a prefix tree [20] as index. We
decided to use a prefix tree, because this index structure is order-preserving (applies
not to a hash table), in-memory optimized, and offers a high update performance
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(a) Lookup on 4-socket Intel machine.
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(b) Upsert on 4-socket Intel machine.
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(c) Lookup on 8-socket AMD machine.
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(d) Upsert on 8-socket AMD machine.
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(e) Lookup on SGI UV 2000.
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(f) Upsert on SGI UV 2000.

Figure 3.11: Lookup/Upsert throughput depending on index size.

(does not apply to a B+-Tree). To implement the range partition tables of our
PoC, we decided to deploy a CSB+-Tree [116], because it works fast for sparsely
distributed data and it scales with an increasing number of ranges, respectively
AEUs, compared to a simple array.

For our evaluation, we compare different configurations (e.g., different index sizes)
and reason about the observed results. Furthermore, we compare our ERIS PoC
to different memory allocation strategies for column data and evaluate their scan
performances. For certain experiments, we additionally present results of hardware
event measurements to gain deeper insights in the algorithms’ behaviors. Moreover,
in Figure 3.8 we presented experiment results that show that the NUMA-aware
high-throughput routing is not the bottleneck of our PoC.

Evaluation Setup

All our experiments are executed on the three machines that were introduced in
Section 3.1.2, i.e., the 4-socket Intel machine, the 8-socket AMD machine, and the
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SGI UV 2000 (cf., Table 3.1). The executable files are compiled with the g++ com-
piler, using optimization level O3. The shared index experiments are executed with
numactl -interleave=all to interleave the memory across all available multipro-
cessors. Interleaving the memory resulted in slightly higher throughputs of the
shared index compared to memory agnostic executions. A single benchmark run
for upsert/lookup performance comprises two phases; (1) random keys are inserted
into the index for about one minute and afterwards, (2) random keys are read from
the index for another minute. Insert and lookup throughputs are reported for the
two phases respectively. In the static workload cases, keys are uniformly distributed
across the dense key domain. If not stated otherwise, the prefix trees are configured
with a prefix length of 8bit. In a scan performance benchmark run, a column with
random entries is generated and afterwards scanned repeatedly for one minute.

The throughput of storage operations is measured and reported by the application
itself. We use different tools to measure the utilization of the links that connect
multiprocessors, the open source tool likwid [2] on the Intel and the AMD machine
and the SGI tool linkstat-uv on the SGI machine. Hardware performance counters
are evaluated with likwid on the Intel and the AMD machine and VampirTrace [5]
on the SGI machine.

Static Workload Experiments

For all static workload experiments, the load balancer and thus, the data placement
adaptivity, is deactivated and the workload does not change over the whole bench-
mark run, i.e., keys to upsert or lookup are evenly distributed across the key domain
and scans are over the full key domain.

Point Access with Different Index Sizes. In the first set of experiments, we
compare the lookup and upsert throughput of the PoC to the shared index for
different index sizes. The results are shown in Figure 3.11. The index sizes vary
from 16 million keys to 2 billion keys on the AMD and Intel machine and from 16
million keys to 32 billion keys on the larger SGI machine. As a reference, 1 billion
keys require approximately 25 GBs in memory and in our largest experiment, the
index is as big as 0.8TB. Figure 3.11(a) shows that for small indexes on the small
machine, the shared index outperforms our DORA PoC. The reason for this is the
small overhead that is introduced by the NUMA-optimized message passing layer.
However, as the number of multiprocessors increases and with larger indexes, our
PoC clearly supersedes the shared index. While on the eight node AMD machine,
the PoC has a throughput that is about 1.6 times higher than the shared index
(Figure 3.11(c), 1 billion keys), on the larger SGI machine, our ERIS PoC executes
already 3.5 times as many lookups per second as the shared index (Figure 3.11(e),
16 billion keys). Finally, Figure 3.11 shows that the upsert performance behaves
similar to the lookup performance, except the lower absolute throughput values.

Scan Performance. In the second experiment, we compare our PoCs’ scan perfor-
mance with two different other memory allocation strategies for column data. The
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results on the SGI machine are shown in Figure 3.12. In the experiment, all AEUs
or parallel threads respectively2 scan a column with about 8 billion entries. The
memory for the column data is allocated (1) on one single multiprocessor (Single
RAM ), (2) interleaved on all multiprocessors (Interleaved), or (3) on the multipro-
cessor where the AEU is executed (ERIS PoC). In the Single RAM case, the scan
performance is bound by the read bandwidth of the memory controller (cf. Ta-
ble 3.2). The scan performance with interleaved memory is bound by the different
link bandwidths. Only our data-oriented PoC is able to achieve optimal scan per-
formance. Figure 3.12 shows that the PoC achieves a 6.6 times higher bandwidth
than does reading from memory that is interleaved over all multiprocessors. In the
past, interleaving has often been proposed as a method of choice to overcome NUMA
effects. However, our experiment clearly shows the drawback of such an approach.
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Figure 3.12: Scan bandwidth of our ERIS PoC compared to näıve memory alloca-
tion strategies on SGI UV 2000.

L3 Cache Usage. To better understand the lookup performance of our PoC and
the shared index, we investigate the L3 cache usage in this experiment. For smaller
index sizes, larger portions of the upper levels of the prefix trees fit in the caches.
For larger index sizes, the last level cache plays a minor role and the performance
is memory bound. It can be seen in Figure 3.11 that for increasing index sizes,
the performance of the shared index is earlier memory-bound than the performance
of the PoC. The explanation is that our DORA PoC makes better use of the L3
cache. Because each AEU in our ERIS PoC serves a distinct partition and hence
a subset of the tree, there is better data locality and less concurrency for the L3
cache. Consequently, the upper levels of the tree fit in cache for larger index sizes
(see, e.g., [76] for details on cache concurrency effects).

To verify our theory, we have calculated the L3 cache miss ratio for different
index sizes on the AMD machine3. Furthermore, we have evaluated the state of the
cache line for each L3 cache hit (for availability of the respective counters, this is
evaluated on the Intel machine4). Figure 3.13 shows that the shared index causes

2488 cores, or 61 multiprocessors, is largest possible working set in the batch system on our SGI
machine.

3The L3 cache miss ratio is calculated as the quotient of the following hardware counters: L3

Cache Misses and Request to L3 Cache [9].
4The cache line states are measured using the LLC_HITS counter extensions in the C-Box of the

Intel CPU [67].
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Figure 3.13: L3 cache miss ratio on AMD.
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a higher miss ratio for smaller indexes, compared to our PoC. This is supported by
Figure 3.14, which shows that for the shared index 79.3% of all hits are on Shared
or Forward cache lines which implies that the same cache line is present in another
cache. Cache lines that are kept in multiple caches reduce the effective size of all
caches and increase the miss ratio. Our PoC on the other hand has significantly
better data locality, which can be seen in Figure 3.14 where 97 % cache hits go to
cache lines in Modified or Exclusive states.

Link and Memory Controller Usage. Our ERIS PoC is designed such that it
reduces communications between multiprocessors. The significantly higher through-
puts of our ERIS PoC as well as the L3 cache usage already suggest that this goal
is achieved. However, to further verify our theses, we measure the average link us-
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age over all links in a 10 seconds steady state window5. The results for the AMD
machine are shown in Figure 3.15. The shared index has to transfer a total of
83.8 GB/s to fulfill all remote memory requests. At the same time, our PoC only
transfers 17.8 GB/s (mainly caused by the data command routing facility) while at
the same time achieving a higher throughput and thus performing more memory
operations. The shared scan with interleaved memory allocation transfers a total of
75.6 GB/s, compared to 1.2 GB/s transfered by the PoC. These numbers together
with the low level results in Section 3.1 explain the low throughput of the shared
setup. Each remote access suffers from the worse latency and bandwidth compared
to local memory accesses.
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Figure 3.15: Link and memory controller activity on AMD
(scan: 8 GB, lookup: 1 B Keys).

Together with the link utilization, we have measured the transfer bandwidth of
the memory controllers6. The results are also shown in Figure 3.15. On average,
only 1 out of 8 memory requests of the shared setup that go to local memory and
remote memory requests suffer from higher latencies. Therefore, the shared index
can only issue enough memory requests to transfer an average of 41.6 GB/s from all
memory controllers while our PoC is able to transfer 73.0 GB/s. The shared scan
produces a transfer rate of only 33.8 GB/s, compared to 122.9 GB/s transferred by
the PoC. The transfer rate of our PoCs’ scan operator equals 93.6 % of the possible
accumulated memory bandwidth of the system (cf. Section 3.1).

Scalability. The main objective of our data-oriented PoC is to evaluate the scala-
bility of the DORA approach on large-scale NUMA systems employing in-memory
database technology. Hence, we conducted scalability measurements on the largest
NUMA system available to us (the SGI machine) and show the respective results in
Figure 3.16. The chart includes scalability measurements for the TORA approach

5We measure the link usage by evaluating the Link Transmit Bandwidth counters of the AMD
CPU [9].

6We measure the memory controller by reading the DRAM Accesses counter of the AMD CPU [9].
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(shared access) and the DORA approach (ERIS PoC) each for the full table scan
and index lookups. The table scan executes column scans with a data size that is
large enough to be fully memory-bound and the lookup operations access and index
filled with 1 billion keys. The core allocation strategies differ for the scan and the
lookup. While the scan allocates the cores evenly across the sockets, the lookup
operation first fills a socket before a core on the next socket is allocated.
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Figure 3.16: Scalability comparison of our ERIS PoC to the TORA approach for
scan and lookup operations.

We observe that the NUMA-aware DORA approach shows a significantly better
scalability behavior for both operations compared to the NUMA-agnostic TORA
approach resulting in an about 6x higher overall throughput. The scan performance
scales linearly when adding more cores until the memory controllers of the individual
processors start to saturate and the scan is finally reaching almost the peak memory
bandwidth of the machine. Due to the core allocation strategy used by the lookup
operation, we measured a superlinear scale-up. This behavior is a result of the better
cache utilization in the data-oriented architecture, which allows a higher portion of
the index data structure to fit into the cache when more processors are activated.

Dynamic Workload Experiments

In this section, we show that our PoC is able to keep a high throughput even under
changing workload conditions. For our experiments, we use a workload that ran-
domly accesses the full key range (lookup) of 512 million keys for an initial period
of 10 seconds. After this period, the workload changes drastically such that only
half of all keys (in the range from 128 M to 384 M) are accessed afterwards. In the
remaining time of the experiment, the workload is changed 4 more times with 20
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seconds between any two changes. These remaining changes are only slight changes
which are simulated by shifting the key range of interest by 8 million to the left.
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Figure 3.17: Load balancer experiments on 8-socket AMD machine.

Figure 3.17 shows the lookup throughput of the ERIS PoC over time. The above
described workload changes are easily recognizable as short drops in the throughput
curve. The chart contains performance numbers for a baseline run without load
balancer and for three different load balancing algorithms (cf., Section 3.3.3), the
One-Shot algorithm as well as Moving Average algorithms with window sizes of 1
and 8. The One-Shot algorithm causes the deepest drop of the throughput after
each workload change, because all repartitionings that are necessary to regain a
fully balanced workload are executed at once. This causes large overhead (some
partitions need to be copied) but at the same time results in the fastest recovery
time. The chart shows that the throughput reaches its maximum again shortly after
each workload change. The other extreme is the MA1 algorithm, which only slightly
adapts the partitioning in each evaluation period. Hence, the performance does not
drop that drastically, but it takes more time before the maximum throughput is
reached again. The MA8 algorithm appears to be the best compromise in this setup
between performance drop and recovery time on that specific system.

As a conclusion, we note that the MA load balancing algorithm, with a parameter
that depends on the machine, offers the best performance. Moreover, the parame-
ter can be used to shift the behavior between gentle performance drops and quick
recovery times, depending on the constraints of the application running on top.

3.3.5 Summary and Conclusions

The overall intention of this section was to investigate the scalability behavior of the
data-oriented architecture on large-scale NUMA systems in the context of a main
memory-centric database system to check the ability of DORA to fulfill our require-
ments R-01 (main-memory centric) and R-02 (scalability) as shown by Table 3.3.
Moreover, our goal was to validate the feasibility of Data Placement Adaptivity in
such an environment. Hence, we designed a corresponding PoC that implements
the data-oriented architecture including the full table scan and the index lookup as
the two primitive in-memory operations as well as appropriate online load balancing
mechanisms. Since lookup operations are orders of magnitude faster compared a
full table scan, we focused on the message passing layer, which is needed by the
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data-oriented architecture to allow a local access to the actual data object. Thus,
our main research question was whether the local data object accesses amortize the
additional message passing costs to bypass the increased remote main memory access
latency especially induced by latency-bound operations such as the index lookup.
As we have shown in our evaluation, this question can be answered positively when
employing our NUMA-aware high-throughput message passing layer. Furthermore,
we proved that the data-oriented architecture exhibits a superior scalability even
on large-scale NUMA machines (R-02) when using in-memory data structures (R-
01). As conclusion we can emphasize that the DORA approach fulfills the two
requirements under investigation and additionally allows efficient Data Placement
Adaptivity.

3.4 ERIS Data Management System

In this section, we present our in-memory data management system ERIS, which
is tailor-made to scale up on large-scale NUMA systems and to enable fine-grained
adaptations at runtime and thus, allows us to implement and evaluate our Energy
Awareness by Adaptivity concept for an energy-aware DBMS. In the previous section,
we empirically proved scalability and the feasibility of Data Placement Adaptivity of
the data-oriented architecture using our in-memory DORA proof of concept (PoC).
However, this PoC was limited to a full table scan and an index scan as data object
access primitives and was not capable of processing comprehensive queries and to
ensure transactional properties. Moreover, the PoC implemented only the basic
DORA approach.

Hence, we will focus our discussion in this section on the architectural changes that
are necessary to implement our Living Partitions architecture, which also includes a
major conceptual redesign of the message passing layer to deal with the additional
freedom that was granted to the individual partitions by this extension of the data-
oriented architecture (R-05). Furthermore, we will discuss the topic of the query
processing model and transaction processing as well as related components of ERIS
such as memory management, Tasks, and Dataflows. Finally, we will evaluate our
ERIS implementation mainly in terms of scalability using a set of micro benchmarks
and the TATP benchmark [62] on a large-scale SGI UV 3000 system and compare
the results to our previous PoC.

3.4.1 Architecture

ERIS occupies all available physical compute resource (hardware threads) by run-
ning Living Partition Vitalizer (LPV) software threads on them. Each LPV is pinned
to a distinct hardware thread. One of the main contributions of the Living Parti-
tions architecture is to allow a flexible work to hardware thread assignment (R-05).
Hence, LPVs are able to slip into multiple logical roles they are granting their phys-
ical compute resources to. Figure 3.18 depicts the corresponding architecture for a
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single processor of the NUMA system. In the following, we will describe the three
logical roles each LPV can slip into:

5
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Figure 3.18: ERIS processing architecture of a single socket.

Task. ERIS tasks represent the sequential portion of a query such as query com-
pilation and the controlling of the query execution plan, which consists of
dataflows. We will present the details for tasks and dataflows in Section 3.4.2
respectively 3.4.3. A task in ERIS is externally scheduled and is bound to a
specific socket of the NUMA system using the processor-specific task queue
(cf., Figure 3.18). Hence, LPVs are able dequeue tasks from this queue and
grant time of their respective compute resource to them. Such a task can be
interrupted at any point in time by blocking operations, e.g., waiting until the
execution of a dataflow finishes. In this case, the task processing is suspended
and it is enqueued in the task queue as soon as the blocking operation finishes.
ERIS tries to execute a task always on the same socket to limit its memory
accesses to the local main memory.

Node Coordinator. Besides the task role, the node coordinator is another new
logical role introduced by ERIS. While tasks are available at a varying amount
and each of them can be processed in parallel by a single LPV, the node
coordination role exists only once per socket. Thus, the node coordinator
role can only be executed by one LPV at the same time. The job of the
node coordinator is to manage central processor-local duties as well as the
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management of the inter-processor communication. Most of the time, the node
coordinator manages central jobs of the message passing layer, for instance,
filling and maintaining the Living Partitions Assignment Queue. We will give
additional details on this topic in Section 3.4.4.

Living Partition (LP). To process messages sent to a specific Living Partition,
an LPV needs to slip into the role of that specific LP. Similar to the task queue,
each socket employs an LP Assignment Queue that contains message buffers
for the individual living partitions on that socket. Buffers for the same LP are
grouped by the node coordinator to minimize the contention on this queue,
because a living partition can only be processed by a single LPV at the same
time. Hence, an LPV dequeues a set of buffers from the LP assignment queue,
locks the corresponding living partition and processes the message buffers in
the context of the respective LP. If new message buffers arrive during the
processing phase of a living partition the node coordinator appends the new
message buffers to the buffer set that is currently processed by an LPV.

Algorithm 1 LPV loop

1: while not halt do
2: ... // Task Queue
3: while task← dequeueTask() do
4: processTask(task)
5: end while
6: ... // LP Assignments
7: while lpAssignments← dequeueLP() do
8: lock(lpAssignments.lp)
9: while buffer← nextBuffer(lpAssignment) do

10: processLP(lpAssignment.lp, buffer)
11: end while
12: unlock(lpAssignments.lp)
13: end while
14: ... // Node Coordinator
15: if try to lock Node Coordinator then
16: process Node Coordinator
17: unlock Node Coordinator
18: end if
19: ...
20: end while

Each LPV executes the loop shown in Algorithm 1 to poll the task queue, the
LP assignment queue, as well as the node coordinator latch to take over a specific
role. We decided against an event-based system to avoid costly system calls that are
additionally limited in their scalability. The outer loop (line 1–23) repeats the entire
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procedure as long as the LPV is running. In the first step of this procedure, the
LPV tries to dequeue a task from the task queue (line 4). As long as this operation
succeeds, because tasks that are ready to be processed are present, the LPV slips into
the role of the respective task and processes it until the task is finished or suspended
(line 5). In the next step the LPV tries to dequeue an LP buffer set from the LP
assignment queue (line 9). Every time this operation returns a buffer set, the LPV
latches the referenced living partition (line 10) and processes the respective buffers
in the role of that LP (line 11–13). Afterwards, the latch on the living partition
is released (line 14). Finally, the LPV tries to acquire the node coordinator latch
(line 18). If the lock acquisition succeeds, the respective LPV takes over the role
of the node coordinator (line 19) and releases the node coordinator latch (line 20).
The process repeats over and over again. To assist overutilized sockets in case of a
bad partitioning, LPVs of a remote processor can be ordered by the energy-control
loop (cf., Section 2.5.2) to additionally check that task queue and the LP assignment
queue of that sockets. This access to remote data structures only happens explicitly
on-demand to keep the contention of the processor-local queues and latches as low
as possible.

Memory Management

Another critical and interesting topic on massively parallel NUMA systems is the
memory management. Thus, ERIS needs a memory management subsystem that
scales, considers locality, has a low contention, and obeys the characteristics of
the DBMS architecture. Because NUMA systems have a local main memory per
processor, it is a natural decision to employ a hierarchical approach for the memory
management as visualized in Figure 3.19. The basic unit of the ERIS memory
management are Memory Managers that use a thread-local allocation mechanism
where a small set of the free memory is buffered per thread to reduce the contention
on the management data structures.

At the highest level of the memory management is the Global Memory Manager
that uses an interleaved memory allocation strategy, which distributes the physical
memory allocation equally across all sockets of the machine. The global memory
manager hosts the memory of data structures that need to be available on all pro-
cessors of the system (e.g., meta information of data objects or partition tables).

At the next level of the hierarchy is the Node Memory Manager, which is respon-
sible for managing solely the local main memory of a specific socket. This memory
manager is configured to only allocate or recycle entire chunks of memory pages,
because it only acts as a mediator between system calls (e.g., mmap) and depending
memory managers. Depending memory managers are the persistent, the task, and
the living partitions memory managers that differ in the lifetime of the allocated
memory. The Persistent Memory Manager allocates its memory from the node
memory manager and is used for persistent allocations such as internal data struc-
tures of the processor-local LPVs as well as shared data structures. In contrast, the
Task Memory Managers are instantiated per task and are completely wiped as soon
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Figure 3.19: ERIS memory management.

as a task finishes to avoid memory leaks and costly deallocation calls, which typically
amount to a high number. Another class of depending memory managers are the
Living Partition Memory Managers that are created per living partition and host
all internal data structures of an LP, which are wiped at the end of the LP lifetime.
Moreover, living partitions are able to instantiate additional memory manager for
storing the actual data of an LP, e.g., an index or a column store. Those memory
managers also use the node memory manager to allocate entire chunks of memory
pages and are at the latest destroyed when the corresponding living partition is
destroyed.

3.4.2 Tasks

An ERIS Task is a piece of code that is sequentially executed by a Living Partition
Vitalizer and is able to build and execute dataflows (cf., Section 3.4.3), to start and
control transactions (cf., Section 3.4.5), as well as to create and destroy data objects.
To implement a task, ERIS provides the ERIS/C++ Framework that includes all
the necessary classes (e.g., Transaction and DataFlow). A task itself is not able to
directly access data objects and thus, its execution amounts only to small amount
of the query. Hence, tasks are not executed by heavyweight kernel mode threads in
ERIS. In contrast, a task is executed using lightweight user mode threads (i.e., boost
coroutines [82]) that save and restore CPU registers as well as the floating point unit
(FPU) state in user mode when a task is executed, suspended or resumed, since tasks
are able to execute blocking operations.

In Algorithm 2, we give a small example of an ERIS/C++ task to demonstrate the
API. First, the task starts a new transaction by instantiating a Transaction object
(line 1) followed by the creation of a RelationalContainer that stores the meta
information for a new table (line 2). Since this table is allocated on the transient
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Algorithm 2 Task example in ERIS/C++

1: Transaction tx; // Start transaction
2: RelationalContainer container(true); // Create temporary relation
3: container.initialize()->await(); // initialize container and await
4: MicroOperator op(container, [&](MicroOperator *op) -> void {

5: // Bootstrap code for root operator
6: }, [&] (ScanState *scanState) -> void {

7: ... // Actual data processing code
8: } );

9: DataFlow df(tx); // Create dataflow
10: df.setRoot(&op); // Assign root operator
11: df.await(); // Execute dataflow and await
12: tx.commit()->await(); // Commit transaction and await

stack, the table is destroyed as soon as the task finishes and is thus considered a tem-
porary table. To create a table that survives the execution of the task, it needs to be
allocated by the global memory manager (cf., Figure 3.19). In the next step (line 3),
the new table as well as the partition table are physically created by calling the ini-
tialize method of the container object. Because this call physically creates the
new table, messages have to be sent to the node coordinator, which actually creates
the living partitions according to the partition table. This operation is asynchronous
and hence, the task is blocked until the actual living partitions are created on all
the sockets of the NUMA system. To free the LPV until the operation completed,
the user mode thread is suspended in the meantime. Afterwards, the task starts to
build a dataflow (line 9) that consists of multiple micro operators (line 4 and 10).
The micro operator uses callback functions for sending the initial messages to the
living partitions (only the root operator) and a second callback for the actual data
processing. Once the construction of the dataflow is done, the dataflow is executed
(line 11), which is also a blocking operation that needs to be awaited. Finally, the
transaction is committed and awaited (line 12), too. All blocking operations return
a DataFlow object that implements the start (start execution) and await (wait
for completion) method, which can be called at any suitable point in time. More-
over, DataFlow objects can be grouped into a DataFlowGroup to wait for multiple
dataflows to finish.

For static or precompiled queries, the corresponding ERIS/C++ task can be im-
plemented by a programmer. Nevertheless, this way of implementing queries has
multiple drawbacks: (1) It requires a deep knowledge of the ERIS/C++ API. (2)
Implementing sophisticated queries is an extensive job. (3) No ad-hoc queries are
supported. Hence, we propose two approaches for compiling and executing arbi-
trary queries that are depicted in Figure 3.20. In the following we will explain both
approaches in more detail:
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Figure 3.20: Query compilation approaches using ERIS/C++.

Generic Approach. The generic approach (Figure 3.20(a)) works similar to the
traditional way of query compilation in database systems. First, the user spec-
ifies the query using a domain-specific language (DSL), like SQL. Afterwards,
the query is compiled (step 1) to a query execution plan (QEP) where mul-
tiple generic operators are parametrized and are arranged in a tree that is
finally executed by the database runtime (step 2). This process can be encap-
sulated in an ERIS/C++ task that does the query compilation including the
optimization and outputs the QEP as a dataflow, which can be executed.

Compiler-Based Approach. The compiler-based approach (Figure 3.20(b)) re-
quires a meta compiler that is able to compile the query into ERIS/C++ task
code (step 1). In a second step this C++ task needs to be compiled into ex-
ecutable machine code (step 2). Finally, the resulting library (e.g., a shared
object in Linux) is linked into the address space of the ERIS instance, which
invokes the starting function for query execution (step 3). This way of query
compilation is similar to just-in-time query compilation approaches as they are
employed by state-of-the-art database systems [99, 56].

