16,133 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion

    Get PDF
    Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management (CIKM) 201

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    자연어 처리를 위한 문맥 정보 및 메모리 어텐션을 활용하는 계층적 문맥 인코더

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 정교민.최근 자연어 처리(NLP)를 위한 표준 아키텍처가 순환 신경망에서 트랜스포머 아키텍처로 발전했다. 트랜스포머 아키텍처는 토큰 간의 상관 관계를 추출하는 데 강점을 보여주고 추출한 정보를 통합하여 적절한 출력을 생성하는 attention layer들로 구성된다. 이러한 발전은 최근 딥 러닝 사회에 주어진 입력 데이터 밖의 추가 컨텍스트 정보를 활용하는 새로운 도전을 제시했다. 본 학위 논문에서는 다양한 자연어 처리 작업에서 주어진 입력 외에 추가적인 컨텍스트 정보를 효과적으로 활용하는 새로운 방법과 분석을 attention layer에 초점을 맞추어 제안한다. 먼저, 이전 문장에 대한 컨텍스트 정보를 효율적으로 내장하고, 메모리 어텐션 메커니즘을 통해 내장된 문맥 표현을 입력 표현에 융합하는 계층적 메모리 컨텍스트 인코더(HMCE)를 제안한다. 제안된 HMCE는 다양한 문맥 인지 기계 번역 작업에서 추가 문맥 정보를 활용하지 않는 트랜스포머와 비교하였을 때 더 뛰어난 성능을 보인다. 그런 다음 문맥 표현과 입력 표현 사이의 어텐션 메커니즘을 개선하기 위해 문맥 표현과 입력 표현 사이의 표현 유사성을 Centered Kernel Alignment(CKA)를 이용하여 심층 분석하며, CKA를 최적화하는 방법을 제안한다. 마지막으로, 문맥 정보가 시각 양식으로 주어지는 다중 모달 시나리오에 대해 CKA 최적화 방법을 모달리티 정렬 방법으로 확장한다. 이 Modality Alignment 방법은 멀티 모달간 표현 유사성을 극대화하여 비디오 질문 응답 작업에서 큰 성능 향상을 가져온다.Recently, the standard architecture for Natural Language Processing (NLP) has evolved from Recurrent Neural Network to Transformer architecture. Transformer architecture consists of attention layers which show its strength at finding the correlation between tokens and incorporate the correlation information to generate proper output. While many researches leveraging Transformer architecture report the new state-of-the-arts performances on various NLP tasks, These recent improvements propose a new challenge to deep learning society: exploiting additional context information. Because human intelligence perceives signals in everyday life with much rich contextual information (e.g. additional memory, visual information, and common sense), exploiting the context information is a step forward to the ultimate goal for Artificial Intelligence. In this dissertation, I propose novel methodologies and analyses to improve context-awareness of Transformer architecture focusing on the attention mechanism for various natural language processing tasks. The proposed methods utilize the additionally given context information, which is not limited to the modality of natural language, aside the given input information. First, I propose Hierarchical Memory Context Encoder (HMCE) which efficiently embeds the contextual information over preceding sentences via a hierarchical architecture of Transformer and fuses the embedded context representation into the input representation via memory attention mechanism. The proposed HMCE outperforms the original Transformer which does not leverage the additional context information on various context-aware machine translation tasks. It also shows the best performance evaluated in BLEU among the baselines using the additional context. Then, to improve the attention mechanism between context representation and input representation, I deeply analyze the representational similarity between the context representation and the input representation. Based on my analyses on representational similarity inside Transformer architecture, I propose a method for optimizing Centered Kernel Alignment (CKA) between internal representations of Transformer. The proposed CKA optimization method increases the performance of Transformer in various machine translation tasks and language modelling tasks. Lastly, I extend the CKA optimization method to Modality Alignment method for multi-modal scenarios where the context information takes the modality of visual information. My Modality Alignment method enhances the cross-modality attention mechanism by maximizing the representational similarity between visual representation and natural language representation, resulting in performance improvements larger than 3.5% accuracy on video question answering tasks.1 Introduction 1 2 Backgrounds 8 3 Context-aware Hierarchical Transformer Architecture 12 3.1 Related Works 15 3.1.1 Using Multiple Sentences for Context-awareness in Machine Translation 15 3.1.2 Structured Neural Machine Translation Models for Contextawareness 16 3.1.3 Evaluating Context-awareness with Generated Translation 16 3.2 Proposed Approach: Context-aware Hierarchical Text Encoder with Memory Networks 16 3.2.1 Context-aware NMT Encoders 17 3.2.2 Hierarchical Memory Context Encoder 21 3.3 Experiments 25 3.3.1 Data 26 3.3.2 Hyperparameters and Training Details 28 3.3.3 Overall BLEU Evaluation 28 3.3.4 Model Complexity Analysis 30 3.3.5 BLEU Evaluation on Helpful/Unhelpful Context 31 3.3.6 Qualitative Analysis 32 3.3.7 Limitations and Future Directions 34 3.4 Conclusion 35 4 Optimizing Representational Diversity of Transformer Architecture 36 4.1 Related Works 38 4.1.1 Analyses of Diversity in Multi-Head Attention 38 4.1.2 Similarities between Deep Neural Representations 39 4.2 Similarity Measures for Multi-Head Attention 40 4.2.1 Multi-Head Attention 40 4.2.2 Singular Vector Canonical Correlation Analysis (SVCCA) 41 4.2.3 Centered Kernel Alignment (CKA) 43 4.3 Proposed Approach: Controlling Inter-Head Diversity 43 4.3.1 HSIC Regularizer 44 4.3.2 Orthogonality Regularizer 44 4.3.3 Drophead 45 4.4 Inter-Head Similarity Analyses 46 4.4.1 Experimental Details for Similarity Analysis 46 4.4.2 Applying SVCCA and CKA 47 4.4.3 Analyses on Inter-Model Similarity 47 4.4.4 Does Multi-Head Strategy Diversify a Model's Representation Subspaces 49 4.5 Experiments on Controlling Inter-Head Similarity Methods 52 4.5.1 Experimental Details 52 4.5.2 Analysis on Controlling Inter-Head Diversity 54 4.5.3 Quantitative Evaluation 55 4.5.4 Limitations and Future Directions 57 4.6 Conclusions 60 5 Modality Alignment for Cross-modal Attention 61 5.1 Related Works 63 5.1.1 Representation Similarity between Modalities 63 5.1.2 Video Question Answering 64 5.2 Proposed Approach: Modality Align between Multi-modal Representations 65 5.2.1 Centered Kernel Alignment Review 65 5.2.2 Why CKA is Proper to Modality Alignment 66 5.2.3 Proposed Method 69 5.3 Experiments 71 5.3.1 Cosine Similarity Learning with CKA 72 5.3.2 Modality Align on Video Question Answering Task 75 5.4 Conclusion 82 6 Conclusion 83 Abstract (In Korean) 97박
    corecore