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Abstract

Recently, the standard architecture for Natural Language Processing (NLP) has

evolved from Recurrent Neural Network to Transformer architecture. Transformer ar-

chitecture consists of attention layers which show its strength at finding the correlation

between tokens and incorporate the correlation information to generate proper out-

put. While many researches leveraging Transformer architecture report the new state-

of-the-arts performances on various NLP tasks, These recent improvements propose

a new challenge to deep learning society: exploiting additional context information.

Because human intelligence perceives signals in everyday life with much rich con-

textual information (e.g. additional memory, visual information, and common sense),

exploiting the context information is a step forward to the ultimate goal for Artificial

Intelligence.

In this dissertation, I propose novel methodologies and analyses to improve context-

awareness of Transformer architecture focusing on the attention mechanism for vari-

ous natural language processing tasks. The proposed methods utilize the additionally

given context information, which is not limited to the modality of natural language,

aside the given input information. First, I propose Hierarchical Memory Context En-

coder (HMCE) which efficiently embeds the contextual information over preceding

sentences via a hierarchical architecture of Transformer and fuses the embedded con-

text representation into the input representation via memory attention mechanism. The

proposed HMCE outperforms the original Transformer which does not leverage the

additional context information on various context-aware machine translation tasks. It

also shows the best performance evaluated in BLEU among the baselines using the

additional context. Then, to improve the attention mechanism between context rep-

resentation and input representation, I deeply analyze the representational similarity

between the context representation and the input representation. Based on my analy-
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ses on representational similarity inside Transformer architecture, I propose a method

for optimizing Centered Kernel Alignment (CKA) between internal representations of

Transformer. The proposed CKA optimization method increases the performance of

Transformer in various machine translation tasks and language modelling tasks. Lastly,

I extend the CKA optimization method to Modality Alignment method for multi-modal

scenarios where the context information takes the modality of visual information.

My Modality Alignment method enhances the cross-modality attention mechanism

by maximizing the representational similarity between visual representation and natu-

ral language representation, resulting in performance improvements larger than 3.5%

accuracy on video question answering tasks.

keywords: deep learning, natural language processing, Transformer, context repre-

sentation, representation similarity, multi-modal learning, cross-modal attention

student number: 2015-20956
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Chapter 1

Introduction

Transformer, the attention based deep neural architecture to encode and generate nat-

ural language texts, have shown a great improvements in various tasks including ma-

chine translation, text classification, dialogue generation, and other natural language

processing tasks [3]. With the advance of hardware and the large number of data,

pre-trained large language morels which adopt the Transformer architecture recently

exceeded the human level performance and opened the new horizon in natural lan-

guage processing [4, 5, 6, 7]. These studies inspire the other researchers to inves-

tigate the way how Transformer architecture effectively exploits the information in-

side the input data and incorporates the information in order to generate the outputs

[8, 9, 10, 11, 12, 13, 14, 15].

These aforementioned success of attention based network have also opened a new

direction for NLP; utilizing the additional information aside from the given input data.

Several researches have reported that the model using the additional information yields

better performance [16, 17, 18, 19]. For examples, as described in Figure 1.1, a ma-

chine translation model that uses preceding sentences which include useful informa-

tion generate more accurate and consistent translations, extracting the related infor-

mation in additional context takes a critical role in open domain question answering

system, and amalgamating the visual context information with the textual information

1



Figure 1.1: The main concept of utilizing context representation. Utilizing additional

context representation yields more accurate output by leveraging rich information out-

side of the given input text.

is required to solve multi-modality tasks.

Nevertheless, there still remains two questions, “How can we properly extract the

context information in various form?” and “How can we effectively fuse the extracted

context representation into the current model architecture?”. In this dissertation, I seek

to answer the two questions in natural language processing tasks with the context in-

formation given in either text modality or visual modality. The main area of interests

in this dissertation is described as Figure 1.2.

To answer the first question, I propose a novel hierarchical Transformer architec-

ture which is designed to extract the contextual information from given data which

allows my context-aware Transformer to achieve higher performance. First, I focus on

situational awareness, where additional data is explicitly provided as natural language.