Both approaches face their respective advantages and drawbacks. For instance,
the generic way on the one hand benefits from a fast query compilation, but may
results in a bad query execution performance on the other hand, because operators
are written in a highly generic fashion to deal with all possible execution cases, which
leads to non-optimal machine code. The compiler-based approach faces exactly the
opposite advantages and disadvantages. The time taken by the query compilation
process increases, because of the additional compilation steps. However, the gener-
ated operator code is highly specialized, which amortizes the compilation costs for
comprehensive queries.
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3.4.3 Dataflows and Query Processing Model

To actually process and modify data objects, ERIS employs Dataflows that are
executed in the context of a transaction. A dataflow is constructed as well as invoked
by a task and consists of Micro Operators. Within a dataflow, such mirco operators
are either statically connected as a directed graph or are loosely connected, if the
actual control path of the dataflow depends on the processed data.

8

Living Partition

Micro Operator

Data

MessagesIn MessagesOut

Figure 3.21: Micro Operator in ERIS.

In Figure 3.21, we visualized the basic processing model of a single micro operator.
The micro operator itself is a piece of code that is executed within the context of
a living partition, which contains the data. This piece of code is implemented as a
callback function (cf., Algortihm 2 line 7) and is invoked by incoming messages. An
incoming message defines a logical access primitive as well as auxiliary information to
specify which portion of the living partition’s data is of interest for the micro operator
or how the data should be modified. For instance, the UnorderedScan is a logical
access primitive for a relational table that lets the micro operator face every record
of the table without any particular order. Using the auxiliary information, this scan
can be restricted horizontally via a filter and vertically by defining the columns of
interest. Because the logical access primitive does not enforce any ordering, micro
operators can execute in parallel on all living partitions of the respective data object
that potentially contain the data of interest, which is defined by the partition table
(cf., Section 3.4.4). Such a logical access primitive does not specify any physical
access paths, because physical operators are dynamically bound at execution time
of a micro operator to fulfill requirement R-09 (late binding of physical operators),
which is needed for Storage Adaptivity. We will discuss this topic in Chapter 5 in
detail and give an overview of all logical access primitives required for relational
query processing in ERIS. Besides consuming incoming messages, a micro operator
can produce outgoing messages that invoke another micro operator for further query
processing following the predefined connections of the dataflow or using a data-driven
path.

To make the concept of dataflows and micro operators as well as the overall
query processing model of ERIS more tangible, we will now demonstrate the query
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Figure 3.22: Logical query plan.
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Figure 3.23: Macro query execution plan in ERIS.

compilation process for an exemplary query. The corresponding logical query plan
of this query is depicted in Figure 3.22. This plan starts with a selection on table A

and B using predicate Pred1 respectively Pred2 followed by a join of both results
with predicate Pred3 on table C. Afterwards, the result of this logical join is again
joined with the entire table C using the join predicate Pred4. Finally the result of
both joins is grouped (including the an aggregation function) and sorted by attribute
Attr1.

A possible Macro Query Execution Plan (MQEP) of this query is visualized in
Figure 3.23. This MQEP is not complete, because the physical access paths are not
bound at this stage and the living partitions may need to reassemble the requested
data of a micro operator using multiple physical operators respectively a local ex-
ecution plan (cf., Chapter 5). Nevertheless, since the MQEP already consists of
physical micro operators executable by the ERIS runtime, this execution plan is not
considered as a logical one anymore.
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Because ERIS employs an asynchronous and pipelined query processing model,
pipeline blockers need to be identified first. In our specific example, the logical group
and aggregate operator is breaking the pipeline, because the result of this operator
needs to be materialized in the temporary table T before the succeeding sort opera-
tor is allowed to start. Thus, the ERIS task consists of two dataflows that execute
one after another. At the beginning of Dataflow 1, an initial bootstrap message
is sent to table A that issues an UnorderedScan with predicate Pred1. The corre-
sponding micro operator is executed on all living partition that potentially include
this data. Every time the micro operator is supplied with a qualified record, it sends
a message to the succeeding micro operator operating on table B. This succeeding
micro operator once again issues an UnorderedScan with the static predicate Pred2

and the dynamic predicate Pred3, because this predicate depends on the tuple the
previous micro operator faced before it sent the message. The same process repeats
for the micro operator that operates on table C, which uses the dynamic predicate
Pred4. At this stage, the micro operator on table C faces all tuple combinations
that qualified for both joins. For all of those tuple combinations, the micro operator
sends the respective message to another micro operator that operates on the tem-
porary table T and issues the logical ConditionalInsert access primitive including
the respective value of Attribute 1. This access primitive inserts the key (Attr1)
value (tuple) pair into the temporary table T, if the key is not present or applies the
aggregation function to the existing and the new value otherwise. To place the same
keys in the same living partition, this operation requires the table to be partitioned
by the key attributes. As soon as Dataflow 1 finished, Dataflow 2 is started by the
task and executes the logical OrderedScan access primitive on the temporary table T
by sending the initial messages. Contrary to the UnorderedScan, the OrderedScan

enforces that the micro operator faces the requested tuples in a particular order.
In our case, tuples are ordered by Attr1. Similar to the ConditionalInsert, the
OrderedScan requires an appropriate partitioning.

The pattern of nested scans that is employed by Dataflow 1 is similar to a physical
nested-loop join operator. However, ERIS uses macro query execution plans and
thus, the specific join algorithm can not be determined at query compilation time.
For instance, if the living partitions of table B or C use an index instead of a full table
scan for fetching the requested tuples for the micro operator an index or hash join
algorithm is actually used. Since, such decisions are done on a per-living partition
and can change during query execution, the actual physical join implementation can
be mixed.

An important issue of ERIS’ asynchronous query processing model is to determine
when a dataflow actually finished its execution, because micro operators only see a
limited scope of the whole dataflow. To cope with this issue, we use the following
stop criterion:

MessagesInit +
∑

MessagesOut −Messagesin = 0 (3.1)
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According to the criterion, each micro operator counts the number of incoming
messages and the number of outgoing messages. As soon as the sum of all incom-
ing and outgoing messages plus the number of initial messages reaches exactly zero,
the dataflow finished, because no active messages are present for that dataflow any-
more. From the implementation perspective, this mechanism is implemented using
a counter variable that it atomically increased or decreased. Unfortunately, such
a shared counter becomes a bottleneck on large-scale NUMA systems, because it
is accessed frequently by multiple threads on different processors. Hence, LPVs in
ERIS buffers the access to this counter as long as possible to reduce the contention.

3.4.4 Living Partitions-Enabled Message Passing Layer

In this section, we introduce the message passing layer of ERIS, which – compared
to our PoC – is ready to support (1) comprehensive queries, (2) transactional prop-
erties, and (3) the living partitions architecture. To support all of those properties,
the message passing layer requires a sophisticated message format that is able to
associate a message to a dataflow and a transaction. Moreover, a message needs to
carry the relevant query processing state (e.g., attribute values of previous micro op-
erators), additional parameters for the respective logical access primitive, and needs
to be space efficient. Besides changes of the message format, architectural changes
to the message passing layer are necessary to enable the flexible living partitions to
hardware thread mapping (R-05).

11

LP DF TXAP Shared Data Cmd N…

Dataflow
Logical Access Primitive

Target LP

Transaction

Cmd 1

Storage Data User Data

C OP

Micro Operator

Container

Figure 3.24: ERIS message format.

In Figure 3.24, we depict the message format employed by ERIS. As shown, the
header of each message contains an 8 byte pointer to the target living partition
or is set to null, if the message is a broadcast. The specific value of this field is
determined by the partition table of the respective data object depending on the
demands of the logical access primitive and its auxiliary parameters. Following the
target living partition pointer, the message header includes a pointer to the data ob-
ject (called container in ERIS), the logical access primitive, the associated dataflow,
and the transaction context. Finally, the header includes a pointer to the callback
function, which contains the actual micro operator code. Since ERIS is designed
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to run on scale-up systems it is sufficient to store pointers in a message, because
the cache coherence protocol fetches the actual object data transparently from the
hosting processor, which saves copy costs ind reduces the message size. Similar to
the partition table, such data structures are mostly read-only and fit into the cache
to avoid message related bottlenecks. One exception is the message counter stored in
the dataflow object, that needs to be updated frequently. However, as already men-
tioned we use sophisticated buffering strategies to avoid a high contention on this
counter. Besides the header, a message includes a shared data field that includes mi-
cro operator-specific information shared across all of its messages (e.g., parameters).
To reduce the memory footprint of messages and thus, the communication costs, the
message passing layer tries to combine multiple messages sharing the same header
into a single message. All of those sub messages (Command) follow the shared data
field. Such a command is split into a storage data portion and a user data part. The
storage data part contains parameters for the logical access primitive, for instance,
the actual filters for an UnorderedScan. The information stored in the user data
part is defined by the micro operator code, which issues the messages. For instance,
the user data field may contains partial records from a previous micro operator.
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Figure 3.25: Living partition-enabled message passing layer in ERIS (socket-level).

In the following, we describe the architectural changes demanded by the living
partitions architecture. The message passing layer of our data-oriented PoC di-
rectly exchanged messages between Autonomous Execution Units (AEU). In this
architecture, each AEU requires as many outgoing buffers as AEUs running in the
DBMS, which already leads to a quadratic complexity when increasing the number
of AEUs and thus, hardware threads used. This complexity problem becomes even
more severe when moving to the living partitions architecture, because partitions
are not statically mapped to a single execution thread anymore. Hence, each liv-
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Algorithm 3 Local/Remote buffer processing method of the node coordinator.

1: function processBuffer(buffer)
2: while message← buffer.next() do
3: if buffer.isLocal equals true then // local buffer is processed
4: if message.lp is not set then // is broadcast
5: assignToLocalLPs(message) // add LP assignments
6: forwardBroadcast(message) // forward to remote sockets
7: else
8: if message.lp is local then // destination is on this socket
9: assignToLP(message) // add LP assignment

10: else
11: forwardToNode(message) // forward message to target socket
12: end if
13: end if
14: else
15: if message.lp is not set then // is broadcast
16: assignToLocalLPs(message) // add LP assignments
17: else
18: assignToLP(message) // add LP assignment
19: end if
20: end if
21: end while
22: end function

ing partition would require as many outgoing buffers as living partitions present in
the system. For that reason, we decided to employ a hierarchical approach for the
message passing in ERIS as visualized in Figure 3.25. The central level of this hi-
erarchy are single NUMA nodes that run a node coordinator that is responsible for
managing the message passing within the lower level of the hierarchy (LPVs) and
for passing messages on the global level (between NUMA nodes). The source of the
message passing are micro operators that are executed by an LPV in the context of
a living partition. At this level, the message passing layer tries to combine messages
for space efficiency reason and the resulting messages are written to an LPV-local
buffer. This local LPV message buffer may contains messages from multiple micro
operators and is flushed periodically or when the buffer is full (1). The content of
those buffers is written to the Local Incoming Buffer, which consists of two internal
buffers. One internal buffer is currently written by LPVs and the other one is pro-
cessed by the node coordinator, which is also executed by an LPV (cf., Figure 3.18).
The internal buffers are periodically switched following the principle of a shadow
buffer, which is implemented in the same way as the incoming buffers in our PoC
(cf., Section 3.3.2). Complementary to the local incoming buffer, the ERIS message
passing layer employs a Remote Incoming Buffer that operates similar to its local
pendant. The difference between both buffers is that the local one is filled by local
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LPVs, while the remote one is populated by node coordinators of the other sockets
in the NUMA system (5).

Both incoming buffers (i.e., local and remote) are processed by the local node
coordinator (2). The node coordinator either creates new LP assignments stored
in the LP assignment queue (3) or forwards messages to other sockets. Forwarded
messages are buffered in outgoing buffers (one for each remote socket) to reduce
contention on the remote incoming buffers (4). Algorithm 3 describes the algorithm
the node coordinator uses for processing either the local or the remote incoming
buffer. The algorithm takes the respective buffer object as input and iterates over
all messages (may consisting of multiple sub messages) of this buffer (line 2–21). If
the buffer is the local incoming buffer and no target living partition pointer is set, the
message is assigned to the local LPs of the data object (line 5) and is additionally
forwarded to all nodes that contain LPs for the respective data object using the
information of the data objects partition table (line 6). In case of a specified target
LP, the message is either locally assigned (line 9) or forwarded to the target socket
(line 11). If the buffer object is the remote incoming buffer, the message does not
need to be forwarded to another socket, because messages in the remote incoming
buffer already reached their respective destination node. This assumption is save
for a static partitioning scheme without any Data Placement Adaptivity, which is
not considered by this algorithm. Hence, the algorithm only distinguishes between a
broadcast indicated by a null pointer and an unicast message. In the first case, the
message is assigned to all local living partitions of the data object (line 16) and in
the second case, the message is assigned to the respective target LP (line 18). The
node coordinator always groups message assignments for the same LP during each
run of the algorithm to increase the locality of the message processing.

To summarize, the message passing layer is – similar to the one employed in
our PoC – built for high throughput to hide the latency of especially inter-socket
communication, which can not be circumvented. This high throughput is achieved by
a comprehensive buffering strategy on all levels of the message passing hierarchy, i.e.,
LPV level, intra-socket level, and inter-socket level. The buffering leverages the high
sequential write performance of the main memory as well as the interconnects and
additionally reduces the contention on buffers that are written by multiple threads
in parallel.

3.4.5 Transactions

A central feature of database systems are transactions, which guarantee atomicity,
consistency, isolation, and durability (ACID). Due to the additional costs that incur
by ensuring all of those properties to a high degree, database systems define different
isolation levels, each of them avoiding a certain set of anormalities (e.g., dirty reads
or phantoms) that can occur when multiple transactions execute in parallel. Hence,
an isolation level is a trade-off between performance respectively parallelism and the
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degree of isolation. As the underlying implementation for concurrency control, nearly
all modern DBMSs (e.g., SAP HANA [41], Microsoft SQL Server [39], Postgres [108],
etc.) implement multi-version concurrency control (MVCC) [96, 140]. In contrast to
traditional lock-based concurrency mechanisms, MVCC avoids in-place updates by
maintaining multiple versions of modified tuples, which allows non-blocking reading
transactions. In this section, we discuss how the MVCC mechanism is designed and
implemented in ERIS to ensure the isolation level snapshot isolation (SI), which is
mostly more than sufficient for most of the queries. Nevertheless, some application
domains require serializable as isolation level, which is not guaranteed by the basic
MVCC approach, but by certain MVCC extensions [100].
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Figure 3.26: MVCC-based transaction processing example in ERIS.

In ERIS, transactions are started and committed respectively aborted by tasks
and provide concurrency control for dataflows and their micro operators. Figure 3.26
visualizes the MVCC-based transaction concept with the help of an example where
a transaction scans over a table and updates a single record in between. Once
the transaction is started the data structure on the left hand side of the figure is
instantiated, which mainly contains the TXNV isible time stamp, the TXNCommit time
stamp, and the transaction state (e.g., running, committing, aborted, or committed).
The next step in the starting process (1) is to obtain the TXNV isible time stamp (a
sequential number) from the transaction manager, which indicates the time stamp of
the last successfully committed transaction that has no uncommitted predecessors.
This time stamp is used to evaluate whether a record is visible for a transaction
or not. As soon as the transaction obtained this time stamp, the transaction state
is set to running and dataflows are ready to execute within the context of that
transaction.
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Afterwards, a micro operator iterates over the living partition of a table and faces
its first tuple (2). Due to the MVCC concept, each table has hidden attributes that
define the start time stamp (TXNStart) and the end time stamp (TXNEnd) of a record.
For instance, the first tuple in the example was created by transaction 1 (start time
stamp) and was deleted by transaction 5 (end time stamp). For our transaction, this
version of a tuple is visible, because the start time stamp 1 is less than TXNV isible

and the end time stamp 5 is greater than TXNV isible. The second tuple version
(3) is also visible for the transaction, because the start time stamp 2 is less than
TXNV isible and the end time stamp is not set. The transaction updates this tuple by
deleting this tuple version and creating a new version (4). To delete the tuple, a lock
flag is set in the end time stamp and this lock is registered in the Local Transaction
Manager of the respective living partition for two purposes: (1) To detect conflicts
when another transaction tries to delete this tuple version, too. (2) To set the
appropriate TXNCommit time stamp or to remove the lock when the transaction
commits respectively aborts. The new tuple version is inserted as usual and sets a
lock flag in the start time stamp instead of the end time stamp that is also registered
in the local transaction manager for the same purposes. When the transaction
commits (5), the TXNCommit time stamp is fetched from the transaction manager
by incrementing the TXNHIGH number. Moreover, the transaction state is changed
to committing. The next step in the commit process (6) is to notify all modified
living partitions and ask their local transaction manager to apply the commit using
TXNCommit. This notification happens with the help of an assisting dataflow that
sends commit messages to the LPs. Once the local transaction manager of an LP
receives the commit message the locked start and end time stamps of the affected
tuple versions are unlocked and become replaced by the TXNCommit time stamp 7.
As soon as the commit dataflow finished, the transaction state is set to committed
(7) and the transaction object is destroyed. The process of a transaction abortion is
very similar except that TXNCommit is not even fetched and is thus, not set by the
local transaction managers. If a transaction is read-only, the most costly steps 5 and
especially 6 are not necessary, which makes read-only transactions lightweight. To
remove tuple versions that are not in use anymore, a garbage collection is employed,
which in integrated into our Storage Adaptivity approach (cf., Chapter 5).

To summarize, ERIS employs an MVCC-based mechanism for concurrency con-
trol that lets dataflows operate on an isolated snapshot of data objects. The trans-
actional subsystem uses a hierarchical approach consisting of a global transaction
manager that is responsible for managing the time stamps and living partition-local
transaction managers that manage the start and end time stamps of their data object
partition. While read-only transactions are pretty lightweight, writing transactions
require additional communication with the global and local transaction managers.
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3.4.6 Evaluation

In this section, we evaluate our living partitions-based DBMS research prototype
ERIS in terms of scalability on large-scale NUMA systems. Compared to our previ-
ous PoC (cf., Section 3.3), ERIS provides a sophisticated infrastructure that supports
transactions, generic tasks, dataflows, and a comprehensive storage layer that im-
plements schema flexibility as well as a variety of physical storage formats to enable
Storage Adaptivity (cf., Chapter 5). In the following, we describe our evaluation
environment and present a set of microbenchmarks that cover the most important
cases ERIS’ scalability depends on. Finally, we will present and discuss the results
of the TATP benchmark [62].

Evaluation Environment

The test hardware we are using for the evaluation of ERIS is a SGI UV 3000 system
(cf., Table 3.1) consisting of 64 processors. Each processor is an Intel E5-4655 v3
(6 physical cores, 12 hardware threads, 30 MB LLC, 2.9 GHz) of the Haswell-EP
generation equipped with 128 GB main memory resulting in a total memory size
of 8 TB for the entire machine and an overall hardware thread count of 768. The
test system has the same interconnect topology as the SGI UV 2000 investigated
in Section 3.1 (cf., Figure 3.1(c)) and runs SUSE Linux Enterprise Server 12 as
operating system.

We implemented ERIS in C++ supporting all of the features and concepts de-
scribed in the previous section. Moreover, our implementation already uses an adap-
tive storage layer as it is required by our storage adaptivity concept. Nevertheless,
we use a static physical data layout for all of our experiments in this section, but
still face additional costs for the late binding of physical operators as we will show
in Section 5. We hardcoded all of the tasks and queries that are necessary to run
the experiments and precompiled them with the g++ compiler similar to ERIS itself.
Since ERIS deeply implements the living partitions architecture, we can not give
a meaningful comparison to the transaction-oriented architecture. Hence, we use a
version of ERIS that uses an interleaved memory allocation policy instead of a local
one for comparison purposes and focus on the scalability of ERIS itself.

Microbenchmarks

The foundation for our microbenchmarks is a key-value store that uses 8 Bytes for
the key and 8 Bytes for the value. The store uses a static range partitioning and
equally distributes the key-value pairs across the living partitions. We create as much
living partitions as living partition vitalizers are active on the system. Regarding
the amount of key-value pairs that are generated, we use two scale factors (SF) with
a base multiplier of 100, 000 pairs:

SF 1000. This scale factor generates 100 M key-value pairs amounting in a data size
of 800 MB for the keys only. Since the effective cache size of our test system is
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1.62 GB (64 times 30 MB cache per processor), this key set fits into the cache
and thus, (1) memory locality is not the important factor and (2) the message
passing layer is more stressed, because the data object access is relatively fast.

SF 5000. The scale factor generates 500 M key-value pairs resulting in a data size
of 4 GB solely for the keys. This data size exceeds the effective cache size of
our test system and hence, (1) local memory access is becoming an important
factor and (2) the message passing layer faces a moderate stress, since data
object accesses ar rather costly.

Table 3.4: Overview of the microbenchmark configurations.

Partitioning Table Scan Index Scan
SF 1000 SF 5000 SF 1000 SF 5000

By Key Fig. 3.27 Fig. 3.28 Fig. 3.29 Fig. 3.30

By Value Fig. 3.31 Fig. 3.32 Fig. 3.33 Fig. 3.34

For each microbenchmark configuration we execute an amount of tasks that is high
enough to saturate the database system. A task continuously opens a transaction
that executes 1, 000 key-value lookups in parallel. Each key is unique and guaranteed
to be present in the store. To systematically evaluate the scalability behavior of
ERIS, we distinguish the cases shown in Table 3.4. First, we differentiate whether
the key-value store is partitioned by the key attribute or not. In the first case, the
message passing layer uses an unicast, because the target living partition is known
by the routing table. In the second case, a broadcast to all living partitions of the
store is necessary resulting in higher messaging and LP processing costs. The next
difference we make is between a table scan and an index scan, because both access
paths exhibit differences in terms of processing speed, cache usage, and memory
access pattern, i.e., sequential or random access. In the following, we discuss all of
the combinations in detail.

Table Scan by Key. In this scenario, a key lookup is resolved by sending a
single message to the target LP that executes a column scan to find the corre-
sponding value. The results for the first data set are presented on Figure 3.27.
This chart shows the actual result (ERIS), the numbers for the interleaved version
(ERIS Interleaved), the ideal linear scale-up (Linear), and the ideal quadratic scale-
up (Quadratic). The ideal scale-up numbers are relative to the single-processor (12
logical cores) measurement of ERIS. This experiment shows that ERIS is able to
scale better than the ideal quadratic scale-up in such a scenario, because (1) liv-
ing partitions and hence, the amount of data that needs to be scanned is decreasing
when employing more LPs, (2) the number of processing resources (LPVs) increases,
and (3) the effective cache size increases when activating more processors and thus,
more and more data fits into the cache. Moreover, we observe that the interleaved
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Figure 3.27: Scalability of the table scan by key in ERIS (SF 1000).
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Figure 3.28: Scalability of the table scan by key in ERIS (SF 5000).

version of ERIS shows a similar behavior, because the data set is small enough to fit
into the cache and hence, the memory access locality does not make a big difference.
This scalability behavior of the interleaved ERIS version changes dramatically when
looking at the numbers for the big data set in Figure 3.28. In this scenario, column
scans are memory-bound and thus, the number of remote memory accesses become
a severe scalability blocker. In contrast, ERIS is able to scale in the same way the
ideal quadratic scale-up does, because statement (1) and (2) still apply.

Index Scan by Key. In this experiment series, we look at the scalability behavior
of index scans using unicasts to a single target LP. This setup stresses the message
passing layer, because index scans execute orders of magnitude faster compared to
table scans respectively columns scans. Moreover, index scans are latency-bound
and do not require a fast sequential memory access. In Figure 3.29, we show the
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Figure 3.29: Scalability of the index scan by key in ERIS (SF 1000).
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Figure 3.30: Scalability of the index scan by key in ERIS (SF 5000).

measurements for 6 different settings using the small dataset. In the first setting,
tasks issue index scans randomly to all available living partitions (Random), while
the second setting limits index scans to processor-local LPs only (Local). In the
third setting (shifted), index scans are also issued to living partitions on a single
processor, but this time the target processor is shifted by 32. For instance, all tasks
on the first processor issue their index scans only to LPs on processor 32, which is
a shift by half of the available processors (64 in total). All of the settings come in
the standard flavor or in the coalesced flavor (X-Coalesced). In the standard flavor,
LPs process incoming messages in a message by message way and in the coalesced
flavor messages are processed in batches by living partitions, which results in a more
efficient message processing, because of an optimized code path and an increased
locality when accessing the data object.
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In the random case, ERIS scales to 84% of the ideal linear scale-up for 768 cores,
because of the high variety of target LPs, which is the worst case scenario for the
message passing layer. Moreover, the message processing can not often be coalesced,
because 768 target LPs for 1000 requests per task result in 1.3 messages per batch.
However, we also observe a superlinear scale-up until 200 cores, because at this point
we reach the equilibrium between the number of target LPs and the reduced size of
partitions, which positively affects the cache-sensitive index data structures. In the
shifted setting, ERIS increases its scalability to 106 % of the ideal linear scale-up.
Since all requests of a task are issued to living partitions on the same processor, the
message passing layer can efficiently transfer large message batches between proces-
sors, which results in a lot of positive side effects (e.g., lower contention on remote
incoming buffers and data locality during node coordinator processing). Regarding
the coalesced flavor of the shifted setting, we observe an improvement of 20 % for
the peak performance compared to the non-coalesced flavor, because 12 target LPs
per 1000 requests result in 83.3 requests per batch. Nevertheless, the full batch size
is rarely reached, because messages are split into smaller pieces in the stages of our
hierarchical message passing layer. Finally, we see the best scalability behavior in
the local case, which amounts to 127 % of the ideal linear scale-up and is thus su-
perlinear similar to the shifted case. Furthermore, the coalesced flavor reaches 30 %
improvement, which is 10 % more compared to the shifted case, because message
batch splits are less probable, since only the local level of the message passing layer
hierarchy in involved.

In Figure 3.30, we show the measurements for the big dataset, which effectively
causes more memory accesses per index scan and thus, increases the time need per
key lookup. Compared to the small dataset, we observe lower absolute throughput
numbers as well as changes in the relative numbers regarding the relation to the
ideal linear scale-up (Random: 78 %; Shifted: 119 %, Local: 120 %). Except for the
shifted case, these relative numbers are slightly lower compared to the small dataset
caused by the increased cache traffic, which also affects the message passing layer. If
we compare the absolute numbers to our PoC (cf., Figure 3.16), we observe an about
35x difference for index scans, because ERIS is implemented in a highly generic way
and supports more features (e.g., transactions, record management, comprehensive
message format, and a generic storage layout) compared to our highly specific PoC.
Contrary, the performance of table scans is similar for the full ERIS implementation
and our PoC, because orders of magnitude less data object accesses are issued and
the scan itself faces not much additional overhead.

Table Scan by Value. In this scenario, we investigate the scalability behavior of
ERIS in the context of table scans when the table is not partitioned by the target
attribute (key). In such a case, the message passing layer needs to generate broad-
casts that triggers all living partitions of the table to scan their respective partition.
Once again, all of the key-value pairs are equally distributed across the individual
LPs. We show the results of this scenario for the small dataset in Figure 3.31. As
shown, ERIS scales superlinearly, because (1) the partitioning is getting more and
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Figure 3.31: Scalability of the table scan by value in ERIS (SF 1000).
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Figure 3.32: Scalability of the table scan by value in ERIS (SF 5000).

more fine-grained, which allows to activate additional compute resources, and (2)
the effective cache size increases due to the activation of more processors. Com-
pared to the table scan with unicasts (cf., Figure 3.27), all LPs have to scan their
partition for a single request in the broadcast setup and thus, no direct advantage
is generated from the increasing partitioning granularity. The figure also shows the
measurements for the ERIS version, which uses an interleaved memory allocation
policy. As shown, this ERIS version scales worse until 200 cores and is afterwards
getting closer to the standard ERIS version that uses a local memory allocation pol-
icy. The reason for this behavior is that the effective cache size increases, because
more processors are activated, and the dataset starts to fit into the cache, which
eliminates the need for memory accesses.
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Figure 3.32 shows the results for the big dataset. The difference compared to the
small dataset is that the table scans are now memory-bound even when all processors
are used. As the measurements show, ERIS scales slightly sublinear in this case,
because the scan can only profit from the additional processors and thus, memory
controllers, that are activated without any additional benefit from the increased
cache size. Moreover, for each key lookup a broadcast is generated, which needs
to be distributed across all processors including a processor-local distribution to all
affected LPs, which induces an additional overhead. The interleaved ERIS version
scales worse for all of the time, because memory accesses are the dominant factor in
this setup.
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Figure 3.33: Scalability of the index scan by value in ERIS (SF 1000).
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Figure 3.34: Scalability of a the index scan by value in ERIS (SF 5000).
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Index Scan by Value. In the last scenario, we look at the scalability behavior
of ERIS for index scans using broadcasts. Hence, the difference to the previous
scenario is that operations execute much faster and are memory latency-bound.
Nevertheless, ERIS still faces the issue that broadcasts generate a high amount of
traffic in the message passing layer, because an index scan needs to be triggered
for each and every living partition of the table when looking up a single key. This
scenario is likely to happen, because a relation can only be partitioned by a specific
set of attributes at once. We visualized the measurements for the small dataset in
Figure 3.33. Unlike the previous scenarios, this specific setup scales only for a little
amount of compute resources, because the only advantage we benefit from is that a
higher portion of the index data structure fits into the cache when activating more
processors. However, this effect is limited, because of the logarithmic complexity of
tree-based data structures. The version of ERIS that uses an interleaved memory
allocation policy scales similarly, but with lower absolute numbers, because the last
levels of the index require main memory accesses.

In Figure 3.34, we show the results for the big dataset. The abstract shape of the
chart looks nearly the same as for the small dataset. Nevertheless, we (1) observe
a slightly improved scalability and (2) a bigger gap between the standard ERIS
version and the interleaved ERIS version. Both differences are a direct consequence
of the increased index data structure size and the portion of it that fits into the
cache. Nevertheless, the conclusion of the evaluation of this scenario is that it is not
feasible to employ a large number of living partitions when doing index accesses via
broadcasts, because of the limited scalability. To cope with this issue, we suggest
two approaches. The first way is to reduce the amount of LPs with the help of Data
Placement Adaptivity, which includes the merge process that effectively does this
job. The other way is to enhance the message passing layer with bloom filters [19]
to reduce the number of LPs that receive the broadcast. However, the bloom filter
approach faces high maintenance costs in the presence of data placement adaptivity,
which is not in the scope of this thesis. Hence, we will leave this topic open for
future work.

TATP Benchmark

The Telecommunication Application Transaction Processing Benchmark (TATP or
TM1) is designed to measure the performance of a typical telecommunications ap-
plication. The benchmark was modeled after a real test program that was used by
a telecom equipment manufacturer to evaluate the applicability of various relational
database systems to service control programming in mobile networks [62]. TATP
consists of four tables (Figure 3.35) that are arranged as a snowflake schema and
simulates a transactional workload (OLTP) on the database system by issuing a
predefined set of transactions that include combinations of point selects, range se-
lects, joins, inserts, deletes, and updates. The TATP-Mix specifies the combination
of such transactions.
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Figure 3.35: TATP database schema [62].
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Figure 3.36: Scalability of the TATP-Mix in ERIS (SF 10).

In Figure 3.36, we give the scalability results for the TATP-Mix on ERIS using
a scale factor of 10. We partitioned all tables by their respective primary key and
equally distributed the data across the living partitions. Note that Data Placement
Adaptivity is out of scope for this thesis and thus, the partitioning is static. Moreover,
all beneficial indexes were present and we used the equal distribution random number
generator. The chart includes the actual measurements as well as the ideal linear
scale-up relative to the single-processor performance. As shown, ERIS is able to scale
up to 77.2 % of the ideal linear scale-up. Since, all feasible indexes were created, most
of the reading accesses use an index scan via an unicast (cf., Figure 3.29 and 3.30).
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Figure 3.37: Throughput of the individual TATP transactions in ERIS (SF 10).

In Figure 3.37, we depict the breakdown of the TATP-Mix and show the peak
performance numbers of the individual transaction types as well as their probability
to be executed, which is defined by the benchmark itself. The getSubscriberData

and the getAccessData transaction types are basic point accesses. We observe a
huge performance difference between both transaction types, because the getSub-

scriberData transaction includes 34 attributes in the projection clause, while the
getAccessData transaction includes only 4. Thus, the storage layer is responsible
for that performance difference, because a high amount of attributes needs to be
extracted from each tuple. The getNewDestination transaction type is a join be-
tween two tables that issues two highly selective successive UnorderedScans. As
the throughput measurements show, ERIS is able to execute such transactions effi-
ciently compared to the getAccessData throughput. The updateLocation as well as
the updateSubscriberData transaction types issue point accesses and update the
matched record. In ERIS, updates are handled by triggering an UnorderedScan,
which deletes the matched record by setting the respective end timestamp. At the
same time, an Insert message is sent to the new target LP that includes the new
tuple. Additionally, such manipulative transactions need to send Commit messages
to the modified living partitions as soon as the transaction commits. The Update-

Location transaction type does only a single update, which results in a moderately
lower throughput compared to the read-only getAccessData transaction type. In
contrast, the updateSubscriberData transaction type executes two updates sequen-
tially resulting in a slightly less than half of the throughput of the UpdateLocation

transaction type, because both updates are executed one after another according
to the definition of a transaction. Finally, the least performing transaction type
insertCallForwarding and deleteCallForwarding do a series of select and insert
respectively delete queries that require multiple dataflows and task interruptions.
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3.4.7 Summary and Conclusions

In this section, we presented our data management system ERIS, which is designed
from scratch to implement the Living Partitions architecture that extends the data-
oriented architecture to fulfill all of our requirements for an energy-aware database
system and thus, mainly enables scalability and fine-grained adaptivity. We intro-
duced the overall architecture of ERIS, which uses Living Partition Vitalizers (LPV)
as the main vehicles for spending actual compute resources for various roles such as
Tasks, the Living Partitions itself, and the Node Coordinator. Each LPV is statically
pinned to an exclusive hardware thread of the system.

Tasks are one main component of ERIS and represent the sequential portion of
one or multiple transactions. They are written in C++ leveraging the ERIS/C++
Framework to control transactions as well as to construct and control dataflows. To
actually process and modify data objects, ERIS employs Dataflows that are executed
in the context of a transaction and consist of Micro Operators that communicate
via messages. Hence, we introduced the message passing layer of ERIS, which –
compared to our PoC – supports comprehensive queries, transactional properties,
and the living partitions architecture. The message passing layer is organized hier-
archically in an intra-socket level and the inter-socket level. Both levels are mainly
controlled by the special Node Coordinator role that exists once per socket and is
also executed by an LPV. To support transactions as a central feature of database
systems, ERIS uses an multi-version concurrency control (MVCC) based approach
that is organized in a local transaction manager per living partition and a single
global transaction manager.

We evaluated ERIS’ scalability behavior using a systematic set of microbench-
marks to investigate the most important scenarios that can occur comprising com-
binations of unicasts and broadcasts as well as table scans and index scans. The
micro benchmarks showed that ERIS scales linear or even superlinear in most of
the scenarios and that local memory allocation is an important factor for the overall
scalability. Nevertheless, we also identified a scenario where the scalability is limited
to a small number of resources and suggested appropriate countermeasures. For the
end-to-end evaluation we used the TATP benchmark and demonstrated that ERIS
also scales up in real-life OLTP situations.
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3.5 Summary and Conclusions

In this chapter, we started with an exploration of current medium and large scale-up
NUMA system architectures to quantify and asses the impact of remote main mem-
ory accesses on such architectures. Especially on large-scale NUMA systems, our
experiments revealed that latency and throughput differ up to an order of magnitude
when accessing main memory remotely, which emphasized that local main memory
access is the key factor for scalability on such hardware platforms. Based on those in-
sights, we classified existing DBMS architectures in terms of their ability to scale-up
on large NUMA systems as well as their ability to allow fine-grained adaptations at
runtime. We concluded that – compared to the transaction-oriented architecture –
the data-oriented architecture provides us with the best foundation for fulfilling our
requirements for an energy-aware DBMS. Nevertheless, this architecture still lacks
(1) an investigation and appropriate concepts for in-memory DBMSs on large-scale
NUMA systems as well as (2) certain requirements originating from our adaptivity
facilities.

To cope with the first issue, we transferred existing concepts of the data-oriented
architecture from medium-scale disk-based systems to large-scale in-memory sys-
tems, which is mainly a matter of the message passing subsystem that needs to keep
pace with the increased speed of data object accesses. We implemented the corre-
sponding proof of concept (PoC) to evaluate our concepts and focused on database
primitives such as scans and index accesses. Our evaluation showed that the data-
oriented architecture is able to scale up on large-scale NUMA systems in the context
of an in-memory database system and clearly outperforms the classic transaction-
oriented architecture. Our in-depth evaluation also reflected on the root causes for
this scalability gap between both architectures. Moreover, we demonstrated that
Data Placement Adaptivity can efficiently be done in such an environment.

To address the second issue, we extended the data-oriented architecture to enable
fine-grained adaptivity at runtime. Hence, we presented the Living Partitions ar-
chitecture, which enables a flexible work to hardware thread assignment as well as a
late-binding of physical operators. Afterwards, we introduced our in-memory data
management system ERIS, which was designed from scratch to implement the living
partitions architecture as well as our Adaptivity Facilities. In contrast to our PoC,
ERIS is able to execute comprehensive queries in a transactional environment using
constructs like Tasks, Dataflows, and Micro Operators. Furthermore, ERIS employs
a hierarchical message passing layer, to deal with the changes introduced by the
living partitions architecture. In the evaluation of ERIS, we used a systematic se-
ries of microbenchmarks as well as the standardized transactional TATP benchmark
and demonstrated the superior scalability of ERIS on large-scale NUMA systems.
Hence, ERIS and its living partitions architecture are an excellent foundation for
investigating our adaptivity facilities with the overall goal to build an energy-aware
data management system.
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To improve both metrics for energy awareness, namely energy efficiency and energy
proportionality, modern processors provide a rich set of knobs for controlling power
and performance at runtime. These knobs are independent core and package sleep
states (C-states), individual core and uncore clocks (P-states), HyperThreading,
energy-efficient turbo modes (EET), as well as per-core EPB (Energy-Performance
Bias) settings. Due to the limited energy awareness of applications, which is mostly
completely absent, current CPUs and operating systems try to manage most of
these power management facilities on their own, but are limited in their energy
saving potential, because of limited application-specific knowledge. Especially for
state-of-the-art in-memory database systems, which manage most of their resources
on their own, CPU and operating system have only little chance for efficiently tun-
ing the server power consumption. Moreover, in-memory database systems are an
application class that makes heavy use of the main power consumers of a server,
which are CPU cores and main memory, and have to meet certain query latency
targets making them an attractive subject for energy tuning.

So far, energy-related and hardware-centric research in the context of scale-up
database systems concentrated on the energy consumption analysis of database
servers [134], on finding the best core frequency setting for certain queries or opera-
tors [44, 57, 109, 143], or adding energy efficiency as an additional target to the query
optimizer [83, 144]. These techniques allow the database system to make a binary
decision between executing queries in performance or power-saving mode. Those
methods are a good starting point, but do not consider target query latencies, ad-
hoc queries and inter-query effects. Other recent approaches use a feedback-control
loop to accomplish throughput or latency goals [81, 135, 145]. However, these works
mainly address fairly parallel disk-based database systems and most of the energy
savings originate from the slow disk accesses whereas highly parallel in-memory
DBMSs mainly face bottlenecks within processors and memory controllers.

In this chapter, we present Resource Adaptivity as a hardware-centric Adaptivity
Facility that follows our core concept of Energy Awareness by Adaptivity. Resource
adaptivity is a holistic approach for adaptive energy-control of scale-up in-memory
database systems that is able to deal with arbitrary short-running queries and saves
energy while trying to stay within a user-defined query latency constraint. As de-
picted in Figure 4.1, our approach implements the hierarchically organized Energy-
Control Loop (ECL) (cf., Section 2.5.2) that uses a socket-level energy profile, which
is continuously maintained at runtime to adapt to changing workload characteristics.
The ECL monitors the current system state and is frequently adapting the compute
resources. Doing so, the ECL is able find the most energy-efficient degree of paral-
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Figure 4.1: Resource adaptivity-specific energy-control loop.

lelism as well as core and uncore frequency settings for the current workload type
and system load. Moreover, the ECL is able to discover higher performing resource
configurations compared to the traditional all-in strategy.

We start with a discussion of the related work followed by an analysis of the energy
tuning knobs of a current mainstream server system and quantify the impact of the
respective knobs on performance and power. Afterwards, we propose energy profiles
and describe how they can efficiently be generated and maintained at runtime. With
the help of such profiles, we show how different workload types affect the optimal
compute resource configuration in terms of energy efficiency and performance. Fi-
nally, we propose the resource adaptivity-specific energy-control loop as a holistic
approach for adaptive energy-control on scale-up in-memory DBMSs. Contrary to
existing approaches, the ECL works for arbitrary short-running queries and saves
energy by frequently adapting the compute resource configuration while trying to
stay within a given query latency constraint. We will give an exhaustive evaluation
of our resource adaptivity approach regarding all important aspects including an
end-to-end evaluation using a real world load profile.

4.1 Related Work

The energy efficiency of database servers is a critical research topic that requires
action from the hardware as well as the software side [57, 105], because the scalability
of database servers is limited by the “energy wall”. From the software side, research
so far focused on the energy analysis of database systems and on the active usage
of energy-control knobs offered by hardware. Other approaches suggest changes in
hardware to cope with the issue of energy efficiency. In the following, we will detail
on the individual related works in the respective area.

102



4.1 Related Work

4.1.1 Energy Analysis

Early works started with analyzing the potential of DVFS to increase the energy
efficiency of a database server [134]. The main conclusion was that this approach is
not feasible, because of the high static power consumption of the hardware that was
available at that time and thus the authors concluded that the most energy-efficient
configuration is the most performing and power consuming one and that energy
optimizations are only feasible at cluster level. As we will show in Section 4.2, these
findings do not hold anymore for current servers. Other studies [44, 143] found that
software optimizations (i.e., the query optimizer) can significantly improve energy
efficiency of a DBMS by considering energy as an additional optimization goal.
While the previous works did their analysis at query-level, Psaroudakis et al. [109]
analyzed the energy consumption of individual database operators and concluded
that fine-grained scheduling mechanisms are able to further improve the DBMS
energy efficiency. However, all of these works did their energy analysis either on
outdated hardware or did not consider the additional energy-control knob offered
by a current system such as independent core and uncore frequencies as well as
the energy-performance bias (EPB). Within our work, we provided an exhaustive
analysis of a current mainstream server and quantified the effects of all available
energy-control facilities for a variety of workload types and additionally considered
NUMA-related effects.

4.1.2 Active Energy-Control

In the context of distributed database systems, several approaches [84, 93, 118]
tried to achieve energy proportionality by dynamically powering individual servers
down or up. Because of the high costs for moving data and power cycling single
servers, those approaches are only applicable as long term solutions and negatively
affect energy efficiency, since data movement consumes a high amount of energy and
scale-up architectures usually exhibit a better performance compared to scale-out
solutions. Within a single database server, some works [83, 143, 144] dealt with
adding energy as an additional optimization criteria to the query optimizer of the
MySQL or Postgres DBMS. To do so, the authors built and calibrated energy and
performance models for single plan operators that are leveraged by the optimizer.
The energy savings amounted to about 20 %, but did not consider a response time
limit and the evaluation was limited to a dual-core system, since MySQL and Post-
gres are disk-based DBMS with limited intra-query parallelism. Another class of
active energy-control approaches uses a feedback control loop to dynamically adjust
DVFS settings at runtime. For instance, Tu et al. presented the Postgres extension
E2DBMS [135] that adaptively controls the DVFS setting (one per processor) and
the power state of the hard disks, while obeying a query throughput target. The
authors assume a monotonic relationship between power and performance, which is
mostly not the case as we demonstrated in Section 4.3.2. Another approach [145]
relies on a workload classifier that uses the amount of disk I/O to select the appropri-
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ate DVFS setting, since a high disk I/O rate makes a lower CPU power mode more
energy-efficient. The recent LAPS [81] approach employs a feed-forward control
mechanism that tries to stay within a certain response time limit. LAPS operates
at the core level and adjusts the DVFS setting per core and is able to cope with
short-term workload fluctuations. Additionally, the authors propose memory sizing
as an additional tool for energy control. However, the main drawback of LAPS is
that a precise query execution time model is needed, which is hardware and DBMS
dependent and should consider other queries that are running in parallel. Moreover,
this approach is not suitable for intra-query parallelism. Compared to our ECL, the
mentioned works mainly address fairly parallel disk-based database systems where
disk accesses are the main bottleneck. Contrary, the ECL primarily focuses on in-
memory DBMSs that run on massively parallel scale-up hardware and bottlenecks
usually occur within processors and memory controllers.

4.1.3 Hardware Solutions

A completely different way of achieving energy efficiency is building specialized hard-
ware [80, 142], like FPGAs or ASICs, or to augment the existing instruction set
architecture (ISA) by database-specific instructions [12]. Those approaches are able
to save energy in orders of magnitude, but face high costs for hardware development.
Another promising direction are asymmetric multiprocessor systems (AMP) like the
ARM big.LITTLE architecture, which lets energy-efficient low performance cores
coexist with power-hungry high performance cores inside of a single server. Such
heterogeneous hardware setups are an interesting research direction for our ECL and
could help to improve energy efficiency in low performance ranges [138].

4.2 Energy-Control in Current Mainstream Servers

In this section, we analyze performance and power characteristics of current main-
stream server systems. Especially, we focus on the available energy-control features
and the energy-related decisions that are made by the CPU itself. First, we will
specify our test system and discuss the available options for measuring the power
consumption. Afterwards, we will present our experiments regarding the static and
dynamic power consumption of such a system, the impact of C- and P-States, as
well as the decisions made by the EPB.

4.2.1 System Under Test

Due to the near-total market dominance of Intel, we are investigating a represen-
tative 2-socket sever-class system equipped with Intel Xeon E5-2690 v3 CPUs (Q3
2014) of the Haswell-EP generation and 256 GB DDR4 RAM (8x 32 GB PC4-2133
LRDIMMs)1 (cf., Table 3.1). This system is similar to a single blade of the SGI

1Due to administrative reasons we were not able to conduct our experiments on the SGI UV 3000
system
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UV 3000 system, except that the processors have twice as much hardware threads
than the large-scale SGI system. Each CPU consists of 12 physical cores resulting in
24 hardware threads with HyperThreading enabled. Compared to previous genera-
tions, the Haswell-EP generation includes a portfolio of new energy-control features.
One feature is the use of fully integrated voltage regulators (FIVR).
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Figure 4.2: Available clocks on Haswell-EP CPUs.

While previous generations use a single clock for the whole processor, FIVRs
enable independent clocks for individual parts of the CPU that allow a more fine-
grained dynamic voltage and frequency scaling (DVFS). Figure 4.2 shows the avail-
able clocks inside our evaluation system. Each physical core has a separate clock
that is shared by its hardware threads. Moreover, each processor features a separate
uncore clock, that affects power and performance of the last-level cache (LLC) and
the four memory controllers. Additionally, the CPU implements features such as the
energy-efficient turbo (EET) and the energy-performance bias (EPB), which we will
investigate in the remainder of this section. To measure the energy consumption of
the system we either use an LMG450 power meter that is attached to the power sup-
ply unit, or the per-processor integrated RAPL counters (cf., Section 2.4.1). RAPL
counters are highly accurate on this platform and allow us to separately measure
the power consumption of the package domain (cores and caches) and the memory
controller domain.

4.2.2 Static and Dynamic Power Consumption

With our first experiment, we figure out which components of the system draw which
amount of power in idle mode and under full load. To do so, we first measure the
power values from the external power meter as well as the internal RAPL counters
in idle mode and once again under full load. To get the system under full load,
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we use the FIRESTARTER tool [49] that uses the optimal balance of compute
instructions, AVX instructions, and memory controller requests. The results are
visualized in Figure 4.3. Note that the figure does not include the turbo peak of 500
Watts, since this high load can only endure for about 1s due to thermal limitations.
The main conclusions we can draw from this experiment is that the static power
consumption of the server system is only about 18 % of the peak power, which is
a great advancement compared to the number of over 50 % reported in 2010 [134]
and thus, opens up a lot of space for energy optimizations. Moreover, we can see
that the largest amount of the dynamic power is consumed by CPU and DRAM,
which also generates a dynamic power overhead – originating from power conversion
losses and CPU fans – of about 15 % that can not be measured by RAPL counters.
However, since attaching power meters to servers is not a practical solution, we will
stick with the RAPL measurements, which are proven to accurately correlate with
the PSU power consumption [50].

Static Overhead
52.9 (12%)

Static CPU
22 (5%)

Static DRAM
2.1 (1%)

Dynamic Overhead
69.6 (15%)
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248 (55%)

Dynamic DRAM
55.4 (12%)

Figure 4.3: Haswell-EP power breakdown into static and dynamic consumers.
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Figure 4.4: Haswell-EP maximum power consumption for different workloads.