Transformers have shown excellent results in many natural language processing tasks
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Figure 1.2: The main area of interests in this dissertation. I first focus on designing ad-

ditional context encoder f ′ to extract the contextual representation from the explicitly

given additional data x′. Then, I propose novel methods to fuse the context representa-

tion into the original deep neural networks in order to improve the model performance

based on the analyses of representational similarity in Transformer architecture.

and have become solid baselines, but there has been a growing demand for context-

aware models that can efficiently utilize contextual information scattered across mul-

tiple sentences. In order to meet those demands, I introduce a novel architecture that

efficiently encodes context information and fuses extracted representations into cur-

rent model architectures. Applying my method to machine translation tasks, I propose

a new neural machine translation model which outperforms all the baseline models

through the following research:

• Hyeongu Yun*, Yongkeun Hwang*, and Kyomin Jung. ”Improving context-

aware neural machine translation using self-attentive sentence embedding.” Pro-

ceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 05.

2020.

This study proposes Hierarchical Context Encoder (HCE) that uses hierarchical trans-

former structures to leverage multiple context sentences individually. My proposed

HCE first abstracts sentence-level information with a self-attentive method from pre-

3



vious sentences and then hierarchically encodes the context-level information. The

hierarchical structure yields not only faster training and inference time compared to

the naive concatenation strategy but also higher performance in widely used criterion.

I also propose a memory-based encoder architecture upon HCE architecture. Based

on the End-to-End Memory Network [20] structure, I make HCE possible to leverage

multiple context sentences as vectors. Then my final architecture, Hierarchical Mem-

ory Context Encoder (HMCE), utilizes correlated tokens by using attention mechanism

in encoder and decoder. Through extensive experiments, I observe that the proposed

HCE and HMCE record the best performance measured in BLEU score on English-

German, English-Turkish, and English-Korean corpus. I also extend my experiments to

document-level machine translation tasks and multi-modal machine translation tasks

where HMCE outperforms other baselines. In addition, I observe that HCE records the

best performance in a crowd-sourced test set which is designed to evaluate how well

an encoder can exploit contextual information. Finally, evaluation on English-Korean

pronoun resolution test suite also shows that HCE and HMCE can properly exploit

contextual information.

Another main topic of this dissertation is to measure similarity between the con-

textual representation and the input representation. For deeper understanding of the

representation inside Transformer, I analyze the properties of the contextual represen-

tation with multiple similarity measures and also propose a novel method to exploit

the similarity. I enhance the multi-head attention by optimizing the inter-head diver-

sity through the following research:

• Hyeongu Yun, Taegwan Kang, and Kyomin Jung. ”Analyzing and Controlling

Inter-Head Diversity in Multi-Head Attention.” Applied Sciences 11.4 (2021):

1548.

Multi-head attention, a powerful strategy for Transformer, is assumed to utilize infor-

mation from diverse representation subspaces. However, measuring diversity between

heads’ representations or exploiting the diversity has been rarely studied. We quantita-
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tively analyze inter-head diversity of multi-head attention by applying recently devel-

oped similarity measures between two deep representations: Singular Vector Canon-

ical Correlation Analysis (SVCCA) and Centered Kernel Alignment (CKA). By do-

ing so, I empirically show that multi-head attention does diversify representation sub-

spaces of each head as the number of heads increases. Based on my analyses, I hy-

pothesize that there exists an optimal inter-head diversity with which a model can

achieve better performance. To examine my hypothesis, I deeply inspect three tech-

niques to control the inter-head diversity; (1) CKA optimization among representation

subspaces, (2) Orthogonality regularizer, and (3) Drophead as zero-outing each head

randomly in every training step. In the experiments on various machine translation and

language modeling tasks, I show that controlling inter-head diversity leads to the best

performance among baselines.

Lastly, corresponding to the second question, I apply CKA optimization method

to align the context representation and the input representation for effectively amalga-

mating two different representations. I extend the proposed CKA optimization method

to the multi-modal task which includes visual information given by the form of image

or video. Multi-modality tasks require the ability of multi-modal reasoning which is to

handle both visual information and text information simultaneously across time. In this

point of view, a cross-modality attention module that fuses video representation and

text representation takes a critical role in most recent approaches. However, existing

Video-and-Language models merely compute the attention weights without consider-

ing the different characteristics of video modality and text modality. Such naı̈ve atten-

tion module hinders the current models to fully enjoy the strength of cross-modality. I

enhance the cross attention by optimizing the similarity between visual context repre-

sentation and textual context representation through the following research:

• Hyeongu Yun, Yongil Kim, and Kyomin Jung. ”Modality Alignment between

Deep Representation for Effective Video-and-Language Learning.” Proceedings

of The 13th International conference on Language ResIces and Evaluation (LREC),

5



Marseille, France, June 2022.