In an additional experiment, we want to measure the impact of the workload type
on the maximum power consumption of the test system. We use three workload
types, which use all of the available hardware threads on the machine. (1) The afore-
mentioned FIRESTARTER tool. (2) A memory-intensive workload that simulates
a columns scan. (3) A compute-intensive workload that operates on cache-resident
data. In Figure 4.4, we show the respective maximum power draw measured via the
external power meter for the different workload types. The least amount of power
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is drawn by the compute-intensive workload, because only the cores themselves are
activated. In contrast, the memory-intensive workload additionally activates the
memory controllers of both processors, which adds an additional power consump-
tion of about 60 W. We measured the highest power draw with the FIRESTARTER
workload, because the additional usage of AVX instructions increases the actual
power consumption even more.

4.2.3 C-States and P-States

On modern CPUs, single cores or the entire processor can be power-gated to save
energy, if they are not utilized (C-states). Additionally, the hardware implements
power states (P-states), which decrease voltage and frequency to operate in a more
energy-efficient state at the cost of reduced performance. One innovation of the
Haswell-EP generation is that the individual core clocks as well as the uncore clock
can be set independently (cf., Figure 4.2). On our test system, core clocks can be set
between 1.2 and 2.6 GHz (3.1GHz TurboBoost) and the uncore clock ranges from
1.2 GHz to 3.0 GHz.
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Figure 4.5: Power costs for activating cores with different core and uncore
frequency settings.

In Figure 4.5, we experimentally evaluated the impact of C-states and P-states on
the power consumption for a compute-intensive workload (no main memory accesses
to avoid main memory-related bottlenecks) using RAPL counters on a single socket.
The results show that most of the power costs incur when the first core of a socket is
activated, while activating an additional core causes a much lower power draw and
activating HyperThread siblings comes at almost no cost. The high power costs for
activating the first core adhere to the uncore clock, which can be halted, if no core is
active on the CPU. Thus, we observe a correlation to the uncore frequency. Halting
the uncore clock allows the processor to power-gate the power-hungry LLC, which
saves up to 30 W. The power costs for activating additional physical cores are almost
constant, which can be considered as an energy-proportional process, and different
core frequencies can be mixed-up, due to the independent core clocks.
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Figure 4.6: Socket-specific power consumption and cross-socket dependencies.

However, halting the uncore clock in a multi-processor system depends on the
uncore state of the other processors in the server. Since CPUs are able to access
memory on a foreign socket, the uncore clock of a socket can not be halted unless all
processors of the system halted their uncore clock, too. Figure 4.6 shows the power
consumption of the individual sockets for a halted uncore clock (both sockets idle)
and for different uncore frequencies, when the other socket is active. The experiment
shows the mentioned dependency and also demonstrates that the second socket is
consuming less power compared to the first one, especially when the uncore clock of
all processors is halted.
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Figure 4.7: Memory bandwidth and power costs for different core and uncore
frequency settings (all cores are active).

In our last experiment, we want to quantify the impact of core and uncore fre-
quenices on the memory bandwidth. As Figure 4.2 suggests, the memory bandwidth
heavily depends on the uncore frequency, because it affects memory controllers and
the LLC. Our experiment in Figure 4.7 confirms this assumption. It clearly shows,
that the available memory bandwidth mostly depends on the uncore frequency set-
ting and that nearly the full bandwidth can be achieved when operating all of the
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cores in their lowest available P-state (1.2 GHz) as long as the uncore clock is set to
its respective maximum (3.0 GHz).

4.2.4 EPB-Driven Energy Management

The energy-performance bias (EPB) can be set per hardware thread and mainly
influences the energy-efficient turbo (EET) as well as the uncore frequency scaling
(UFS) [18]. The EPB can be set via a machine-specific register (MSR) to powersave,
balanced, or performance mode. To evaluate the decisions made by the EPB, we start
with executing a compute-intensive workload on all cores of a processor and change
the frequencies of all cores from 1.2 GHz to the maximum frequency (3.1 GHz w/
turbo) for different EPB settings and measure the number of instructions retired
(completed instructions) as well as the power consumption using RAPL counters.

(a) Compute-intensive workload with EPB set to
powersave or balanced.

(b) Compute-intensive workload with EPB set to
performance.

(c) Memory-intensive workload with EPB set to
powersave or balanced.

Figure 4.8: Power consumption and instructions retired over time, while switching
all cores from 1.2 GHz to maximum core frequency (at 1000 ms) for
different workload types and EPB settings.
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Figure 4.8(a) shows the behavior over time for the powersave or balanced EPB
setting. The frequency change happens at the 1000ms time point. We observe that
the CPU immediately draws more power and sticks for about 1.2 s at 2.6 GHz and
afterwards enters the turbo mode (3.1 GHz), which causes an additional power draw
and a significant performance increase. Repeating the same experiment having the
EPB set to performance, lets the CPU immediately enter the turbo mode after the
frequency change, avoiding the 1.2 s delay as shown in Figure 4.8(b). Figure 4.8(c)
visualizes the results for the experiment with an EPB setting of powersave or bal-
anced, this time using a memory-intensive workload. Here, we observe the same
delay of 1.2 s before activating the turbo mode. However, the experiment demon-
strates that this decision was a bad one in terms of energy efficiency, since the CPU
invested a lot of power, but was not able to increase the performance as the instruc-
tions retired measurement indicates. Thus, the only impact of the EPB on the core
frequency we could observe, was that a 1.2 s delay was added before entering the
EET.
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Figure 4.9: Throughput and power consumption of a compute-intensive workload
for different uncore frequency settings.

To evaluate the impact of the EPB on the uncore frequency scaling (UFS) de-
cisions, we run a compute-intensive workload with all cores running at maximum
frequency and compare the measurements of power consumption and performance
for automatic UFS as well as for having the uncore frequency pinned to 1.2 GHz and
3 GHz. Figure 4.9 shows the respective results. The number of retired instructions
is the same for all uncore clock settings with a slight advantage for the lowest uncore
frequency. Nevertheless, the automatic UFS decides to use the highest uncore fre-
quency, which draws additional 12 W compared to the 1.2 GHz setting, which even
delivers a bit more performance. Thus, this experiment once again confirms a bad
decision making of the built-in CPU power management facilities and suggests to
set the EPB to performance mode, when doing explicit energy control.
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4.2.5 Summary and Conclusions

In this section, we analyzed performance and power characteristics of current main-
stream server systems and focused on the available energy-control features and the
energy-related decisions that are made by the CPU itself. Our analysis of the server
system demonstrates that there are a lot of opportunities to save power on current
hardware. These power savings can be achieved by appropriately configuring the
offered energy-control knobs of the hardware, which significantly influence perfor-
mance and power consumption of the system. Moreover, our evaluation also revealed
that the decision making of the CPU in terms of power management is not sophisti-
cated, actually, which once again motivates explicit energy-control in main memory
database systems.

4.3 Energy Profiles

Based on our findings of the previous section, we will now abstract the different
hardware energy-control facilities to configurations, which will be aggregated to an
energy profile. The energy profile is a substantial component of the ECL, since it
represents performance and energy efficiency trade-offs for the current workload. In
this section, we discuss the configuration generation process and how the energy
profile is related to the current workload of the DBMS.

4.3.1 Configuration Generation

A configuration represents a specific system state in terms of hardware energy-
control settings for a single processor. Configurations are workload-agnostic showing
different performance and energy characteristics when being evaluated in the context
of a specific workload. A single configuration comprises:

The Set of Active Hardware Threads. This set defines which hardware threads
of the processor are active. In the context of ERIS, this set defines which Liv-
ing Partition Vitalizers (LPV) are running within this configuration. Since
the processors of our target system have homogeneous cores, we allocate hard-
ware threads from the left to the right. Nevertheless, physical cores usually
support simultaneous multithreading (e.g., via HyperThreading) and thus, we
use a HyperThread-first allocation strategy, which turned out to be the most
energy-efficient one [109].

The Core Frequencies. This set defines the frequencies of the active physical
cores of the configuration. Within the used hardware setting, all HyperThreads
of a physical core share the same frequency. All other frequencies are set to
their respective minimum.

The Uncore Frequency. If the hardware platform supports a separate frequency
for the uncore part of the processor, like our test system, the respective uncore
frequency for the configuration is specified here.
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Due to our experiments regarding the EPB, the EPB is always set to performance
for all configurations, because it only seems to delay the activation of the turbo
mode. Hence, a configuration is expressed as:

cx = ({coreHyperThread}, {(core, fcore)}, funcore) (4.1)

For instance a configuration c1 can be instantiated as:

c1 = ({11, 12, 21}, {(1, 1.2 GHz), (2, 2.1 GHz)}, 3 GHz) (4.2)

This configuration activates the first physical core and both of its HyperThread
siblings as well as the second physical core with one HyperThread. The core fre-
quency of the first physical core is set to 1.2 GHz and the second core clock is set to
2.1 GHz. The uncore clock of the processor is pinned to 3 GHz. To put a configu-
ration into the context of a specific workload, it needs to be evaluated. During this
evaluation process of a configuration, the configuration is enriched with the following
information:

The Power Consumption. As we have shown in Section 4.2, the actual power
draw of a configuration is workload dependent. Hence, this information spec-
ifies the power consumption of the configuration for a specific workload. The
power consumption is measured for the entire processor by the RAPL counters
including the Package and DRAM domain.

The Performance Score. The performance of a configuration depends on the par-
ticular workload the database system is executing and vice versa. As we
have discussed in Section 2.3.1, the choice of the appropriate unit for perfor-
mance measurements highly depends on its application. Hence, we compared
transaction-level and instruction-level measurements for different workloads
and observed a high correlation between them. Since instruction-level mea-
surements are more fine-grained in terms of their update frequency, we decided
to use the number of instructions retired by all of the active hardware threads
on the processor. This performance can be measured with the help of the
integrated performance counters of the processor.

The Energy Efficiency. To express the actual trade-off between performance and
power consumption, we use the energy efficiency metric (cf., Section 2.3.2),
which is calculated as performance score divided by power consumption.

We call a set of configurations the energy profile. The configuration generator
is responsible for systematically identifying a set of configurations that covers a
high variety of distinct system states to explore most of the configuration spectrum.
In Figure 4.10, we compare three different parameter settings of the configuration
generator. The available parameters are the number of different core frequencies
|fcore|, the number of distinct uncore frequencies |funcore|, the usage of mixed core
frequencies fcore−mixed (either enabled or disabled), and the maximum number of
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(a) |fcore| = 4, fcore−mixed = off, |funcore| = 3 (145 configurations).

(b) |fcore| = 7, |funcore| = 3, fcore−mixed = off (252 configurations).

(c) |fcore| = 4, |funcore| = 3, fcore−mixed = on (207 configurations).

Figure 4.10: Energy profiles using a compute-intensive workload for different
configuration generator parameter settings. cmax set to 256.
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generated configurations cmax. Using these parameters, the configuration generator
calculates all unique configurations taking the homogeneity of the individual cores
into account, for instance activating physical core 1 is the same as activating core
2 regarding its performance and power characteristics. If the resulting number of
configurations is too high, the generator aggregates hardware threads to groups
resulting in a decreased granularity of the energy profile.

For our experiments we set cmax to 256 for visualization reasons. Figure 4.10(a)
shows the energy profile for |fcore| = 4 (including the lowest, highest, and turbo
frequency), |funcore| = 3, and fcore−mixed = off while the DBMS runs a compute-
intensive workload. The resulting number of configurations is |cores|·|fcore|·|funcore| =
288. Because cmax is limited to 256, the generator treats both HyperThread siblings
of a physical core as one core group resulting in 144 configurations plus the idle
configuration. The color of the outer circles encodes the average core frequency, the
inner color the uncore frequency, and the diameter the number of active cores. The
profile shows that the lowest frequencies are the most energy-efficient ones for low
performance levels until their respective performance potential is exhausted. More-
over, we observe that the lowest uncore frequency is the most energy-efficient one,
as it is supported by the experiment in Figure 4.9.

Using the energy profile, the ECL can determine the most energy-efficient con-
figuration for a specific demanded performance level. Thus, only the skyline of the
profile is of interest (opaque circles in the chart). Database systems without energy-
control mechanisms usually use all available cores at the highest frequency as long
as enough work is available, which is known as race-to-idle (RTI). Therefore, the
baseline in the figure shows the respective energy efficiency that is achieved for dif-
ferent performance demands using this approach (cf., Section 2.3.3). Obviously, a
more energy-efficient way is using an RTI strategy that switches between idle mode
and the most energy-efficient configuration, which is depicted as the ECL RTI line.
Increasing |fcore| (Figure 4.10(b)) to 7 or enabling fcore−mixed (Figure 4.10(c)) is not
significantly improving this skyline, but causes the profile to include more configura-
tions, which are more costly to maintain in case of a workload change. The skyline
is not improving, because the original parameter setting already covered the most
important supporting points of the configuration space.

4.3.2 Workload Dependency

As mentioned before, the main purpose of the energy profile is to provide the ECL
with information about performance level and power consumption of specific config-
urations. However, especially the given performance of a configuration heavily de-
pends on the current workload of the database system. While the compute-intensive
workload in Figure 4.10 shows an almost perfect profile, because there are no bot-
tlenecks present in the system, real-world profiles look much more different. This
difference occurs usually as soon as the contention on resources increases. For an
in-memory DBMS, those points of contention are usually the memory controller or
shared cache lines.
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(c) Shared hash table insert.

Figure 4.11: Energy profiles using different workloads. |fcore| = 4,
fcore−mixed = off, |funcore| = 3 (145 configurations). The different
ruling zones for the Node ECL are highlighted.
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To demonstrate the effect of memory controller contention, we conducted the
energy profile for a memory-intensive workload (i.e., a column scan), which is shown
in Figure 4.11(a). This profile looks completely different compared to the one of the
compute-intensive workload. It shows that high frequencies are a bad choice, because
the bandwidth can not be further increased, and that a high uncore frequency is
beneficial in terms of performance and energy efficiency (the dense clusters in the
profile).

To quantify the impact of cache line contention causing bottlenecks, we used a
workload where all threads atomically increment a single variable. As Figure 4.11(b)
shows, the profile once again looks completely different. Here, the most performing
and most energy-efficient configuration uses only two hardware threads at turbo
frequency with the lowest uncore frequency. While the maximum possible energy
savings amount up to 40 % (highest difference between baseline RTI and ECL RTI)
for the previous workload, the savings in terms of energy are about 90 % in such a
scenario with an additional query response advantage of 200 %. Nevertheless, since
such a workload is very artificial and uncommon for real-world workloads, we show
an additional energy profile in Figure 4.11(c) that was conducted using a workload
where multiple threads insert values into a shared hash table. We again observe the
same effects at a smaller scale with a potential energy saving of 40 % and a query
response benefit of about 8 % compared to the baseline.

Based on the experiments, we can conclude that the shape of the energy profile can
change arbitrarily for different workloads, because contention on hardware resource
is the common case in main memory database systems. Moreover, we have shown
that choosing the right configuration can significantly improve the energy efficiency
as well as the response time.

4.3.3 Energy Profiles and the ECL

The node-specific energy profile is the most essential component of the ECL, because
it contains important information about the available hardware configurations as
well as their performance and energy metrics. As depicted in Figure 4.11, the ECL
differentiates three different high-level zones for energy ruling:

The Optimal Zone. This zone includes only the most energy-efficient configura-
tion and the ECL is eager to reside in this zone, because the most energy
savings are experienced here.

The Under-Utilization Zone. Since database severs are mostly over-provisioned
to cope with load peaks, most of the time is usually spent in this zone where
energy efficiency of the configurations is mostly significantly lower compared to
the optimal zone. Thus, the ECL will use the race-to-idle method within this
zone, which means that the ECL is frequently switching between idle mode and
the most energy-efficient configuration (optimal zone). The potential energy
savings for this method are shown by the ECL RTI line. Using ECL RTI, the
ECL is able to partially compensate the high energy costs for activating the
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first core on a socket (cf., Figure 4.5). The ECL RTI energy savings are about
40 % (RAPL only) for very low performance demands and decrease the more
performance is needed, because the time the system is able to reside in idle
mode is decreasing.

The Over-Utilization Zone. The configurations of this zone are only applied, if
the optimal zone does not provide enough performance to master the current
load within the given query response time constraints.

The respective range of the individual zones depends on the energy profile and thus,
on the workload. For instance, for the energy profiles in Figure 4.11(b) and 4.11(c),
the over-utilization zone is very small or not even present.

4.3.4 Summary and Conclusions

In this section, we specified the concept of Configurations, which represent a specific
system state in terms of hardware energy-control settings for a single processor
and thus, the set of active LPVs ERIS is running. Configurations are evaluated in
the context of a specific workload to be enriched by information about the power
consumption, the delivered performance, and the effective energy efficiency.

A set of configurations is aggregated to an Energy Profile. This set of configura-
tions is generated with the help of a configuration generator, which tries to cover
the most important supporting points of the big exploration space. As we have
shown, the cardinality of the configuration set can be kept low, while still reaching a
good quality of the energy profile. Moreover, we demonstrated that the shape of the
energy profile is highly workload dependent and that this shape affects the decision
making of the ECL.

4.4 Resource Adaptivity-Specific Energy-Control Loop

In this section, we present the details of the Resource Adaptivity-specific Energy-
Control Loop (ECL). This implementation of the ECL is designed hierarchically as
depicted in Figure 4.1. Each processor independently runs a Node ECL maintaining
its own Energy Profile and is only configuring the hardware resources available on the
respective CPU. Besides the Node ECLs, a Global ECL is responsible for monitoring
the query response times and influences the decision making of the individual Node
ECLs. Compared to our big picture of the ECL in Figure 2.18, Resource Adaptivity
implements the CPU-level (Node ECL) as well as the System-level (Global ECL)
of the overall hierarchy. In the following, we discuss both components in detail
including their integration into ERIS.

4.4.1 Node ECL

Since each CPU possesses its own energy counters (RAPL), the lowest available unit
for measurements is a single processor (Node). Thus, it is a natural decision to rule
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the energy tuning features at the CPU-level, which is exactly the job of a Node ECL.
For that reason, there are as many active Node ECLs as processors available on the
platform, each of them running as a separate thread, that is pinned to the respective
processor. Because the workload characteristics can vary per processor, each Node
ECL uses and maintains its own energy profile to achieve a high accuracy.

Figure 4.12: Guiding Node ECL control mechanism example.

Decision Making

The entire ECL as well as the Node ECLs, are designed as a reactive control loop.
Thus, the Node ECL needs to quickly respond to load changes and is therefore
executed periodically at the scale of a second or less. Figure 4.12 shows a guiding
example that we will leverage throughout the discussion of the Node ECL. The
example shows the measured utilization of the runtime and the performance level
that is applied by the Node ECL over time. In ERIS, the utilization of a processor
is measured by monitoring the amount of time the running LPVs actually do work,
i.e., in the role of a task, as an LP, or as node coordinator. The base Node ECL
interval is set to one second in the example. As visualized in Figure 4.13, the Node
ECL consists of two main components, which we will discuss in the following:

The Utilization Controller. This controller is responsible for determining the
current performance demand of ERIS on the specific processor. Hence, the
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Figure 4.13: Control mechanism of the Node ECL.

utilization controller continuously receives utilization information from the
database runtime. As shown by the example in Figure 4.12 at the time points 1
to 4, the database runtime reports a full utilization (100 %) forcing the utiliza-
tion controller to increase the performance level and apply the corresponding
most energy-efficient configuration fulfilling the calculated performance de-
mand based on the energy profile. Since the utilization can only be measured
relative to the amount of active hardware threads, the utilization controller
is not able to exactly determine the required performance level in case of a
full utilization. Thus, the utilization controller uses a discovery process that
exponentially increases the performance level in each Node ECL call to avoid
activating more hardware resources than necessary on the one hand and to
cope with load spikes on the other hand. Additionally, the discovery process
considers information reported from the Global ECL. The opposite scenario is
a utilization below 100% as it happens for instance at the time points 5 and
6 in the guiding example. In this scenario, the utilization controller is able to
quickly determine the required performance level using this formula:

performancenew = utilization · performanceold (4.3)

Once again, the Node ECL uses the calculated performance level and applies
the most energy-efficient configuration satisfying the performance level, which
is known by the energy profile.

The RTI Controller. The RTI controller leverages the information reported by
the utilization controller (i.e., new performance level and configuration) and
decides whether to use a race-to-idle strategy or not. There are two reasons
for applying RTI. First, to partially compensate the high costs for activating
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the first core on a socket and second, to emulate any performance level for
which no configuration is known by the energy profile. In practice, the RTI
controller always tries to switch between the most energy-efficient configuration
and idle mode when the performance demand is in the under-utilization zone.
However, the negative side effect of applying RTI is that the query response
time is negatively affected, if the system resides for a long time in idle mode.
Thus, the RTI controller switches at a high frequency (e.g., every 10ms) or
selects a lower performing configuration for doing RTI. Additionally, the RTI
controllers of different nodes try to synchronize idle times, because a socket
can only enter its deepest sleep state, if all sockets of the machine are in idle
mode (cf., Figure 4.5). In the example, we schematically demonstrate the RTI
usage between time points 7 and 9. At time point 7, the configuration of the
previous interval is emulated using RTI switching between the most energy-
efficient configuration available (optimal zone) and the idle mode. At time
point 8, the utilization controller detects a lower utilization and reduces the
performance level accordingly. Hence, the RTI controller causes the system
to spend more time in idle mode and uses three instead of two RTI cycles
per Node ECL interval to keep the response time low. In practice, the RTI
controller does up to 50 RTI cycles per 1s Node ECL interval.

Energy Profile Maintenance

As previously demonstrated, the shape and skyline of the energy profile depends on
the current workload the DBMS is facing. Thus, the ECL needs to quickly adapt the
energy profile in case of a changing workload. If the energy profile is not accurate, the
Node ECL is not able to calculate the current performance demand, RTI calculations
become inaccurate, and possibly energy-inefficient configurations are applied. For
that reason, it is important how fast configurations can be reevaluated at runtime.
Since the speed of applying new configurations and measuring the corresponding
energy and performance counters is hardware dependent, the ECL does a meta
calibration step on startup.

Figure 4.14: Accuracy of configuration evaluation for different time intervals.

In this meta calibration step, the ECL detects the times needed for applying a
configuration and for measuring the counters. The ECL starts by taking a reference
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measurement using a generous amount of time and is decreasing the times step-by-
step, while measuring the deviation from the reference measurement. This process
happens first for the measure time followed by the apply time. During the mea-
surement, the ECL switches between the highest configuration (all cores at highest
frequency) and the lowest available configuration (one core at lowest frequency). As
presented in Figure 4.14, for applying a configuration, the evaluation is even accu-
rate when using a 1ms interval, but the time for measuring the counters becomes
more and more inaccurate when being decreased. The source of most of the devi-
ation we encountered, was the RAPL measurement, when switching to the lowest
configuration. We identified a measurement interval of 100 ms to be the best trade
off between accuracy and speed for our hardware environment. To adapt the energy
profile at runtime, we use two strategies:

The Online Adaptation. This energy profile adaptation strategy is continuously
used to adapt to slight workload changes. Every time the Node ECL applies
a certain configuration, the Node ECL measures the power and performance
metrics using the respective performance counters (i.e., RAPL and instructions
retired) and updates the energy profile. The main advantage of this strategy is
that almost no overhead is generated and the currently used configurations are
highly accurate. However, the obvious drawback is that only configurations are
maintained, which are reported by the energy profile to be the most energy-
efficient ones, which is may not the case anymore.

The Multiplexed Adaptation. This energy profile adaptation strategy overcomes
this disadvantage. The strategy is triggered by the Online Adaptation as soon
as a high drift in configuration accuracy is detected and reevaluates all con-
figurations of the energy profile. To only minimally affect the operation of
the Node ECL and to obey the query response time constraint, this strat-
egy uses time-division multiplexing. Within one Node ECL period (e.g., 1 s),
about 100 ms are used to evaluate a random configuration and in the remain-
ing 900 ms, the Node ECL operates as usual (between time point 10 and 11 in
Figure 4.12). During the usual operation phase, the Node ECL is able to re-
spond to the intrusion of the adaptation process using its energy profile that is
getting more accurate over time. To evaluate high performing configurations,
the multiplexed adaptation once again leverages the capabilities of the RTI
controller to simulate high load situations, which can enlarge the time fraction
that is used for adaptation within one Node ECL period (between time point
11 and 12 in the example). It is also possible that a configuration is reevalu-
ated using an evaluation time shorter than 100 ms (i.e., if the system load is
very low). In such a situation, the Node ECL tolerates the less accurate energy
and performance metrics, which will be corrected by the Online Adaptation
process, as soon as the respective configuration is applied.

As discussed, both energy profile adaptation strategies work hand in hand and
expose a different behavior in terms of overhead, invasiveness, and quality of the
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resulting energy profile. As we will show in our end-to-end evaluation, even the
Multiplexed Adaptation only minimally affects the operation of the ECL and the
combination of both strategies successfully maintains the energy profile in the back-
ground.

4.4.2 Global ECL

While Node ECLs are responsible for managing a single socket of the system, the
Global ECL manages metrics that are only globally available. In our scenario, this
metric is the average query response time, which is the result of the performance
of all available sockets in the system. Thus, all Node ECLs implicitly influence
this metric. In ERIS, the average query response time is measured by timing the
execution speed of a task. The overall goal of the Global ECL is not to keep the
response time as low as possible. Instead, it takes a user-defined maximum average
response time as an instance of a QoS measure, which is considered a soft constraint,
because a reactive control loop is not able to guarantee that this limit is not violated
and thus, uses a best effort strategy.

Hence, the Global ECL continuously monitors the actual average query response
time and calculates its current trend. Based on the trend, the Global ECL is able
to estimate the time until the response time limit is violated. This time is provided
for all Node ECLs, which use this value to adjust the aggressiveness to enter a
higher performing configuration in case of a full utilization and to adjust the RTI
usage, since RTI negatively affects the response time. However, a low value of this
time (or even zero if the limit is already violated), does not mean that the Node
ECL automatically ramps up all available hardware resources, because the work
can be unevenly distributed across the sockets. Thus, Node ECLs still select lower
performing configurations, if a lower utilization is reported, but are more eager to
increase the performance level on the respective processor.

4.5 End-to-End Evaluation

In this section, we present an end-to-end configuration of ERIS including an imple-
mentation of Resource Adaptivity. According to our definition for benchmarking the
energy awareness of a DBMS (cf., Section 2.4.2), we evaluate the resource adaptivity-
specific ECL for different workloads as well as load profiles and we present exper-
iments regarding the ability of the ECL to adapt the energy profile to a changing
workload. All experiments are conducted on the 2-socket Xeon E5-2690 v3 presented
in Section 4.2.1 running the in-memory DBMS.

4.5.1 Workload and Load Profile

To investigate the behavior of the ECL and the respective energy savings, we ran
experiments for the combinations of two different workloads and two load profiles.
The workload specifies the types of queries that are sent to the DBMS and the
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load profile defines the number of queries per second over time sent to the database
system. We use two different workloads querying a key-value store that is loaded
with 20 M keys (SF 200), which is enough to fully utilize the memory controllers when
scanning over the keys only. While the first workload scans over the key column to
find the requested key and is thus, memory-bound, the second workload uses an index
to find the corresponding key and is therefore, intentionally not memory-bound.
Both workloads simulate typical data object access patterns and have a completely
different energy profile, for instance, the energy profile of the scan workload resembles
the one in Figure 4.11(a). As load profile we use the spike profile, which is easy
to understand and is thus suitable to explain the ECL behavior for different load
situations. Additionally, we use a twitter [1] load profile, to investigate how the ECL
acts in real-world system load situations.

(a) Load profile and power consumption of the baseline and the ECL (2 sockets).

(b) Query latency.

Figure 4.15: Power consumption and query latency over time for the spike load
profile (column scans).

Figure 4.15 shows the results for the combination of the scan workload and the
spike load profile, which was run for 3 minutes. The respective system load over time
is visualized in Figure 4.15(a). Additionally, the figure includes the RAPL power
measurements over time for the baseline (race-to-idle using all available hardware
resources with CPU and OS frequency control), the ECL with RTI enabled, and the
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ECL with RTI disabled. The first observation we made is that the ECL never draws
more power than the baseline, except for very low load situations when having RTI
disabled, because the ECL never enters idle mode in this setting. The next finding
is that the ECL significantly improves the energy proportionality, especially in load
situation above 50% where we see almost perfect energy proportionality, except
for the overload situation between 80 and 100 s. In lower load situations (<50 %),
energy proportionality gets worse because of the high static power consumption of
the processors, which gets less significant in higher power levels. Starting at 80 s,
the load profile generates an overload situation meaning that the system receives
more queries than it is able to actually handle. An interesting observation is that
the baseline stays for about 50s in the overload state, while the ECL only resides
for about 20 s in the overload situation and still draws less power. The reason for
this effect is, that using all available hardware resources (baseline) provides less
performance compared to the performance of the configuration that is selected by
the ECL, because more contention on hardware resources is generated. As shown by
Figure 4.15(b), the ECL was able to stay within the response time limit of 100 ms
most of the time and the response time limit violations happened within the overload
situation.

In Figure 4.16, we present our results for the combination of the scan workload
and the twitter load profile. Compared to the spike load profile, this profile includes
sudden load peaks and is frequently changing between increasing and decreasing the
system load. The behavior of load and power consumption for the baseline and the
ECL (with and without RTI) over time are shown in Figure 4.16(a). Once again, we
observe that the ECL is drawing significantly less power compared to the baseline
most of the time. However, we also observe that the ECL takes more time to adapt
the hardware configuration to the sudden load peaks, because of its reactive nature.
This finding is supported by the average response time measurements depicted in
Figure 4.16(b). Here, we see that the ECL is able to stay within the response time
limit most of the time, but we also observe outliers, which occur during load peaks.

Our overall goal is to reduce the overall energy consumption of the database
system. Hence, we measured the energy consumption of all workload and load
profile combinations for the baseline and for the ECL and calculated the energy
savings of the ECL. The results are shown in Figure 4.17. The numbers show that
the ECL is able to save up to 38.6 % energy compared to the baseline when using
the scan workload. For the index workload the ECL is able to save up to 22.7 %
energy. Thus, the energy saving potential mainly depends on the workload type as
we already observed in Section 4.3.2 (energy profiles). Since RAPL and PSU power
measurements are highly accurate on this platform [50], those numbers, which were
measured using the RAPL counters, also apply to the whole server. Moreover, we
observed that the ECL itself only consumes 2 % of the compute time of a single
hardware thread per socket, which is a negligible number.
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(a) Load profile and power consumption of the baseline and the ECL (2 sockets).

(b) Query latency.

Figure 4.16: Power consumption and query latency over time for the twitter load
profile (column scans).

4.5.2 Energy Profile Maintenance

While the previous experiments used a static workload type, we will now evaluate
how the ECL responds to workload changes that occur at runtime. To do so, we
set the load to a static value (50 % of the peak performance) and suddenly switch
from the index workload to the scan workload. We use three ECL settings to
demonstrate the effect of the different energy profile maintenance strategies. The
first setting performs no energy profile maintenance (ECL static). The second setting
uses only the Online Adaptation (ECL online) and the last one additionally uses
the Multiplexed Adaptation (ECL multiplex ).

Figure 4.18 visualizes the power consumption over time for the different adaptation
strategies. The workload switch happens at 40 s. When looking at the ECL static
measurements, we already observe a slightly increased power consumption before the
workload switch, because online adaptation is disabled and the profile is not adjusted
to small variations that usually occur even for a static workload and mostly originate
from the hardware itself. Immediately after the workload switch, we see that the
power consumption is higher compared to the other maintenance strategies and
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Figure 4.17: Energy savings for different load profiles and workload types.

Figure 4.18: Power consumption during workload switch for different
energy profile maintenance strategies.

Figure 4.19: Total energy consumption for workload switch.
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Figure 4.20: Query latency for workload switch.

that the numbers are fluctuating, because the Node ECLs are not able to accurately
determine the power demand, to find the appropriate configurations, and to do
accurate RTI calculations. The ECL online measurements show that the online
adaptation quickly adapts the energy profile allowing the Node ECLs to do accurate
calculations and configuration decisions. However, since the online adaptation only
reevaluates configurations that were applied, it is necessary to reevaluate all the other
configurations of the energy profile, which is done by the multiplexed adaptation.
As the ECL multiplex measurements show, this process requires more time, but
manages to find a slightly more energy-efficient configuration for the new workload.

Figure 4.19 shows the corresponding total energy consumption measurements for
the three energy profile maintenance settings. As assumed, the ECL static setting
without any energy profile adaptation draws significantly more energy and is mostly
not able to stay within the query response time limit as shown in Figure 4.20. By
contrast, the ECL online and ECL multiplex settings consume about 25 % less power
and are able to stay within the response time limit. Thus, we can conclude that the
active energy profile maintenance at runtime is very important for a static workload
as well as for changing workloads.
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4.6 Summary and Conclusions

In this chapter, we presented Resource Adaptivity as the hardware-centric imple-
mentation of our Energy Awareness by Adaptivity concept. While previous research
mainly focused on disk-based DBMSs, resource adaptivity aims at investigating and
optimizing the energy consumption of highly parallel state-of-the-art in-memory
database systems that make heavy use of the main power consumers – CPUs and
main memory – and are thus, an attractive target for energy optimizations. Our
in-depth energy analysis of a current server system showed that modern processors
provide a rich set of energy-control facilities, but lack the capability of controlling
them appropriately.

Afterwards, we specified the concept of Configurations, which represent a specific
system state in terms of hardware energy-control settings for a single processor
and thus, the set of active LPVs ERIS is running. Configurations are evaluated in
the context of a specific workload to be enriched by information about the power
consumption, the delivered performance, and the effective energy efficiency. A set
of configurations is aggregated to an Energy Profile. This set of configurations is
generated with the help of a configuration generator, which tries to cover the most
important supporting points of the big exploration space. As we have shown, the
cardinality of the configuration set can be kept low, while still reaching a good
quality of the energy profile. Moreover, we demonstrated that the shape of the
energy profile is highly workload dependent.

Finally, we proposed the resource adaptivity-specific ECL as a holistic software-
based approach for adaptive energy-control on scale-up in-memory database systems
that obeys a query latency limit as a soft constraint and actively optimizes energy
efficiency and performance of the DBMS. Resource adaptivity effectively implements
the CPU-level and the System-level of the overall energy-control loop by employ-
ing a Node ECL per processor and a Global ECL. Node ECLs rely on adaptive
workload-dependent energy profiles that are continuously maintained at runtime us-
ing the Online Adaptation and Multiplexed Adaptation maintenance strategies. In
our evaluation, we observed energy savings of up to about 40 % for real world load
profiles (cf., Table 4.17). Moreover, we demonstrated that the Node ECLs are able to
quickly and efficiently adapt their energy profile in case of workload changes without
inducing a significant overhead.
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Modern application scenarios require data management systems to deal with a high
variety of datasets and query types. Due to the rapid and agile development as well
as frequently shifting focuses of interest today, neither the type and the schema of
datasets nor the queries executed on them are known beforehand and additionally,
both – datasets and queries – are constantly changing over time. Even in such a
dynamic environment, the database system still needs to guarantee data velocity
and responsive query processing in real-time to satisfy today’s business needs.

Because the overall performance of a DBMS mainly depends on the physical data
layout, modern database systems need to adapt their physical storage layout fre-
quently without significantly hurting the query response time during the adaptation
process to appropriately face the challenges of modern application scenarios. This
adaptation process needs to consider data characteristics as well as query patterns
and hot spots that are subject of continuous change. The huge design space for a spe-
cific instance of a physical storage layout includes the index selection, the choice of
a representation (e.g., columnar, row-wise, or interpreted) per attribute respectively
attribute group, and the redundant storage of attributes in different representations.
Moreover, the specific physical storage layout can be inhomogeneous across the par-
titions of a single relation. We do not consider materialized views, because they are
logical access paths that are out of scope of the low-level storage engine. Besides
being able to store data in this highly dynamic way, the query processing engine
needs to be able to deal with all of those mixed physical representations. For in-
stance, mostly all current database systems store and process data either row-wise
(e.g., MySQL) or columnar (e.g., MonetDB) and some DBMSs like HyPer [73] or
IBM DB2 [61] only allow the user to organize a table either row-wise or columnar,
but do not support mixes of both in a single table.

So far, research mostly focused on offline physical storage layout optimizations
using design advisors [42, 139], which lack our agility and invasiveness – in terms of
query response time – demands, because the full adaptation process is mostly man-
ually triggered in times of a low system load. Recent approaches such as database
cracking [63, 74] or adaptive storage engines for hybrid transaction-analytical pro-
cessing (HTAP) workloads [11, 13] address the issue of either query-driven online
index creation or switching between a row-wise or columnar physical storage layout
respectively mixes of both representation. However, those approaches are only par-
tial solutions for the entire online storage adaptation problem as shown in Table 5.1,
which compares the features of the individual approaches.

In this chapter, we present Storage Adaptivity as a software-centric approach for
increasing the energy awareness of a database system Our storage adaptivity is a
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Figure 5.1: ECL hierarchy including the storage ECL per LP.

holistic approach for fine-grained physical storage layout adaptation at runtime that
relies on two components as depicted in Figure 5.1. The first component is 1-Storage,
which is a storage manager that is able to store and process data in a high variety
of physical storage layouts and is able to incrementally adapt the storage layout
at runtime. 1-Storage employs a high-level concept to plug indexes, columnar, and
row-wise worlds together and additionally considers schema flexibility. The set of
available low-level storage modules (e.g., a specific column store or index implemen-
tation) is extensible and storage modules follow a fixed interface. Since 1-Storage is
designed to operate within the Living Partitions architecture, each living partition
uses its own 1-Storage and each of them is able to store its data in a different phys-
ical storage layout. The second component is the Storage Adaptivity-Specific ECL,
which instantiates a Storage ECL per living partition and controls the adaptation
process of the corresponding 1-Storage. As visualized in the overview Figure 5.1,
this ECL type is at the lowest level of our ECL hierarchy and communicates with the
higher level ECL types, i.e., the CPU-level Node ECLs and the system-level Global
ECL, to consider the current hardware configuration (Resource Adaptivity) as well
as current query latencies.

In the following, we will discuss the relevant related works followed by the presen-
tation of the 1-Storage interface, which decouples operators from the actual physical
storage layout. Afterwards, we will introduce the internal design of 1-Storage in-
cluding the interface for storage modules and we will discuss the concept of micro
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query execution plans in this context. In the next step we will present the storage
adaptivity-specific ECL and describe how the specific physical storage layout for a
1-Storage instance is determined and how the actual adaptation is triggered and
executed. Finally, we will exhaustively evaluate the different aspects of our storage
adaptivity approach, especially in the context of energy awareness, and conclude
this chapter.

5.1 Related Work

We split our discussion of the related work in three major parts. In the first part, we
discuss the wide range of physical storage models that are known by research and
are implemented in database systems. Here, we focus on the basic storage models as
well as hybrid storage models – such as our 1-Storage – that are the foundation for
any adaptive storage, because they define the degree of freedom that is is given for
the adaptation. In the second part, we go through the offline physical storage layout
tuning approaches, which are the predecessors of their online pendants. Finally,
we discuss adaptive storage solutions that are able to adapt their physical storage
layout at runtime. We will compare the capabilities of these approaches to our
storage adaptivity approach, because they aim at the same goal.

5.1.1 Physical Storage Models

A physical storage model defines how data is organized in the byte-addressable main
memory (volatile or non-volatile) respectively on block-oriented persistent drives
(e.g., HDD or SSD). We distinguish between two basic storage models. The tra-
ditional basic storage model is the row-wise data organization also known as n-ary
storage model (NSM) [36], which equals to the natural order where records are stored
one after another. The counterpart to the row-wise organization is the columnar
data organization also known as decomposition storage model (DSM) [36], which
splits records into their individual attributes and the values of the same attribute
are stored sequentially. While the NSM is a good choice for OLTP workloads, which
access a high amount of attributes per query, the DSM has performance advantages
for OLAP workloads that scan over a small amount of attributes, because the mem-
ory respectively disk bandwidth and caches are better utilized [23, 58]. Moreover,
the columnar data organization exhibits better compression characteristics [7], but
faces additional costs for tuple reconstruction. To reconstruct records in a columnar
organized storage, all columns are either ordered by the sequential object identi-
fier (OID) or each column value is associated with its OID. While the first version
(positional addressing scheme) allows a fast tuple reconstruction, the second ver-
sion (BATs) allows each column to be ordered differently to, for instance, speed up
point queries using a binary search. Another way of speeding up point or range
queries are auxiliary data structures like indexes, which have been exhaustively re-
searched [79, 88, 116]. A modification of the NSM respectively the DSM for sparse
data as it occurs in database systems that support schema flexibility are interpreted
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records [17] or columns [8]. This modification adds memory and interpretation over-
head, which amortizes at a certain sparseness ratio.

The first approach for a hybrid storage model is PAX [10], which organizes a
row-wise storage like a columnar storage at the page-level. Here, physical memory
pages are split into mini pages and each mini page sequentially stores the values of
a specific attribute. The approach optimizes the cache usage, because values of the
same attribute are not scattered across the entire memory page. Another hybrid
approach are column groups respectively data morphing [55], which store attribute
sets sequentially in memory that are often accessed in combination. Hence, column
groups combine the advantages of the row-wise and the columnar storage model.
For instance, the DBMS HYRISE [48] uses a column group-based storage model.
Our 1-Storage approach also employs a hybrid storage model that allows row-wise
and columnar organized data including their interpreted versions to coexist. Here,
each attribute or sets of attributes are stored in one or more formats. Moreover,
due to the implicit partitioning of the living partitions architecture 1-Storage is
embedded into, each partition is able to use a different storage format and auxiliary
data structures (e.g., indexes) mix that can be adapted at runtime.

Another issue is the tight coupling of physical storage model and query process-
ing model to maximize the performance of operators. For instance, the HyPer
DBMS [73] allows to either use a row-wise or a columnar storage model per relation,
which also requires the implementation of two query processing models respectively
operator code templates. An alternative approach is taken by fractured mirrors [114]
that store tables redundantly in both basic storage models, which once again requires
a row-oriented query processing engine for OLTP queries and a column-oriented en-
gine for OLAP workloads (e.g., employed by Oracle). Our 1-Storage circumvents this
issue by decoupling operators from the physical storage layout, which adds costs for
the indirection layer, but allows full flexibility in the choice and mixture of storage
formats. Nevertheless, we will investigate multiple ways of designing this indirection
layer and point out how to get almost rid of the additional indirection costs.

5.1.2 Design Advisors

Design advisors either use a priori knowledge of the workload or use recordings of
the recent workload to find the best performing physical storage layout. To actually
apply the storage format modifications, the changes are either made in times of a
low system load or are executed as background tasks, which is problematic in the
presence of concurrent updates. In contrast, our Storage Adaptivity approach is able
to incrementally adapt the physical storage layout on a fine-grained level at runtime
even in situations of a peak system load where physical storage format adaptations
are the only way to handle such critical situations without adding more hardware
resources. Since auxiliary data structures like indexes dramatically improve the
performance of highly selective point or range queries and joins, index selection is
the main focus of design advisors. Moreover, design advisors consider materialized
views and partitioning as additional optimization goals that are out of scope for our
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Storage Adaptivity approach, because materialized views are logical access paths and
partitioning is subject of Data Placement Adaptivity. Hence, we will focus on related
work that addresses solely the index selection problem.

Index selection is an NP-complete problem [35]. It is not feasible to create in-
dexes on all possible column combinations, because of the immense storage and
maintenance overhead, which occurs due to updates. Hence, the benefit as well as
the costs for maintaining an index need to be evaluated for the current workload.
DBDSGN [42] was the first actual design advisor tool build for System R. This tool
uses a so-called what-if interface [33] to insinuate the query optimizer hypotheti-
cal index configurations. With the help of the what-if interface the design advisor
is able to obtain the estimated costs of queries for different index configurations.
Nevertheless, since optimizer calls are costly, the number of index configurations
the query costs are evaluated for needs to be reduced. One approach are atomic
configurations, which consider only one index per table. Additional ways for reduc-
ing the number of what-if calls are pruning approaches. For instance, columns that
are not referenced by a query do not need to be considered for an index. All of
the aforementioned techniques are the foundation for modern design advisor tools.
Other index selection-related design advisor techniques consider multi-column in-
dexes [32], design refinement [30] or relaxation [29], and a tighter integration into
the query optimizer [139].

Our Storage Adaptivity-Specific ECL that triggers adaptations in the 1-Storage
faces a similar index selection problem. However, the usage of the discussed tech-
niques are not suitable for our purposes because of two reasons. First, to do runtime
adaptations, the discussed heavyweight approaches are too costly and thus, we use
lightweight decision models that are relaxing the goal of finding the optimal so-
lution. Second, the Living Partition architecture uses two completely separated
optimizers. (1) A global optimizer that generates macro query execution plans (cf.,
Section 3.4.3) and (2) fast living partition-local optimizers that generate micro query
execution plans (cf., Section 5.2.5) based on the actual physical storage layout. Due
to this decomposition, none of the optimizers knows the complete query execution
plan, which results in a much smaller search space per optimizer.

5.1.3 Adaptive Storages

In contrast to design advisors, adaptive storages autonomously do an online physical
storage layout adaptation. The actual adaptation either happens as a side product
of the query processing or is incrementally done in background. We split the related
work in two major parts. (1) Adaptive indexing approaches and (2) adaptive row-
column stores for hybrid transaction-analytical processing (HTAP) workloads.

The first adaptive indexing approach was proposed for the columnar storage model
that is organized in binary association tables (BAT) as it is done in MonetDB [21, 23]
and is known as database cracking [63, 74]. The idea of database cracking is to
incrementally sort and index previously unsorted columns in a query-driven fashion.
Every time a query executes a range scan over a column, the range scan predicates are
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Table 5.1: Comparison of adaptive storage systems.

Feature Cracking H2O Tiles 1-Storage

Adaptive Indexes X X
Partial Indexes X X
Adaptive NSM ◦ ◦ X
Adaptive DSM ◦ X X X

Extensible Storage Modules X
Flexible Schema X

Unified Storage Interface X X
Incremental Adaptation X X X
Layout Inhomogeneity X X

Redundancy Beyond Indexes X X

used as partitioning predicates and the partitioning of the column is getting more and
more fine-grained. Additionally, a cracker index that keeps track of the partitioning
is created and maintained. The cracker index starts as a partial index that converges
against a full index. A variation of the basic database cracking approach is sideways
cracking [64], which propagates the partitioning of the cracker column to a set of
additional columns to speed up the tuple reconstruction process. Another variation is
stochastic cracking [54]. Because the indexing quality of database cracking depends
on the value ranges that are queried, stochastic cracking adds partially arbitrary
decisions to the cracking process to make the indexing more robust to outliers.

The counterpart of database cracking for the row-wise storage model is adaptive
merging [47]. Here, the starting point is a partitioned B-Tree [46], which is a set
of partitions that are sorted internally, but contain overlapping keys. Every time
a query searches for specific keys, all partitions need to be scanned and the found
key-value pairs are inserted into a new initially clean partition that converges against
a full index. Since database cracking and adaptive merging share the use of parti-
tions, but split respectively merge them, hybrid approaches [65] were researched in
the context of the columnar DBMS MonetDB. The hybrid approaches turned out
to exhibit different characteristics in terms of initial overhead for the first query,
convergence speed, and overhead.

Database cracking, adaptive merging, and hybrid versions are promising direc-
tions for building an adaptive storage. However, besides being limited to the index
selection problem only, all methods face a variety of drawbacks. For instance, they
do not consider the trade-off between maintenance costs and query performance
benefit, the indexing process can not be incrementally reversed, and the first query
faces a high initial overhead. In contrast, our 1-Storage approach overcomes those
drawbacks and is not solely limited to indexing as summarized in Table 5.1.
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The next category of adaptive storage systems are hybrid stores that switch be-
tween a row-wise and columnar data organization respectively mixes of both at run-
time to speed up OLAP or even hybrid transaction-analytical workloads (HTAP).
The first system proposed was H2O [11] that aims at analytical workloads. The H2O
storage model supports the traditional row-wise format, the columnar format, as well
as column groups and decides solely based on the workload which physical storage
format is used for serving the query. Since H2O aims at read-intensive workloads,
the system keeps multiple data layout versions, which are built as a side product
of the query processing to avoid additional data reads for the adaptation process.
While pure row-wise or columnar representations are fixed in their configuration,
H2O uses column groups to cluster columns that are accessed often in combination
similar to HYRISE. Moreover, the storage manager uses code templates to generate
and compile storage format-specific operators on-the-fly.

Another approach is taken by the Peloton DBMS that is based on tiles [13] and
aims at HTAP workloads. Peloton horizontally partitions relations into tile groups,
which are independently vertically split into tiles. Hence, the system is basically a
column group-based storage that is horizontally partitioned. In the living partitions-
based environment 1-Storage is supposed to operate in, horizontal partitioning is
already given. The actual adaptation process happens per tile group and is executed
in background. Moreover, Peloton uses logical tiles as indirection layer to eliminate
the need for multiple query processing engines.