I propose a novel Modality Alignment method that benefits the cross-modality atten-

tion module by guiding it to easily amalgamate multiple modalities. Specifically, I ex-

ploit CKA which was originally proposed to measure the similarity between two deep

representations. My method directly optimizes CKA to make an alignment between

video and text embedding representations, hence it aids the cross-modality attention

module to combine information over different modalities. Experiments on real-world

Video QA tasks demonstrate that the method outperforms conventional multi-modal

methods significantly with +3.57% accuracy increment compared to the baseline in a

popular benchmark dataset. Additionally, in a synthetic data environment, I demon-

strate that learning the alignment with Modality Alignment method boosts the perfor-

mance of the cross-modality attention.

Overall, in this dissertation, I examine transformers in depth from a structural per-

spective to leverage contextual information with input data. The main contributions of

this dissertation can be listed as follows:

• I propose a hierarchical memory context encoder based on the architecture of

Transformer encoder as my proposed architecture is able to efficiently exploit

preceding sentences or documents as context information in various machine

translation tasks.

• I investigate the nature of inter-head diversity among head in multi-head at-

tention. I empirically demonstrate that the inter-head diversity increases as the

number of heads increases, which is a widely known but unproven feature of

Transformer. Furthermore, I introduce three methods to control and optimize

the inter-head diversity in order to find the optimal inter-head diversity.

• I propose a Modality Alignment method that optimize the representational sim-

ilarity between multi-modal embeddings that has different characteristics. The

proposed Modality Alignment method can align video and text representations

6



to have similar inter-example structure, enhancing the cross-attention module of

Transformer.

Through step-by-step structural improvements and extensive experiments, I improve

the Transformer encoder architecture in order to efficiently leverage the contextual

information in various modalities.

The remainder of this dissertation is organized as follows. In Chapter 3, I pro-

pose a novel structure to encode the contextual information scattered across multiple

sentences. I verify the proposed context encoder, Hierarchical Memory Context En-

coder, with extensive experiments on machine translation and offer various analyses.

In Chapter 4, I deeply investigate the similarity measures between deep neural repre-

sentations. I observe that those similarity measures can be directly applied to my model

in various scopes; e.g. between the context representation and the input representation,

between the multi-head representations, or between the visual context representation

and the text representation. Further, I show that Centered Kernel Alignment method

[21] can be optimized with the gradient ascent framework to train the optimal sim-

ilarity between deep representations. In Chapter 5, I extend the CKA optimization

method toward multi-modality tasks by introducing the novel Modality Align method.

Modality Align method optimizes CKA between visual context representation and text

representation in order to improve the cross-modality attention mechanism. I validate

Modality Align method on the synthetic environments as well as real-world standard

benchmark tasks on image captioning tasks and video question answering tasks. I con-

clude the dissertation in Chapter 6.
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Chapter 2

Backgrounds

In this chapter, we briefly overview several terminologies and methodologies widely

used through this dissertation.

Tokenization is a basic methodology to process natural language text into a se-

quence of “tokens”. Various types of tokenization methods have been proposed de-

pending on what is used as the basic unit of tokens; e.g. a character-level tokenization

sets the unit token as ASCII characters or byte-level characters and a word-level tok-

enization sets the unit token as words in the pre-defined dictionary. Each tokenization

method has its own strengths and limitations. A character-level tokenization method

can process the given texts with very small number of vocabulary length (i.e. the size of

the pre-defined dictionary), but the length of the generated sequence tends to be large.