In Table 5.1, we give a comparison of our 1-Storage approach to database cracking,
H2O, and tiles. The first main difference is that none of the mentioned approaches
supports adaptive indexing and an adaptive hybrid storage in combination unlike
1-Storage. Moreover, none of the approaches considers a flexible schema or exten-
sible storage modules. Another observation is that neither H2O nor the tiles-based
approach can deal with attributes of a variable length, which is one of the strengths
of a row store that does not need any auxiliary data structures such a dictionaries
to cope with this issue. Hence, 1-Storage is a holistic approach that is far more than
just a combination of adaptive indexing and an adaptive hybrid store. It is able to
bring the row, column, and index-oriented worlds together, while being incremen-
tally adaptive, schema flexible, and extensible.

5.2 1-Storage

In this section, we present the concepts of our 1-Storage approach, which is instanti-
ated for each living partition and actually brings a partition to life due to its highly
adaptive nature. The 1-Storage aims at adapting the physical storage layout at run-
time to specialize the partition for the current data and workload characteristics the
living partition is facing with the high-level goal of saving energy by increasing the
performance per power unit. The Storage ECL, which is also instantiated per living
partition, actually controls the adaptation process and gets coordinated by the other
ECLs on the upper hierarchy levels, because a full relation is horizontally split into
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many living partitions that should not be adapted simultaneously to obey the query
latency limit. Hence, the implicit partitioning of the living partitions architecture is
the key enabler for a fine-grained incremental adaptation.
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Figure 5.2: 1-Storage component interaction overview.

Figure 5.2 depicts an overview of the 1-Storage architecture including the individ-
ual components and their interaction. The objects that are triggering a data access
are Micro Operators, which are part of a Dataflow respectively Macro Query Execu-
tion Plan (cf., Section 3.4.3). A micro operator requests or manipulates data using a
set of predefined logical access primitives and the corresponding parameters. Based
on the request, the µQEP Compiler uses existing data statistics and current storage
layout information to generate a Micro Query Execution Plan (µQEP), which is
cached as long as the physical storage layout was not changed and frequent requests
of this type arrive. Afterwards, the µQEP is executed by the µQEP Execution En-
gine that operates on the Cross-World Store, which actually contains the data. Fi-
nally, the requested data is handed over to the micro operator via the Data Gateway
and data as well as execution statistics are fed back to the monitoring component.
The Storage Layout Controller periodically checks those statistics and determines
whether a storage layout adaptation is necessary or not. If an adaptation is required
this Adaptation Pressure is reported to the storage adaptivity-specific ECL, which
triggers the actual adaptation at a suitable point in time. In the following, we will
discuss the individual components of the 1-Storage except for the storage layout
controller, which is mostly a part of the storage ECL.
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5.2.1 Logical Access Primitives

The 1-Storage offers a small but powerful set of logical access primitives that define
in which data the micro operator is interested in respectively how data should be
manipulated. In Table 5.2, we list the five access primitives that are powerful enough
to process relation queries. Note that some of the access primitives are bound to spe-
cific conditions regarding the partitioning of the relation respectively the execution
order on the individual partitions. In the following, we will discuss the individual
logical access primitives in detail including their parameters and purpose.

Table 5.2: Available logical access primitives in 1-Storage.

Logical Access
Primitive

Explicit
Parti-
tioning

Partition-
Wise

Execution

Description

Insert Insertion of a record
UnorderedScan Scan over all partitions in no

explicit order
Lookup Specialization of the

UnorderedScan for lookups
ConditionalInsert X Insertion or update of a

specific record
OrderedScan X X Scan over all partitions

ordered by an attribute set

Insert. This logical access primitive inserts a set of records into the 1-Storage. The
parameters are interpreted records (or dynamic records), because 1-Storage is
designed to fully support schema flexibility. Each relation maintains a global
vector of known attributes including the respective name and data type and
a dynamic record includes information about the attributes that are actually
defined by the record. Hence, 1-Storage also knows a special UNDEFINED value
besides the traditional NULL value to deal with a flexible schema.

UnorderedScan. The unordered version of the scan is the most fundamental access
primitive for reading data. Unordered scans are broad-casted to all living
partitions of the target relation and are executable in parallel. The parameters
of this logical access primitive are: (1) the set of attributes the micro operator
is interested in (desired attributes), (2) the set of attributes that is needed for
validating the scan predicate (target attributes), and (3) the scan predicate
that includes the static data bindings. All qualifying tuples are handed over
to the micro operator for further processing without any particular order.

Lookup. The lookup access primitive is a specialized version of the Unordered-

Scan for point data accesses. Instead of a generic predicate, the lookup
uses only a list of values and the target attributes need to be equal to (e.g.,
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target attribute1 = value1 AND target attribute2 = value2). Due to this spe-
cialization, the µQEP compilation is faster, messages get smaller, and messages
do not need to be broad-casted in case of a compatible partitioning scheme.
This access primitive is used e.g., for point queries or equi-joins.

ConditionalInsert. The conditional insert is some kind of an upsert that is pri-
marily used for grouped aggregations also known as reduce function. There-
fore, this logical access primitive needs a set of keys and a set of values as pa-
rameters, which are encoded as records within the message. 1-Storage checks
whether a record with the same key combination is already present. If such
a record is not found the keys and values are inserted as records, otherwise
the micro operator receives the found values and calculates the new values
according to its aggregation function and updates the old values. This access
primitive is derived from the Lookup and hence, from the UnroderedScan. The
key attributes are the target attributes and the value attributes are the desired
attributes. To ensure that the same key combinations end up in the same liv-
ing partition, the key attributes need to be compatible with the partitioning
scheme of the relation as a prerequisite.

OrderedScan The ordered scan is another modification of the unordered scan, which
takes the same parameters and an additional set of ordering attributes, but
guarantees that a micro operator sees records in the requested order. Hence,
the partitioning scheme of the relation needs to be compatible with the ordering
attributes and the micro operator is executed serially for each living partition.
This access primitive is necessary for order by clauses.

To summarize, the external interface of our 1-Storage offers five logical access
primitives. One access primitive is the insert to add records to the store and the other
four fetch data for micro operators. The only logical access primitive that allows
the manipulation of existing data is the ConditionalInsert. Nevertheless, the
conditional insert does in-place updates and is thus not ensuring snapshot isolation
for concurrent accesses (cf., Section 3.4.5), because it is meant for intermediate
results that are modified in a single transactional context. To actually manipulate
data in a safe way, the Data Gateway offers delete and update methods. For instance,
the records that need to be deleted or updated are fetched via the UnorderedScan

or the Lookup and the micro operator is able to invoke the respective methods of
the data gateway to delete or update specific records.

5.2.2 Data Gateway

The Data Gateway is a critical component of our 1-Storage architecture, because
data that is stored in a changing physical format needs to be passed to Micro Oper-
ators in a unified way. Hence, the data gateway is an indirection layer that adds an
additional overhead in terms of data access costs. In the remainder of this section,
we will discuss the several options for designing this indirection layer and evaluate
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the respective overhead for multiple storage layouts. Moreover, we will point out
how most of the induced overhead can be eliminated with the help of just-in-time
compilation approaches.

Algorithm 4 Indirect access methods in the context of a micro operator.

1: function MicroOperator::execute(dataGateway)
2: for each recordHandle/offset in batch do
3: ...
4: // Virtual method call
5: Type *value← dataGateway.getAccessPath(col).getValue(recordHandle)
6: ...
7: // Data Pointer buffer
8: Type *value← dataGateway.buffer[col][offset]
9: ...

10: end for
11: end function

Our 1-Storage processes parametrized logical access primitives and passes data
batches to the Execute method of the requesting micro operator, which does the
actual data processing. Algorithm 4 shows schematically how this method internally
operates. The Execute method loops over the data batch (line 2–10), which contains
record handles (the absolute object identifier) or sequential offsets within the batch
based on the indirect access method. The first indirect access method we consider
works via virtual function calls (line 5). This method fetches the AccessPath object
(e.g., a row or column store) that contains a respective attribute and calls its virtual
getValue method using the record handle as parameter to fetch the actual pointer to
the value of the attribute. 1-Storage uses data pointers, because it mostly operates
on untyped data and it is up to the operator to interpret the binary data. While this
indirect access method does the actual indirect via virtual function calls, our second
option uses data pointer buffers (line 8) to do the indirection. In the data pointer
buffer-based approach, 1-Storage reconstructs the desired attributes of a record in a
buffer, which is used by the micro operator to fetch the data pointers using the offset
within the batch. The size of the data buffer is sizebatch·|desired attributes|·sizepointer
and it is organized in a column-first memory layout.

We conducted a series of experiments to evaluate the virtual function call-based
and the data pointer buffer-based indirect access method for different physical stor-
age layouts. In the following, we will refer to both methods as virtual and buffer
method. For our experimental setup we use five different non-hybrid storage lay-
outs. A column store that has a high scan performance (Column), a row store that
uses a static schema (Row Static), and a row store that uses a flexible schema (Row
Dynamic). Both row store variants either contain a single attribute (Small) or ad-
ditional 8 dummy attributes od the same size (Big). To put the data gateway under
stress, our workload does an aggregation (sum) over a single attribute.
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Figure 5.3: Overhead of indirect access methods for different storage formats
(8 Bytes fields).

In Figure 5.3, we visualized the measured overhead for the five physical storage
layouts and the respective indirect access method relative to a direct access as 0 %
overhead baseline. Besides the virtual access method, we also added a modification
where the class of the AccessPath object is known before hand, which results in
a static function call (Static) and a modification where the GetValue method was
additionally inlined by the compiler (Inline). Both modified access methods can not
be used as indirect access method, but help to understand the source of the overhead
induced by the virtual method. The data size of the raw data was set to 1 GB, which
is enough to be memory-bound, and the size of the data fields is 8 Bytes. As the
overhead measurements show, the column store experiences the most overhead for
the virtual as well as the buffer method, because of its superior scan performance
and thus, the relative indirection overhead amounts to a high fraction of the overall
execution time. For the slower row store versions, which are not designed for such a
workload, we observe much less overhead of the indirect data access. A comparison
of the results for the virtual and for the buffer method show that the buffer method
adds less than half of the overhead the virtual method does in the column store
case. In the row store cases, we see the contrary behavior, but with a much smaller
relative difference.

To understand the high overhead of the virtual method, we focus on the column
store case. The measurements for the static function call adds only about half of
the overhead compared to the virtual function call and the inlined version adds no
overhead at all, because the same code is generated as for the direct access. This
leads to the conclusion that the virtual function call is responsible for half of the
overhead and the remaining overhead accounts for optimizations that could not be
made by the compiler such as loop vectorization. Moreover, non-inlined function
calls add additional instructions for the parameter passing and the general function
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preamble (e.g., saving the stack pointer). In contrast, operator code that works on
data buffers can be vectorized and induces no costs for high amount of function calls.
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Figure 5.4: Overhead of indirect access methods for different storage formats
(1 Byte fields).

In Figure 5.4, we repeated the same experiment with a data field size of 1 Byte,
which effectively leads to less cache references per time unit and thus, even more
pressure is put on the indirection layer. The overall raw data size is still 1 GB. As
the measurements show, the overhead of the virtual method increases by a factor of
3, while the data buffer method overhead only doubles compared to a bigger data
field size. Moreover, the static method only saves a quarter of the virtual method
overhead. Regarding the row store data layouts, we see a decrease of the overhead
compared to the previous experiment.
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In Figure 5.5, we investigated the dependency of the raw data size on the overhead
of the indirect access methods for the column store case with 8 Bytes data fields.
As the measurements show, the relative overhead changes while the data fits into
the caches of the CPU and is getting constant in the memory-bound case. This
fluctuations happen, because the absolute performance of the column store changes
depending on the cache level it fits into. We also observe that the buffer method
always performs better compared to the virtual method.
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Figure 5.6: Overhead of indirect access for different buffer sizes and field sizes.

Since the buffer method turned out to be the best choice in the previous exper-
iments, we investigate the data buffer size parameter of this method in our last
experiment. Once again, we use a column store with 1 GB raw data size and con-
ducted the measurements for 1, 2, 4, and 8 Bytes data fields. In Figure 5.6, we
visualized the respective results, which show that a buffer of 2048 elements gives us
the least overhead. Nevertheless, this experiment only covers the case that a single
column is scanned. In practice, a data buffer of 512 elements turned out to be the
best choice when scanning over multiple columns.

To Summarize, our investigation of the virtual and buffer method revealed that
the buffer method has the least overhead in a wide majority of data and data layout
scenarios. However, the buffer method still adds a significant overhead, which is
the price that needs to be paid to have a fully adaptive storage. In the future
work, we want to explore how just-in-time compilation-based approaches [11, 56] can
be applied for the data gateway, because our experiments showed that additional
compiler knowledge that is only available at runtime can fully eliminate the overhead.
Nevertheless, just-in-time compilation adds costs for the compilation process itself
and thus, a generic indirection layer usually reduces the total costs for small ad-hoc
queries compared to a compilation-based approach. Moreover, we want to investigate
how the data gateway can be extended to allow operators to directly operate on
compressed or encrypted storage layouts.
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5.2.3 Cross-World Store

In this section, we present the heart of our 1-Storage approach, which is the Cross-
World Store. The cross-world store is able to store records in a wide variety of
physical storage layouts and supports features like redundancy (beyond indexes),
schema flexibility, and extensibility using custom storage modules. We will discuss
the extensibility feature in Section 5.2.4 in detail and present a set of exemplary stor-
age module implementations and focus on the overall concept of the cross-world store
in this section. Another core feature of the cross-world store is its ability to adapt
its physical storage layout at runtime, which will be the subject of Section 5.3.2.
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Figure 5.7: Overview of the Cross-World Store.

Figure 5.7 gives an overview of the internal organization of the cross-world store.
As shown, the cross-world store knows three worlds an access path is supposed to
operate in. An access path is an instance of a storage module that physically stores
and organizes the values of a set of attributes, which we call partial records. The
difference between the individual worlds is the addressing mode that they are using.
In the following, we will discuss the three worlds in detail.

Direct-Addressable World. In this world, all partial records of a full record
placed in the direct-addressable world have the same address similar to a posi-
tional addressed column store. Hence, the address is either equal to the insert
order or the ordering of a single access path of this world and the different
access paths cannot be ordered individually. The direct-addressable world is
suitable for access paths that need no indirection for finding a partial record
and preserve their order such as basic column stores and column groups that do
not contain attributes of a variable length. Furthermore, the direct-addressable
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world is the home world of the cross-world store, because it is heavily involved
in the record reconstruction process.

Indirect-Addressable World. The indirect-addressable world contains those ac-
cess paths that need an indirection for being reconstructed. This reconstruc-
tion happens with the help of automatically generated Linkage Attributes,
which are stored in the direct-addressable world and perform the actual indi-
rection. Moreover, access paths of the indirect-addressable world can contain
implicit backlink attributes to link partial records to their respective direct
address of the direct-addressable world. However, the presence of the back-
link attribute in an access path of this world depends on the workload and
the choices made by the Storage Layout Controller. The indirect-addressable
world is suitable for access paths like static or dynamic row stores that do
not preserve a particular order of the partial records or contain attributes of
a variable length, or binary association tables (BATs). Due to the flexibility
of the indirect-addressable world, it contains a special catch-all access path,
which is needed for schema flexibility and stores values of attributes that were
recently added or are not mapped to any other access paths.

Value-Addressable World. In this world, a partial record is addressed using a
specific value or value ranges. Hence, the value-addressable world is suitable
for storing primary or secondary indexes, which are auxiliary data structures
that speed up the selection of records. If an index stores a partial record
whose attributes are not contained in any other access path it is a primary
index. In contrast, if the index contains redundant attributes or no attributes
at all it is a secondary index. Additionally, indexes can contain the direct
address of a record to link the partial record to the direct-addressable home
world, which is the same special backlink attribute as it is employed by the
indirect-addressable world.

To summarize, the cross-world store uses generic access paths that are placed
in one of the three aforementioned worlds depending on their characteristics and
addressing mode. The cross-world store is responsible for maintaining auxiliary
attributes (i.e., linkage and backlink attributes) to enable the reconstruction of par-
tial records that exist in the different worlds. Nevertheless, since this reconstruction
across multiple world imposes additional costs for the indirection, the Storage Layout
Controller tries to cluster attributes that are accessed in combination in the same
world or even the same access path. We will give examples for access paths and
storage layout configurations in the following sections of this chapter. Moreover, the
cross-world store maintains a special catch-all access path in the indirect-addressable
world as a reception center for recently added attributes in case of a flexible schema.
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5.2.4 Storage Modules

The cross-world store is not limited to a specific set of access path implementations.
Instead, it uses Storage Modules that implement a generic interface, which enables
the cross-world store to be extended by any kind of access path that fits into one
of our three worlds. Each storage module exposes a set of properties to define for
which scenarios it is applicable and a storage module is additionally benchmarked
by the 1-Storage to obtain its performance characteristics (cf., Section 5.3.1) and
to feed the internal cost model of the Storage Layout Controller (cf., Section 5.3.2),
which does the actual physical storage layout adaptation.
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Figure 5.8: Interfaces and class hierarchy of storage modules.

A storage module consists of a set of classes that implement or extend the inter-
faces respectively abstract classes of the cross-world store. In Figure 5.8, we visual-
ized the simplified class hierarchy of the cross-world store and an exemplary storage
module in the UML notation. As shown, the interfaces comprises the AccessPath-

Factory, the AccessPath, and the AccessPathScanState. In the following, we will
describe the three parts of the interface in more detail.

AccessPathFactory. This interface follows the factory software design pattern and
gives 1-Storage information about the implemented access path and allows
to create instances of it. An AccessPathFactory needs to implement two
major methods, which is the getProperty method and the createAccessPath
method. The getProperty method gives information about the configuration
space of the access path and tells 1-Storage to which world it belongs to. In
Table 5.3, we enumerate all of the properties and their valid values that are
queried via this method. The createAccessPath method returns an instance
of the implemented access path and takes a set of parameters that define how
this access path object is configured,e.g., which attributes it contains.
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Table 5.3: Properties of an access path.

Property Possible
Values

Description

Addressing Mode DIRECT,
INDIRECT,

VALUE

addressing mode used to address
partial records in the access path

Attribute Count 0 .. *, ANY,
DYNAMIC

Number of attributes the access path
can contain

Key Count 0 .. * Number of attributes the access path
can index

NULL Values FALSE, TRUE NULL values supported
UNDEFINED Values FALSE, TRUE UNDEFINED values supported
Variable Length

Attributes

FALSE, TRUE Attributes of a variable length are
supported

AccessPath. This abstract class is derived to implement the actual access path that
contains the partial records respectively implements the additional indexing
data structure. The object contains the configuration parameters as attributes
and the three core methods insert, scan, and link. The insert method
takes a dynamic record and converts it into its internal storage format. The
scan method scans sequentially over the data. In case of a directly addressed
storage module, the scan order needs to be equal to the address order. In any
other cases the scan order is arbitrary. The link method receives a batch of
addresses and mainly joins a set of requested attributes to this batch. While
the insert method is stateless, the scan and link methods require an access
path-specific state that is obtained via the beginScan method, which returns
an AccessPathScanState object.

AccessPathScanState. The AccessPathScanState is an auxiliary object, which
keeps the state of a scan or link operation of an AccessPath. This state
stores information about the attributes the respective operation is interested
in and whether filters on some attributes should be applied on the access path-
level. Moreover, the AccessPathScanState is parametrized to know where
the result of the operation should be written to in the data buffers of the
Data Gateway. Besides this information, the internal position within a scan

operation is stored here, because a scan happens in batches and thus, the scan
method is likely to be called multiple times for a single scan operation. Note
that index scans use exactly the same interface.

To summarize, our 1-Storage uses a generic interface for storage modules that
implement the actual access paths. Hence, a physical storage layout is a composi-
tion of access path instances and their respective configurations. To actually query
or manipulate partial records that are stored in the individual access paths, the
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µQEP Execution Engine uses the internal access primitives insert, scan, and link.
Moreover, a storage module supplies the Storage Layout Controller with additional
information about the feature set that is implemented by its access path. This meta
knowledge is considered for the storage layout adaptation process.

Table 5.4: List of exemplary storage modules used for evaluation. The highlighted
properties qualify the dynamic row store for the catch-all access path

Storage
Module

Addr.
Mode

Attr.
Count

Key
Count

NULL
Values

UNDEF.
Values

Var.
Attr.

Row Store
Static

INDIRECT ANY 0 X X X

Row Store
Dynamic

INDIRECT DYNAMIC 0 X X X

Column
Group Store

DIRECT ANY 0 X X

Single Column
Store

DIRECT 1 0

RB-Tree VALUE 0 1 X X X

For further examples and evaluations of our 1-Storage, we use a set of storage
modules that covers a wide range of properties and performance characteristics.
Table 5.4 lists those five storage modules as well as their properties. We use two row
store implementations that are designed to reside in the indirect-addressable world.
Both row store implementations organize their partial records in linked pages and
the pointer to a partial record is used as address. While the static version of the row
store uses a fixed record layout, the dynamic version stores data in dynamic records
that contain additional schema information. Because of its properties (highlighted
in the table), the dynamic row store is selected by 1-Storage as the catch-all access
path. For the direct-addressable world, we use a column group and a column storage
module. While the column group implementation supports multiple attributes as
well as NULL and UNDEFINED values, the column store implementation is limited to a
single attribute and defined non-NULL values. Both implementations lack support for
attributes of a variable size, which is a consequence of the direct addressing mode.
Finally, we use an RB-Tree [15] implementation for the value-addressable world,
which supports a single key attribute and no additional attributes. Hence, this data
structure plays the role of a secondary index.

5.2.5 Micro QEP Compiler and Execution Engine

In this section, we discuss how micro query execution plans (µQEP) are compiled and
executed. In its essence, a µQEP is an ordered list of parametrized insert, scan,
and link operations that are executed on the respective AccessPath objects. As
discussed in Section 5.2.1, the 1-Storage knows two fundamental logical access prim-
itives which are the Insert and UnorderedScan. In the following, we will describe
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how the µQEPs for both logical access primitives are compiled and executed using
the exemplary physical storage layout visualized in Figure 5.9. This storage layout
consists of three single column store instance, each containing one attribute that can
not be NULL or UNDEFINED. One of those attributes is the MVCC attribute, which is
a special system attribute that is used to determine the visibility of a record. More-
over, the direct-addressable world contains two internal linkage attributes, which are
stored in a column group access path and refer to a static row store (Name attribute
of variable length) respectively to the catch-all access path (containing the sparse
Phone attribute), which uses the dynamic row store as implementation. The value-
addressable world contains two indexes and one of them is the RB-Tree access path
that is indexed on the Age attribute.
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Figure 5.9: Exemplary physical storage layout and micro query execution plan.

Insert. The goal of the Insert access primitive is to store a full record in the
cross-world store. Hence, the task of the µQEP is to split the full record into
multiple partial records, which are inserted into the individual access paths. There
are four specialties that need to be considered during this process: (1) attributes
can be stored redundantly in multiple access paths, (2) access paths in the indirect-
addressable world need to write the partial record address back to the corresponding
access path of their linkage attribute (3) attributes can not be mapped to any specific
access path and should thus be stored in the catch-all access path, and (4) the local
transaction manager needs to keep track of the written MVCC data. Because this
is a trivial process of decomposing the record into partial records, we will focus on
the more sophisticated UnorderedScan scenario.

UnorderedScan. While the Insert access primitive splits full records into partial
records, the UnorderedScan and its specialized versions are responsible for recon-
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structing a subset of the full record again and additionally to find the records that
qualify for the given predicate. To make this process tangible, we start with an
example where the target attribute is Age and the desired attributes are Name and
Phone. A possible µQEP for this parametrization of the UnorderedScan is shown in
Figure 5.9. In this example, the µQEP comprises five scan respectively link oper-
ations on the access paths. The first operation (1) is a scan on the RB-Tree, which
parametrizes the AccessPathScanState of the RB-Tree to filter the Age attribute
for the given predicate and return the record handles, which are equal to the address
used in the direct-addressable world. Since this operation filters the full record set,
all of the following operations need to be link operations. Hence, the second opera-
tion (2) executes a link on the column store that contains the MVCC information.
The corresponding scan state is configured to link the MVCC attribute the record
handles. The successive operation (3) does the same, but links the system attributes
needed for the linkage to the access paths in the indirect-addressable world. Finally,
link operations 4 and 5 (4 and 5) link the Name respectively Phone attribute of the
respective access paths. However, these operations do not use the record handles.
Instead, they use the addresses obtained from the linkage attributes in the previous
step.
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Figure 5.10: Exemplary micro QEP execution and buffer mappings.

Figure 5.10 visualizes the µQEP from the perspective of the µQEP Execution
Engine, which is responsible for filling the buffers of the Data Gateway that are
passed in batches to the Micro Operator. Note that µQEP are executed single-
threaded, because it runs within a single LPV. To execute this µQEP, the execution
engine sets up six buffers each of the same batch size. The first operation (1) is
configured to fill the record handle buffer, which is always present and contains the
direct addresses of the records. Operation 2 and 3 (2 and 3) are parametrized to
use this record handle buffer for linking the respective attributes, which are written
back to the respective buffers (i.e., MVCC, Linkage 1, and Linkage 2 buffer). While
the MVCC buffer contains pointers to the respective MVCC values, both linkage
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buffers contain addresses to partial records in the indirect-addressable world. Thus,
operation 4 and 5 (4 and 5) are configured to link against those indirect addresses
and store the respective attribute value pointers in the Name and Phone buffer.
Afterwards, the execution engine validates the MVCC attributes in the transactional
context of the requesting micro operator and marks invisible records followed by a
condensation step of the attribute buffers that are effectively passed to the micro
operator (i.e., Name and Phone). If the condensation freed a high fraction of free space
in the buffer batch, the execution engine repeats the execution plan. Otherwise, the
buffer batch is passed to the micro operator. Since data is passed in batches via
the data gateway, access path operations need to preserve their internal state like
an iterator. As soon as the last batch is processed by the micro operator, the scan
states of the access path operation are freed and execution statistics are send to the
monitoring component of the local 1-Storage.

As the example demonstrates, the compilation of a µQEP for an UnorderedScan

is not trivial, but not as complex as the compilation of a traditional full query
execution plan that needs to consider multiple physical operator implementations
(e.g., for a join). However, both query compilers share a lot of similarities, but also
exhibit differences. For instance, the µQEP compiler needs to be aware of linkage
columns to link access paths of different worlds with each other. To generalize the
µQEP compilation, we use the following pattern:

(1) Gather target attribute statistics regarding their selectivity and decide on a pred-
icate evaluation order. Additionally, mark target attributes that are not selective
enough to be evaluated via an index.

(2) Search the storage layout for indexes on target attributes in the determined
evaluation order and add a scan operation to the plan for the first index found.
All following indexes add a link operation. If an index contains additional
attributes that are needed for the request, add them to the operation.

(3) Search the direct-addressable world and afterwards the indirect-addressable world
for remaining target attributes and add a scan operation if the plan is empty or
a link operation if not.

(4) Search the direct-addressable world and afterwards the indirect-addressable world
for remaining desired attributes and add a scan operation if the plan is empty
or a link operation if not. Prefer access paths that contain combinations of
desired attributes.

(5) Inject operations to fetch addresses of access paths in the plan residing in the
indirect-addressable world to obtain the indirect addresses from the linkage at-
tributes.

We do not claim that this compilation strategy finds the optimal plan and consider
it as a heuristics-based approach to find a good plan. Additionally, the µQEP
compiler is often limited in its freedom, because it is not allowed to build intermediate
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data structures (e.g., a hash table) and thus, the physical storage layout is usually
fixed during µQEP compilation and execution. Due to this fixed storage layout
assumption, the effective query optimization happens mainly during the storage
layout adaptation process. Moreover, the µQEP compilation is much more time-
critical, because it needs to happen for every request a 1-Storage instance receives.
Hence, 1-Storage tries to cache µQEPs whenever possible.

5.3 Storage Adaptivity-Specific Energy-Control Loop

In this section, we present details about the actual physical storage layout adaptation
process, which is mainly controlled by the Storage Adaptivity-Specific ECL that is
instantiates a Storage ECL per 1-Storage instance and thus, per Living Partition
as shown in Figure 5.11. The central component of this ECL type is the Storage
Layout Controller, which considers data and execution statistics generated by the
µQEP Execution Engine. Moreover, the storage layout controller uses properties
and performance statistics of the Storage Modules that are registered in the global
Storage Module Manager. While storage module properties are reported via the
respective interface (cf., Section 5.2.4), the performance statistics are obtained via
an initial benchmarking process. Using all of this information, the storage layout
controller periodically computes the target storage layout and checks for necessary
changes to the current storage layout. The actual decision on the time point for the
adaptation is subject of the ECLs in the upper hierarchy.
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Figure 5.11: Overview of the Storage ECL.

The remainder of this section is structured as follows. First, we will discuss the
initial storage module benchmarking procedure and present the results for our five
example storage module implementations. Afterwards, we present details on the
decision making of the storage layout controller. Finally, we show how the storage
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adaptivity-specific ECL integrates with the other ECLs in our hierarchy and thus,
at which point in time adaptations are triggered.

5.3.1 Storage Module Benchmarking

The aim of the initial storage module benchmarking process is to supply the Storage
Layout Controller with additional knowledge about the performance characteristics
of the registered Storage Modules. Those characteristics are not known beforehand,
because 1-Storage supports arbitrary storage modules that have an unknown im-
plementation. Moreover, the performance of an implementation depends on the
hardware it is running on. The benchmarking procedure mainly evaluates the per-
formance of the three access path primitives, which are the insert, scan, and link

for different data characteristics. The evaluation of the scan primitive is split into a
scan over the entire data and a highly selective scan using a filter (lookup). Besides
the performance statistics, the benchmark also captures the memory consumption
of an access path. The benchmarking process happens in two stages. In the first
stage, storage modules are evaluated using a single attribute and in the second stage,
multiple attributes are stored in the individual access paths. In the following, we
present the results of our example storage module implementations (cf., Table 5.4)
for the first stage.

Stage 1 - Single Attributes

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

0 10 20 30 40 50 60

Ti
m

e 
p

er
 In

se
rt

 [
m

s/
Tu

p
le

]

Elements [M]

Column

Column Group

Row Static

Row Dynamic

RB-Tree

Figure 5.12: Insert costs of different storage modules for element count.

In Figure 5.12, we visualized the benchmark results for the insert primitive. The
benchmark inserts 4 Bytes integers into the respective access path and captures the
insert time per tuple for a different amount of partial records already present in the
access path. As the measurements show, the Column and the Column Group store
exhibit the best insert performance followed by the static and dynamic version of
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the Row store. While those four access paths show a constant insert time for different
sizes of the access path, the insert time of the RB-Tree depends on the size and is
significantly higher, because it is a tree-based data structure.
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Figure 5.13: Scan costs per element of different storage modules for element count.

In Figure 5.13, we present the results for the same setup, but this time for the
scan primitive. The chart does not contain the RB-Tree access path, because 1-
Storage never executes full scans on access paths of the value-addressable world.
Moreover, the benchmark is designed to work on uncached data structures, because
we can not assume cache residency in real-life scenarios and thus, the worst-case
scenario is assumed. The benchmark results show a constant time per element
during the scan operations for all access path sizes. However, the performance
numbers differ per storage module. The best throughput is achieved by the Column

store, which organizes the data sequentially without additional meta information and
interpretation overhead. The worst throughput was measured for the Dynamic Row

store, which needs to scan over a larger memory region and faces a high interpretation
overhead. Nevertheless, the Dynamic Row store offers features that are not provided
by the simple Column store.

In Figure 5.14, we visualized the benchmark results for the lookup primitive,
which is equal to the scan operation with a highly selective filter. The measurements
(log scale) show that the RB-Tree performs significantly better compared to the other
storage modules, because lookups are the strength of index structures. In contrast,
all of the other access paths need to scan sequentially over their entire data.

Finally, Figure 5.15 presents the measurements for the link operation. For this
primitive, the benchmark links the containing attribute to a batch of random ad-
dresses referencing partial records contained in the access path. Once again, the
Column store exhibits the best performance, because it only computes the pointer
corresponding to the direct address. In contrast, the Column Group store needs to
additionally find the containing page and needs to access the NULL and UNDEFINED

bitmap, which is stored at the beginning of the page. Both Row store versions also
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Figure 5.14: Lookup costs of different storage modules for element count.
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Figure 5.15: Link costs of different storage modules for element count.

need to access those bitmaps, which are stored very close to the linked attribute
value resulting in a slightly better performance.

To summarize the results of the first stage, we visualized the benefits of the
example storage module implementations in Figure 5.16. The radar chart has the
dimensions for the primitives insert, scan, lookup, and link. Additionally, the
chart contains the memory size of the access paths (less is better). This compari-
son shows a clear advantage of the Column store implementation for all dimensions
except for the lookup, which is dominated by the RB-Tree that performs bad in
all other aspects. Compared to the Column store, both Row store versions exhibit a
fair performance, but provide a rich set of features such as multiple variable sized
attributes as well as support for NULL and UNDEFINED values (cf., Table 5.3). The
Column Group access path takes its place between the Column and Row store.
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Figure 5.16: Comparison of all storage modules.

Stage 2 - Multiple Attributes

While stage 1 assumes an individual access path for each attribute, stage 2 bench-
marks the benefit of grouping multiple attributes into a single access path of the
same type. Hence, the benchmark puts a growing number of N attributes into a
single access path and compares the performance to the measurements for N indi-
vidual access paths. A prerequisite for such a grouping is that the respective storage
module supports multiple attributes, which is only the case for the Column Group,
Static Row, and Dynamic Row store. For demonstration purposes, we also add the
Column store numbers to our results and calculate the reference performance by mul-
tiplying the performance of a single access path instance with N . In the following
we present the results for the insert, scan, and link primitive.

In Figure 5.17, we give the results for the insert operation. No matter how much
attributes are grouped, the isolated or the grouped access paths always contain a
total of 64 million elements. For instance, in case of two grouped attributes, the two
isolated access paths contain 32 million elements each and the grouped access path
contains 64 million elements. Hence, the data sizes are equal to get a fair comparison.
As the measurements show, all access paths benefit from a grouping, except for
the Column store, which performs bad for a high amount attributes, because each
attribute is written to a distant memory location. In contrast, all of the other access
paths take their advantage from a better cache locality. We also see that Column

Group store starts to perform worse for a high number of grouped attributes, which
is caused by an implementation detail. However, 1-Storage is able to detect this
weakness by considering the results of the initial benchmark.

In Figure 5.18 and 5.19, we visualized the results for the scan respectively link

operation. The measurements show that both operations benefit from the attribute
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Figure 5.17: Insert time savings of different storage modules depending on the
number of grouped attributes (64M elements).
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Figure 5.18: Scan time savings of different storage modules depending on the
number of grouped attributes (64M elements).

grouping until a certain saturation point is reached where the benefit either stays
the same or starts to vanish (e.g., the Dynamic Row store). Moreover, we observe
that the Column store access path gives no grouping advantage, because this feature
is not supported by the respective storage module by design.

To summarize, grouping attributes into a single access path is beneficial in
most of the cases. However, the benchmarking process also reveals that storage
modules can perform worse after a certain number of attribute groupings is reached.
Moreover, only storage modules that support more than one attribute can be used
to group attributes, which is not the case for our Column store implementation. Due
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Figure 5.19: Link time savings of different storage modules depending on the
number of grouped attributes (64M elements).

to the vast amount of configuration options and possible data as well as request
characteristics, we have to limit our benchmarks to the most important supporting
points of the huge exploration space to have a lightweight approach for physical
storage layout adaptations at runtime.

5.3.2 Storage Layout Controller

The Storage Layout Controller is the component of the Storage ECL that detects the
need for an adaptation on the living partition-level and executes the actual adaption.
To make the operation and invocation of the storage layout controller tangible, we
depicted an exemplary time line in Figure 5.20. As a starting point, each 1-Storage
instance configures the cross-world store to use the bootstrap storage layout, which
mainly consists of the catch-all access path.

8

Time

Horizon 1 Horizon 2

Adaptation 
Pressure

Adaptation 
Trigger

Figure 5.20: Time line showing the storage layout controller calls, the statistics
horizon, and actual adaptations.

The storage layout controller is periodically invoked to calculate the target storage
layout, which happens based on the data and execution statistics gathered since the
last adaptation (Horizon 1) as well as the storage module performance statistics.
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This invocation is triggered by each request to the 1-Storage that was executed
after a certain amount of time was passed since the last invocation. After the target
storage layout was computed, the storage layout controller compares it to the current
layout of the cross-world store and an Adaptation Pressure is reported to the ECL
on the higher level, which is calculated according to Formula 5.1. This ECL on the
higher level effectively decides on the point of time the actual adaptation happens
and triggers the respective storage layout controller to apply the new storage layout.
Afterwards, the statistics are reset and the new horizon starts (Horizon 2 in the
example). More, the observation horizon is also truncated periodically to evict
stale statistics. Since, the actual adaptation is triggered externally, the storage
layout controller continues to calculate target storage layouts, which may increases
or decreases the reported adaptation pressure. In the following, we will discuss
which data and execution statistics are captured, how the target storage layout is
computed, and how it is actually adapted.

Adaptation Pressure = tprocessing · |storage layout modifications| (5.1)

Data and Execution Statistics

The µQEP Execution Engine gathers statistics that are leveraged by the storage lay-
out controller to compute the target storage layout. Moreover, some of the statistics
are also used for the µQEP Compiler. The respective statistics are either captured
per 1-Storage instance or per attribute.

Table 5.5: Per 1-Storage data and execution statistics.

Statistic Reset Description

tprocessing X Time spent for processing 1-Storage requests

#request X Number of requests processed

#records Number of records inserted

faccess X Frequency of attribute access combinations (scans). in-
tersection of target and desired attributes.

In Table 5.5, we list the statistics that are gathered per 1-Storage instance. The
reset column of the table states whether the statistic is reset as soon as a new horizon
starts after the actual adaptation or not. For instance, the #records statistic is not
reseted, because it is needed to determine the number of records stored in the cross-
world store and thus, it is cumulative. In contrast, the other three statistics contain
information about the current workload, which is changing over time. For instance,
the faccess statistic keeps track of frequently queried attribute combinations within
the current observation horizon.

In Table 5.6, we enumerate the statistics that are captured per attribute. The
#Undefined and Selectivity statistics contain information about the data charac-
teristics and are thus not reset. For instance, the #Undefined statistic is used to
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Table 5.6: Per attribute and 1-Storage data and execution statistics.

Statistic Reset Description

#Undefined Number of UNDEFINED values seen

#Inserts X Number of insert calls on the containing access paths

#Scans X Number of scan calls on the containing access paths

#Lookups X Number of highly selective scan calls on the containing
access paths

#Links X Number of link calls on the containing access paths

Selectivity Selectivity of the attribute. Used for µQEP compila-
tion

determine the sparseness of the attribute, which is done by relating it to the #records
statistic. The remaining four statistics once again define the current workload and
measure which access primitives were executed on the access path(s) containing the
respective attribute. For instance, in the example of Figure 5.9, the #Lookups
statistic of the Age attribute is incremented and the #Links statistic of the MVCC,
Linkage 1, Linkage 2, Name, and Phone attributes is incremented by the number
of partial records that where linked during execution.

Target Storage Layout Computation

To compute the target storage layout, the storage layout controller uses the following
three step algorithm. Note that the cross-world store as well as the µQEP Compiler
support the redundant storage of attributes in multiple access paths. However, the
storage controller is currently limiting redundancy considerations to indexes and we
leave this topic open for future work. The optimization goal of the algorithm is to
maximize the performance of 1-Storage requests and – as a secondary target – to
reduce the memory footprint of a living partition.

Candidate Selection. In the first step, the storage layout controller loops over
all attributes and picks all storage modules that are capable of storing the
attribute. To do so, the attribute properties are compared to the properties
of all access paths (cf., Section 5.3), e.g., to check whether a storage module
supports NULL values or attributes of a variable length. Afterwards, the candi-
date list is split into candidates of the value-addressable world and candidates
of the other two worlds. Hence, the algorithm so far outputs a candidate list
for indexes and a candidate list for primary data structures per attribute.

Single-Attribute Access Path Selection. To select a suitable access path from
the two candidate lists (i.e., indexes and primary storage), the storage layout
controller calculates a score for each candidate, which is equal to the estimated
execution costs within the current observation horizon. The calculation starts
with the primary candidate list, which uses the scoring function in Formula 5.2.
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ScorePrimary(AP) = #Links · tLink(AP,#records)

+#Inserts · tInsert(AP,#records)

+#Scans · tScan(AP,#records)

+#Lookups · tLookup(AP,#records)

(5.2)

The scoring function calculates the overall costs for the respective access path
by using the frequencies of all primitives as well as the performance results of
the first stage of the initial benchmarking (cf., Section 5.3.1). Afterwards, the
algorithm selects the access path with the lowest score as the primary access
path. If all scores are zero, because no accesses happened within the observa-
tion horizon, the algorithm picks the access path that has the lowest memory
consumption considering the sparseness of the attribute. Moreover, such at-
tributes are marked as unbound. Following the primary access path selection,
the algorithm scores the indexes using the scoring function in Formula 5.3.

ScoreIndex(AP,APprimary) =

#Lookups · (tLookup(APPrimary,#records)− tLookup(AP,#records))

−#Inserts · tInsert(AP,#records)

(5.3)

This scoring function mainly addresses the trade-off between cost savings for
lookups compared to the primary access path and cost penalties for the ad-
ditional inserts. Afterwards, the algorithm chooses the access path with the
highest score greater than zero. Hence, one or no index is selected. The result
of this step is a primary access path and optionally a secondary access path for
each attribute.

Access Path Grouping. As we demonstrated in Section 5.3.1, the performance
of access paths is mostly increased when attributes that are often requested in
combination are stored within a single access path. Thus, the algorithm tries
to group attributes in a single access path in this final step, which is a non-
trivial problem. Hence, we use the greedy heuristics-based approach presented
in Algorithm 5.

First, the algorithm fetches all access paths that can contain multiple attributes
(line 1) and loops over the most frequent attribute combinations of the faccess
statistic in a descending order (line 3–11). For each attribute in the com-
bination, the algorithm temporarily elevates the score of the multi column
access paths (line 6) using the benchmarking results of the second stage (cf.,
Section 5.3.1). This elevation function works heuristically and reevaluates
Formula 5.2 again while considering the performance savings relative to the
#requests the combination is responsible for. Afterwards, those attributes of
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Algorithm 5 Grouping step of the target storage layout computation.

1: function Step3
2: APs← getMultiAttributeAPs()
3: for each combination← faccess do
4: for each attribute← combination do
5: if not fixed then
6: elevateScores(attribute.candidates, APs, combination.size)
7: end if
8: end for
9: groups← selectBestMultiAttributeAPs(combination)

10: markAttributesAsFixed(groups)
11: end for
12: groups← groupUnboundAttributes()
13: end function

the combination are grouped that have the same multi attribute access path as
the candidate with the lowest score (line 9). All attributes that were grouped
are marked as fixed (line 10) and are not considered for additional groupings
(line 5–7), which makes the grouping algorithm greedy. Finally, all unbound
attributes that selected the same multi attribute access path are grouped to
reduce the memory consumption (line 12). The result of this final step is a set
of access path configurations that defines the target storage layout.

To summarize, the algorithm employed for the computation of the target storage
layout needs to be lightweight to be applicable for online adaptation. As shown in
Figure 5.20, the algorithm is called frequently to allow an agile adaptation. Thus,
we use a greedy heuristics-based approach that employs a cost model, which is
calibrated in the initial benchmarking procedure of the storage modules.

Target Storage Layout Adaptation

To actually apply the target storage layout, a Living Partition Vitalizer (LPV) needs
to take ownership of the respective living partition whose 1-Storage instance requires
the adaptation. During the adaptation process the living partition can not process
any other requests. Nevertheless, since living partitions only contain a small fraction
of the overall data a relation contains, the adaptation process is fast and queued
requests are processed faster on the new physical storage layout. As soon as the
executing LPV possesses the respective LP, the storage layout controller compares
the target storage layout to the current storage layout and calculates the differences.
In the first stage, new access paths are created and populated and in the second stage,
outdated access paths are destroyed. Finally, the observation horizon is restarted
and the LP is either released or pending requests are immediately processed.
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5.3.3 Integration into the ECL Hierarchy

To enable an incremental adaptation of the 1-Storage instances relations are con-
sisting of, it is vital that 1-Storage instances are not adapted all at once. The same
holds for 1-Storage instances belonging to different relations. Hence, the adaptation
process of the 1-Storage instances, which are not aware of each other, needs to be
triggered by an external entity, which mediates the process. Since our ECLs are
organized hierarchically, it is a natural decision that this mediation is done by the
ECLs on the higher levels of the hierarchy that we introduced in the context of the
Resource Adaptivity-Specific ECL (cf., Section 4.4). The resource adaptivity-specific
ECL employs a single Global ECL (cf., Section 4.4.2) and a Node ECL (cf., Sec-
tion 4.4.1) per physical processor. Thus, our goal is to extend the functionality of
both ECL types to control the adaptation process of the 1-Storage instances, which
run a Storage ECL. As a result of this integration, the storage adaptivity-specific
ECL covers all ECL types running in the DBMS.

9

Global ECL
System-Level

Node ECL
CPU-Level

Storage ECL
LP-Level

Adaptation Rate

Resource 
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Figure 5.21: Integration of the storage adaptivity-specific ECL into the hierarchy.

In Figure 5.21, we depicted the hierarchy of our different ECL types and focus
on how and at which point in time storage layout adaptations are triggered. In the
following, we will discuss the responsibilities of the individual ECL types in detail.

Global ECL (System-Level). In the context of resource adaptivity, the global
ECL monitors the current average query latency and controls the aggressive-
ness of the hardware resource allocation, which is controlled by the Node ECL.
In the context of storage adaptivity, the global ECL additionally controls the
Adaptation Rate, which defines the budget for storage adaptations that are
allowed to happen within the current execution period. To control the adap-
tation rate, a similar mechanism is used as for resource adaptivity. Based on
the current trend of the average query latency, the adaptation rate is either
increased or throttled. If the query latency is increasing or even exceeds the
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maximum query latency limit, the adaptation rate is increased proportionally
to resolve this severe situation. Otherwise, the adaptation rate is throttled.
Nevertheless, to keep the system responsive an upper boundary is defined,
which we will determine in our evaluation.

Node ECL (CPU-Level). The primary intention of the Node ECL is to actually
configure the hardware resources and to control the number of active LPVs
within this context. The storage adaptivity-specific ECL extends this func-
tionality by registering the Adaptation Pressure reported by the storage ECLs.
Within each execution cycle, the Node ECL orders the requests in a descending
order and tries to obtain a portion of the available global adaptation budget
(adaptation rate). Based on the retrieved budget, an equal number of adap-
tation requests is approved and triggered. Moreover, the Node ECL considers
the amount of triggered adaptations for its hardware resource allocation.

Storage ECL (LP-Level). As we already discussed throughout this section, the
storage ECL mainly consists of the Storage Layout Controller, which checks
the current storage layout of the cross-world store for necessary adaptations
in a query-driven way and reports a certain adaptation pressure to the Node
ECL. As soon as the Node ECL approves the adaptation request, the actual
adaptation is executed.

To summarize, 1-Storage instances require a higher level entity to coordinate
the storage adaptation process to avoid a high amount of concurrent adaptations,
which hurt the responsiveness of the database system. Hence, the storage adaptivity-
specific ECL leverages and extends the functionality of the ECLs implemented by
our resource adaptivity approach. The most important knob is the global adaptation
rate, which controls the amount of storage adaptations that happen simultaneously
and thus, represents a trade-off between query responsiveness and adaptation efforts
that positively affect the future query execution performance and energy efficiency
of the DBMS.

5.4 Evaluation

In this section, we evaluate several aspects of our Storage Adaptivity approach using
an implementation of 1-Storage and the Storage Adaptivity-Specific ECL in ERIS.
Since 1-Storage needs to build a µQEP for each request, we first investigate to which
degree those additional costs can be compensated by the µQEP cache. Afterwards,
we demonstrate the adaptation behavior of our storage adaptivity approach using
a basic scenario and focus on the Adaptation Rate, which defines how many Living
Partitions are adapted within the current interval of the Global ECL. The next
series of experiments addresses the combination of Resource Adaptivity and Storage
Adaptivity in the context of energy consumption. We will demonstrate that both
Adaptivity Facilities work hand in hand and each of them contributes to the Energy
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Awareness of the database system. Finally, we will use a workload mix to investigate
the adaptation behavior of our approach in the context of a shifting workload. We
conducted all experiments on the SGI UV 3000 system, except for the energy-related
experiments that were executed on the 2-socket Haswell-EP system (cf., Table 3.1).

5.4.1 Micro QEP Cache

Each request to a 1-Storage instance requires the compilation of a µQEP, because the
physical storage layout can change during the execution of a query. This compilation
induces a significant overhead, especially for requests that have a short execution
time (e.g., a highly selective lookup). Hence, we reconsider our microbenchmark of
Figure 3.29 in Section 3.4.6, which queries and indexed key-value store with a scale
factor of 1000. In this microbenchmark, ERIS needs to process up to 200 million
requests per second on its 1-Storage instances to execute an equal number of queries
on the key-value store. Moreover, the experiment investigated the impact of message
coalescing and the locality of requests using a local (all requests of a task to the local
processor), shifted (all requests of a task to the same foreign processor), or random
(all requests of a task to a random processor) pattern.
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Figure 5.22: Impact of the micro QEP cache and coalesced message processing.

While the original experiment already used an activated µQEP cache, we will now
show the measurements without an active µQEP cache. In Figure 5.22, we visualized
the peak throughputs (all 768 cores activated) for the different optimization tech-
niques (i.e., µQEP cache and message coalescing) and the different message locality
patterns. Without any optimization technique (Raw), the performance results are
the lowest and differ only slightly among the different locality patterns. Moreover,
we measured that 50 % of the request processing time accounts to the µQEP com-
pilation. Thus, an ideal µQEP cache should double the performance numbers for
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the individual locality patterns. As the measurements for an activated µQEP cache
show, the cache can almost fully eliminate the µQEP compilation overhead.

The benefit of the message coalescing in the context of the µQEP compilation
is that only a single µQEP needs to be compiled for a batch of messages. Hence,
we achieve the best results of this optimization technique for the local and shifted
locality pattern, because all requests of a task are send to the same processor, which
leads to big message respectively request batches. For that reason, we only get a
little advantage by additionally activating the µQEP cache. However, for the random
locality pattern, message coalescing is almost impossible and thus, we get most of
the performance gains from the µQEP cache here.

5.4.2 Adaptation Rate

To enable an incremental adaptation of the physical storage layout, a 1-Storage
instance can not trigger its adaptation on its own. For instance, if all 1-Storage
instances of a relation simultaneously decide to do an adaptation, the entire query
processing grinds to a halt. Hence, the global ECL defines a certain budget of
LPs that can be adapted within the current execution interval and the Node ECLs
distribute this budget between their LPs that registered for a pending adaptation.
This budget is called the Adaptation Rate, because it defines the number of LPs that
can be adapted relative to the number of active LPVs, which can be deactivated due
to resource adaptivity. In the following, we stay with the basic but expressive key-
value store example (the same pattern occurs for joins) and present time slices of
the query execution where the storage layout of the 1-Storage instances is adapted
from the default layout (catch-all access path only) to the best fitting storage layout.
This storage layout consists of a column store access path for each attribute (i.e.,
key, value, and MVCC) and an additional secondary RB-Tree access path on the key
attribute. In the experiments, we use a scale factor of 1000 (100 M keys; 3.2 GB raw
data) and 5000 (500 M keys; 16 GB raw data).
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Figure 5.23: Adaptation behavior for an adaptation rate of 100 % (SF 1000).

In Figure 5.23, we fixed the adaptation rate to 100% for an execution interval
of the global ECL of 1 second, which amounts to 768 LPs per second. Since the
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key-value store is also partitioned into 768 LPs, the entire relation is adapted at once
and thus, this scenario is our baseline, because it mostly equals to a full table lock
and rebuild. Before the adaptation is started, the average query latency is at about
3ms and the system is utilized to 90%. As soon as the storage adaptation process is
triggered for all LPs at once, the system becomes totally unresponsive for 16 seconds
and afterwards responds at a high latency, because some of the LPs already finished
their adaptation and continued to process queued requests. As the chart shows, the
buffer time per LPV, which is the time spent for processing LP requests, starts at
0.9 s and drops to 0 s during the initial phase of the adaptation and the adaptation
time fully dominates the work of an LPV. After those first 16 s of the adaptation,
the latency is varying between 5µs and 1 s and stabilizes at 5µs about 40 s later,
because those LPs that finished their adaptation latest are still processing their
pending requests. Hence, an adaptation rate of 100 % is not suitable for an online
storage adaptation, because it massively affects the query execution and leads to
unpredictable query latencies. Nevertheless, we were still able to reduce the average
query latency from 3 ms to 5µs and decreased the system load from 90 % to <1 %.
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Figure 5.24: Adaptation behavior for an adaptation rate of 6.25 % (SF 1000).
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Figure 5.25: Adaptation behavior for an adaptation rate of 6.25 % (SF 5000).

In Figure 5.24 (SF 1000) and 5.25 (SF 5000), we pinned the adaptation rate to
6.25 %, which equals to 48 LPs per second. Both scale factors employ 768 LPs and
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hence, LPs in the SF 5000 scenario (20.8 MB raw data per LP) are five times as
big as in the SF 1000 scenario (4.2 MB raw data per LP). As the measurements
show, ERIS stays responsive during the adaptation process and the query latency
smoothly decreases from 3 ms to 5µ s. In the SF 5000 scenario, we observe small
latency peaks that occur periodically during the adaptation, because of the bigger
LP sizes. Nevertheless, in this scenario, we were also able to reduce the query latency
from 9 ms to 5µ s without a significant initial overhead. Moreover, we noticed that
the actual adaptation takes only 16 s (SF 1000) respectively 20 s (SF 5000) compared
to 33 s in the 100 % adaptation rate case.
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Figure 5.26: Adaptation behavior for an adaptation rate of 1.6 % (SF 1000).

In Figure 5.26 (SF 1000), we fixed the adaptation rate to 1.6 %, which equals to 12
LPs per second. The only difference we observe compared to the previous scenario
is that the adaptation takes longer (64 s) and that the adaptation time of the LPVs
is almost not noticeable.
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Figure 5.27: Relative peak latency depending on the adaptation rate.

As the previous experiments showed, the adaptation rate mainly affects the peak
query latency and the duration of the adaptation process. Hence, we compared
those two key factors for both scale factors (i.e., 1000 and 5000) depending on the
adaptation rate in Figure 5.27 (peak query latency relative to the pre-adaptation
latency) and 5.28 (duration). As the measurements show, the initial latency overhead
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Figure 5.28: Adaptation duration depending on the adaptation rate.

is almost not there until an adaptation rate of 6.25 % is passed. For an adaptation
rate of 25 % we already observe a latency overhead of about 30 % for both scale
factors. Beyond this adaptation rate, the latency overhead becomes unjustifiable
high, because tasks and requests queue up and hardware threads pollute the caches,
which also causes more efforts of the cache coherency protocol on such a large-scale
NUMA system. We observe a similar break-even point for the adaptation duration.
However, this point slightly depends on the LP size, because larger LPs may not
finish within the execution interval of the global ECL and the adaptation budget
calculation also considers ongoing adaptations.

To summarize, the Adaptation Rate has a significant impact on the storage
adaptation process. As our evaluation showed, it mainly affects the peak query
latency and the duration of the actual adaptation. Based on our measurements, we
identified a maximum adaptation rate of 6.26 %, which is equal to a sixteenth of the
active LPVs, as feasible.

5.4.3 Energy Savings

As the previous experiments revealed, our Storage Adaptivity approach is able to
dramatically decrease the query latency as well as the system utilization. Since the
main objective of this thesis is to reduce the energy footprint of database systems, we
will now quantify the energy savings of our Storage Adaptivity approach in isolation
as well as in combination with our Resource Adaptivity approach. For this setup, we
use the 2-socket Haswell-EP system (cf., Table 3.1) and a scale factor of 200 (20 M
keys; 640 MB raw data size; 48 LPs) for the key-value store.

In Figure 5.29, we visualized the results for the baseline (all adaptivity facilities
turned off), Storage Adaptivity, as well as Storage and Resource Adaptivity. In the
storage adaptivity-only scenario, the adaptation rate is fixed to 2 LPs per second
and in the storage and resource adaptivity scenario, the adaptation rate is controlled
by the Global ECL using a maximum of 3 LPs per second based on the results of the
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(a) Power consumption over time.

(b) Query Latency over time.

(c) Time spent for adaptation per LP over time.

Figure 5.29: Power draw, query latency, and adaptation efforts using different
adaptivity facilities.

respective evaluation. Figure 5.29(a) demonstrates that the baseline has a constant
power draw of 240 W (RAPL measurements). In contrast, storage adaptivity starts
with the same power consumption, but is able to reduce the power draw to 100 W
after the adaptation finished. Additionally enabling resource adaptivity already
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decreases the power consumption before the storage adaptation happens and ends
up with a power draw of only 60 W.

Our resource adaptivity approach accomplishes this lower power draw by trading
power for an increased query latency as shown by Figure 5.29(b). As the chart shows,
the query latency of our baseline remains constant while the storage adaptivity-
only scenario continuously decreases the latency solely by incrementally adapting
the physical storage layout. If we additionally activate the resource adaptivity, we
observe a varying latency that always stays below the preset latency limit of 100 ms,
but is always higher compared to the storage adaptivity-only case. Moreover, we
observe sudden peaks within this latency, which are caused by the switch to lower
operating frequencies of the processor or changes in the adaptation rate. We observe
the same effect in the time spent for adaptations by an LP respectively LPV (relative
to the current adaptation rate) shown in Figure 5.29(c). The first peak (around
20 s) is caused by an increase of the adaptation rate, because the query latency was
too close to the maximum, which caused the global ECL to take this action. The
second peak is a result of a switch to lower processor frequencies, which causes the
adaptation times to increase.
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Figure 5.30: Total energy savings using different adaptivity facilities.

In Figure 5.30, we give the overall energy consumption numbers for the three
setups as well as the relative energy consumption compared to the baseline. As
shown, by only enabling storage adaptivity we already save 33.3 % energy and by
additionally activating resource adaptivity we measured total energy savings of about
50 %. Since current hardware is still far away from being energy proportional, our
resource adaptivity is limited in its opportunities for such low system utilizations as
they happen after the storage adaptation.

To summarize, we demonstrated that our two Adaptivity Facilities contribute
to increase the energy awareness of a database system by either doing software-
centric adaptations (Storage Adaptivity) or hardware-centric adaptations (Resource
Adaptivity). Moreover, we showed that both unleash their full potential when being
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employed in combination. For our specific workload, we were able to save about
50 % energy while additionally improving the query latency by orders of magnitude.

5.4.4 Workload Mix

In our final experiment, we evaluate our Storage Adaptivity approach for a workload
that is changing over time. As foundation, we use the Orders table of the TPC-
H benchmark [132], which consists of 9 attributes as shown in Table 5.7, and three
extreme workloads: (1) WLInsert is a transactional load workload that inserts records
into the table, (2) WLLookup is a transactional workload that looks up orders by their
ORDERKEY requesting all attributes, and (3) WLScan is an analytical workload that
aggregates the TOTALPRICE column. Initially, the Orders table is empty and we
execute the workloads in the following sequence: WLInsert, WLLookup, WLInsert, and
WLScan. The adaptation rate is fixed to 6.25 % and the experiment was conducted
on the SGI UV 3000 (cf., Table 3.1).

Table 5.7: Orders table schema and physical storage layout for the different work-
loads. Row Store Static(RSS), Column Store (CS), RB-Tree (RB).

Attribute Data Type WLInsert WLLookup WLScan

ORDERKEY BIGUINT RSS1 RSS1, RB1 RSS1

CUSTKEY BIGUINT RSS1 RSS1 RSS1

ORDERSTATUS CHAR(1) RSS1 RSS1 RSS1

TOTALPRICE DECIMAL RSS1 RSS1 CS1

ORDERDATE DATE RSS1 RSS1 RSS1

ORDERPRIORITY CHAR(15) RSS1 RSS1 RSS1

CLERK CHAR(15) RSS1 RSS1 RSS1

SHIPPRIORITY INT RSS1 RSS1 RSS1

COMMENT VARCHAR(79) RSS1 RSS1 RSS1

In Figure 5.31, we visualized the adaptation behavior of ERIS, which implements
our storage adaptivity approach. The chart shows the measurements for the query
latency, the buffer time (time consumed for processing LP requests), and the adap-
tation time. Note that latency and buffer times are given relative to the baseline,
which stays with the default catch-all access path storage layout.

As soon as the WLInsert workload is executed for the first time, all 1-Storage
instances calculate a new target storage layout, which moves all attributes from the
catch-all access path (dynamic row store) to a new static row store access path as
shown by Table 5.7. This decision is made, in the grouping stage of our algorithm
(cf., Section 5.3.2), because the COMMENT attribute is of a variable size and thus, a
column group access path can not be considered for the attribute grouping. Since
this adaptation affects all attributes including the MVCC attribute, a full 1-Storage
reorganization is necessary, which comes at high costs, because the dynamic row store
has a bad scan performance and the actual adaptation process also uses the Data
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Figure 5.31: Adaptation behavior over time for the workload mix.

Gateway as indirection layer. After a short adaptation period, the query latency
as well as the buffer time are reduced by 10 %. Moreover, the adaptation reduced
the memory footprint of the LP, because the static row store version consumes less
memory compared to its dynamic pendant.

Afterwards, the switch to the WLLookup workload occurs. The 1-Storage instances
quickly detect that the ORDERKEY is often queried in a highly selective fashion and
due to the currently small partition sizes, the lookup savings dominate the insert
costs, which are still present in the observation horizon. Hence, the 1-Storage in-
stances additionally build an index on this attribute as the physical storage layout
in Table 5.7 shows. The chart demonstrates that the actual adaptation costs are
very low and the latency and buffer time advantages are tremendous. However, as
we switch back to the WLInsert workload, this index increases the insert costs and
the trade-off between insert costs and lookup savings still favors the presence of the
index. Hence, the physical storage layout remains the same until the periodic trun-
cation of the observation horizon happens and the LPs start to destroy the index,
which is cheap in terms of adaptation costs. Due to the adaptation, latency and
buffer time smoothly decrease to the level of the first WLInsert run.

Finally, we switch to the analytical WLScan workload and the 1-Storage instances
quickly detect a scan access pattern on the TOTALPRICE attribute and decide to
move this attribute to a column store access path as shown in Table 5.7. Hence,
the adaptation process builds this access path, but additionally needs to rebuild the
static row store without the TOTALPRICE access path as well as its Linkage column.
In this scenario, we observe that the buffer time quickly drops to its final level and
that the latency stays higher until the adaptation finishes. This behavior occurs,
because the scan is broad-casted to all LPs of the relation and the performance
depends on the slowest LP. Hence, the query latency decreases not before all LPs
finished the adaptation process and in the meanwhile, the latency overhead mirrors
the adaptation costs. The same effect happens for lookups that need to be broad-
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casted because of an incompatible partitioning scheme. As result of the adaptation,
latency and buffer time improve by more than 20 % compared to the baseline. Note
that without the indirection induced by the Data Gateway, this benefit would be
even higher. The final raw data size of the table was about 2.5 GB and for larger
tables the adaptation process takes a proportional amount of time assuming that
the adaptation rate remains the same. Nevertheless, as the table gets bigger the
LP sizes get bigger too and at a certain point in time, LPs must be split to keep
the storage layout adaptation incremental and its invasiveness low. This issue is a
matter of Data Placement Adaptivity, which is subject of future work.
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Figure 5.32: Energy savings respectively overhead of the adaptivity facilities for
the workload mix.

We executed the same workload sequence on the 2-socket Haswell-EP system (cf.,
Table 3.1) to measure the energy consumption using our adaptivity facilities. The
workload was scaled down to the smaller machine and the system utilization for the
baseline was about 90 %. In Figure 5.32, we visualized the energy measurements
relative to the baseline. For the first execution of the WLInsert workload, storage
adaptivity saves only a small amount of energy, because of the low optimization
potential. However, in combination with resource adaptivity, the overall energy sav-
ings amount to more than 30 %. In contrast, for the second run of the same WLInsert

workload, we measure an energy overhead of about 46 %, because of the additional
costs for maintaining the index that is present for a certain amount of time. Those
additional costs can not be compensated within the short execution phase of the
workload. Nevertheless, the additional hardware adaptations made by our resource
adaptivity approach result in more than 10 % energy savings. We experienced the
highest energy savings during the execution of the WLLookup workload, because of
the huge optimization potential of the physical storage layout. Our storage adap-
tivity approach is able to quickly detect and execute the adaptations at low costs.
Moreover, the additional activation of our resource adaptivity results in total energy
savings of about 65 %. Finally, during the execution of the WLScan workload, stor-
age adaptivity is able to save about 14 % energy. Because our resource adaptivity
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approach detected a changing workload type, which is now memory-bound, it adapts
its Energy Profile (cf., Section 4.4.1) and is able to additionally save a high fraction
of energy. As the relative numbers for the full workload sequence show, storage
adaptivity in isolation is only able to save roughly 11 % of the energy due to the
high overhead for the second execution of the WLInsert workload. This is a result of
the lack of information about the future workload and the delayed adaptation that
happens consequently. However, the combination of both adaptivity facilities is able
to save more than 40 % of energy. This experiment emphasizes the potential of our
current approach as well as its limitations, which require additional research efforts
to be overcome.

To Summarize, our evaluation demonstrated that our Storage Adaptivity ap-
proach is able to quickly adapt to changing workloads during DBMS operation,
which reduces the buffer time and thus, decreases the energy footprint of the system.
Our investigations also emphasized that our approach needs additional augmenting
techniques to unfold its full potential. Those techniques are just-in-time compilation
to eliminate the indirection overhead, forecasting to consider the trade-off between
adaptation costs and adaptation benefit, redundancy, as well as Data Placement
Adaptivity to manage the LP sizes.
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5.5 Summary and Conclusions

Modern application scenarios require data management systems to cope with a vast
variety of datasets and query types that are not known beforehand and change over
time. To still provide a superior performance and energy efficiency in all of the
potential scenarios, the database system needs to adapt its physical storage layout
to the current workload, because the data organization has a significant impact on
the query execution performance and there exists no one-size-fits-all physical stor-
age layout. Current solutions for the storage adaptation problem are very limited,
because they are either designed as offline approaches or address only a small subset
of the available storage layout tuning knobs.

In this chapter, we presented Storage Adaptivity as a holistic software-centric ap-
proach for increasing the performance and energy efficiency of a database system in
the presence of varying workloads and data characteristics. Our approach consists of
two main components. The first component is 1-Storage, which is a storage manager
that is able to organize the data in a multitude of physical layouts combining the ad-
vantages of row-wise and columnar data organizations in combination with adaptive
indexing. Furthermore, 1-Storage uses the concept of extensible storage modules
to provide support for any kind of access path implementation. Since 1-Storage is
designed to operate within the Living Partitions architecture, each living partition
of a relation is additionally able to apply a different physical storage layout. The
Storage Adaptivity-Specififc Energy-Control Loop leverages this implicit partitioning
of the architecture for enabling a fine-grained incremental adaptation of the physical
storage layout in case of a changing workload. Moreover, this component integrates
well with our Resource Adaptivity-Specific ECL, which results in a sophisticated ECL
hierarchy that is able to control the adaptation of hardware as well as software at
runtime while trying to stay within a user-defined query latency limit.

Our evaluation demonstrated that all ECLs work hand in hand and we observed
energy savings of about 65 % while additionally improving the query latency by
orders of magnitude. Nevertheless, we also revealed the limitations of the current
state of our approach and suggested just-in-time compilation, forecasting, redun-
dancy, and Data Placement Adaptivity as augmenting techniques to overcome these
limitations.
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Recent studies revealed that the energy consumption of server hardware already be-
came a critical problem, especially in data centers. Since data management systems
are an application class that amounts to a high portion of the overall deployments,
they are responsible for a high share of the energy draw. Another trend is the ongo-
ing move from disk-based to in-memory database systems, which run on hardware
that exhibits more and more non-uniform memory access (NUMA) related effects. In
this thesis, we investigated how the energy consumption of such in-memory database
systems that run on mid and large scale-up NUMA hardware platforms can be re-
duced.

In the first place, we discussed the nature of energy in the context of data man-
agement systems and derived the term energy awareness as the ability of a DBMS
to actively optimize its energy efficiency as well as energy proportionality. We came
up with our core concept of Energy Awareness by Adaptivity, which aims at ac-
tive software-driven adaptations at runtime, especially in the presence of changing
workloads and data characteristics as it is becoming increasingly common in today’s
applications. To actually implement this concept, we defined a rich set of require-
ments that need to be fulfilled to build an energy-aware database system. Those
requirements either originate from the general scalability prerequisite or from the
ability to enable fine-grained adaptations at runtime.

Our exploration of existing database architectures concluded that none of the
known architectures fulfills our requirements for an energy-aware DBMS. Never-
theless, we decided to use the data-oriented architecture as a starting point, be-
cause of its scalability advantages. We prototypically optimized this architecture for
large scale-up in-memory database systems and achieved excellent scalability results
as well as absolute performance numbers that clearly outperform the traditional
transaction-oriented architecture. To especially enable our Adaptivity Facilities on
this architecture, we proposed the Living Partitions architecture that treats Living
Partitions as autonomous self-adapting objects and presented the database system
ERIS that is based on this novel architecture. Our evaluation showed superior
scalability of ERIS for transnational workloads on a large scale-up NUMA system.

Using ERIS and the living partitions architecture as a solid foundation, we in-
vestigated two Adaptivity Facilities that implement our core concept. The first
implementation is the hardware-centric Resource Adaptivity, which actively adapts
the hardware configuration by controlling the rich set of available energy-control
knobs of current processors. Our resource adaptivity approach implements the Re-
source Adaptivity-Specific Energy-Control Loop (ECL), which consists of a system-
level Global ECL and a CPU-level Node ECL. While the global ECL keeps track of
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the current average query latency, the Node ECL maintains an adaptive Energy Pro-
file to manage the hardware configurations. In our evaluation, we measured energy
savings ranging from 20% to 40% for a real-world load profile.

The second Adaptivity Facility we investigated was Storage Adaptivity, which is
a software-centric approach for adapting the physical storage layout at runtime.
Our approach uses the extensible 1-Storage storage manager that is capable of or-
ganizing its data in a wide variety of physical representations covering columnar
and row-wise data organizations as well as adaptive indexing. To actually adapt the
physical storage layout, we presented the Storage Adaptivity-Specific Energy-Control
Loop, which leverages the implicit partitioning of our living partitions architecture
to incrementally adapt the storage layout at runtime. We described how to inte-
grate the different ECLs with each other and ended up with a sophisticated ECL
hierarchy that is doing hardware and software-centric adaptations at runtime, while
trying to stay within a user-defined query latency limit. Our evaluation showed that
all ECLs work hand in hand and we achieved superior energy savings and query
latency improvements for various workload mixtures.

Future Work

In our opinion, highly adaptive database systems are the only way to cope with
the vast amount of application domains database systems are being exposed today.
The scalable and adaptivity-enabling Living Partitions architecture as well as our
Adaptivity Facilities are a first milestone towards such a highly adaptive DBMS,
which opens up new horizons for further research. In the following, we discuss
further promising directions for research that we are currently thinking of.

Resource Adaptivity. A major weakness of our Resource Adaptivity approach
is its limitation to short-running queries, because the reactive design of our
global ECL requires a fast feedback. In contrast, the Node ECL works even
with long-running queries, but receives no feedback about the current query
latency and thus, the decisions made are maybe far away from the optimum.
To cope with this issue, we need to be able to track the progress of such
queries to estimate their latency. Another point addresses the generation and
maintenance of our Energy Profiles. Due to the huge exploration space of
possible hardware configurations, which is getting bigger and bigger as the
number of energy-control knobs grows, we need more sophisticated techniques
for maintaining such profiles.

Storage Adaptivity. A problem of our Storage Adaptivity approach is the indi-
rection layer, which adds a significant overhead to the query processing as our
evaluation showed. To cope with this issue, we think of Code Adaptivity as an
additional Adaptivity Facility that employs just-in-time compilation to special-
ize the DBMS code at runtime. Moreover, the same technique is applicable for
speeding up the actual adaptation process by specializing the transformation
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between storage formats. However, such an approach adds additional compila-
tion costs that need to be considered. To actually consider the one-time costs
for compilation and adaptation, we need the ability to look into the future to
decide whether the costs will amortize or not. Simply waiting for a long time,
before actually paying those one-time costs is bad solution, because a lot of
energy is potentially wasted in the meantime. Forecasting techniques are a
good starting point to get a rough hint of how the workload will behave in the
future. Another issue that we left open for future work is the redundancy of
data beyond indexes when computing a new target storage layout.

Data Placement Adaptivity. This Adaptivity Facilitiy was already proposed and
prototypically evaluated by us, but is not further considered in this thesis. To
enable data placement adaptivity as we described it for our Living Partitions
architecture, we need the appropriate tooling and a lightweight decision making
to keep the entire process agile. Moreover, we need to find efficient ways for
splitting a 1-Storage instance in case of a Living Partition split. Similar to
Storage Adaptivity, redundancy is also a desirable goal for hardening the DBMS
against workloads and datasets that are hard to partition.

Self-Learning Adaptation Mechanisms. When we think of all of those Adap-
tivity Facilities that need to work hand in hand, we will run into problems,
because of the vast amount of dependencies between them and the side effects
that can occur and we will reach the point where developers are not able to
understand them anymore. Hence, we have to think of self-learning decision
models such as deep learning or other kinds of artificial intelligences that do
the actual adaptation decisions based on the past experience.
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