On the other hand, a word-level tokenization method leverages a very large vocabulary

set in order to generate shorter sequence. However, a word-level tokenization is often

at risk of being exposed to unknown words that are not n the vocabulary; this risk

is called Out-of-Vocabulary problem. To take the advantages of both character-level

tokenization and word-level tokenization, subword tokenization methods are widely

used, such as Byte-pair Encoding (BPE) [22] or WordPiece algorithm [23]. In this

dissertation, we mostly use BPE as the tokenization method.
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Enc-Dec Model is a general structure to generate output sequence with the given

input sequence, hence often called “Seq2Seq Model”. For a given sequence x =

(x1, ..., xN ) with n many tokens, the goal of the Enc-Dec model is to generate the

output sequence y = (y1, ..., yM ). It is trained to generate the most probable output ŷ

with the given x;

ŷ = argmax
y

Pθ(y|x), (2.1)

where θ is a set of model parameters. In general, the “encoder” part of the Enc-Dec

model compute a high-dimensional vector (or a sequence of vectors) containing the

information of x and the “decoder” part generates (or decodes) the output of the en-

coder. Although there are two main streams (auto-regressive and non-auto-regressive)

depending on how the model generates y, we only use the auto-regressive decoding in

this dissertation. Auto-regressive decoding generates each output token at a decoding

step with the given input sequence x and the previously generated output sequence

y<m. Therefore, the conditional probability of the output sequence y is modelled as

following;

Pθ(y|x) =
M∏

m=1

Pθ(y|y<m,x), (2.2)

where M is the maximum length of y.

Transformer is a family of deep neural encoder-decoder architecture proposed by

[3]. A unit module of Transformer encoder is composed of a self-attention layer fol-

lowed by a feed-forward layer with the residual connection. For Transformer decoder,

a enc-dec attention layer is inserted in between. All attention layer use QKV attention,

which leverage the attention score with given a query vector q, a key tensor K, and a

value tensor V . The output matrix X ′ of the QKV attention is computed as follows;

X ′ = softmax(
qKT

√
d
)V, (2.3)

where d is the size of hidden dimension. The authors also introduced the multi-head

attention, which is known to diversify the hidden representation and enrich information
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to improve the performance of a model. In this dissertation, we use the Transformer

architecture for all of our experiments. In particular, in chapter 4, we deeply investigate

the properties of the multi-head attention.

Neural Machine Translation (NMT) is a real-world task that takes a part of the

natural language processing field. From a given text written in a source language

A, the neural machine translation model leverages a deep neural network, usually a

Enc-Dec structure, to generate the translated text in a target language B [24, 25, 26].

Recent studies have discovered that the power of deep neural networks can also be ap-

plied to the machine translation tasks. In particular, Recurrent Neural Networks (RNN)

based models and Transformer based models have shown remarkable improvements,

reported high performance comparable to human experts. In chapter 3 and 4, we con-

duct extensive experiments on machine translation tasks in various language pairs.

BLEU metric is an automatic evaluation metric for machine-translated texts com-

pared to the the reference text [27]. BLEU measures N -gram overlaps between the

generated translation (or hypothesis) and the reference. With computed N -gram preci-

sion, usually up to 4-gram, the final score is given as a form of the weighted geometric

average.

Multi-modality is a terminology for the type of tasks where input data consists of

various form (modality); i.e. the input data includes both image and text or both video

and text. Multi-modality has became more and more important as it pursues the way

how human intelligence perceives everyday life [28, 29, 30]. These tasks require the

ability of multi-modal reasoning which is to handle both visual information and text

information simultaneously. In chapter 5, we extend our thesis to the multi-modality

domain, including the image captioning task and the video question answering tasks.
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Cross-modal Attention is a type of QKV attention between embedding sequences

from different modalities. Because Transformer architectures also have shown the best

performances in several multi-modality tasks, the cross-modal attention can be re-

garded as a key component to successful multi-modal models. In chapter 5, we sug-

gest to align two different embedding representations from different modalities before

computing the attention score.
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Chapter 3

Context-aware Hierarchical Transformer Architecture

Context-awareness problem becomes more important for machine translation because

the additional context data often include critical information to generate proper trans-

lations. For instance, duplicated aforementioned words in preceding sentences tend to

be dropped out in colloquial style compared to the formal written style. That omitted

information often cause inaccurate, incomplete or ambiguous translations of colloquial

style languages which take the most part of spoken languages. Nevertheless, most of

commercialized machine translation services are based on Transformer architecture [3]

translating a single input sentence to a corresponding sentence in a target language, not

taking account of additional context information. Hence, they show lower quality of

translation in colloquial styled input such as subtitles of movie or TV series compared

to the translation performance in formal styled documents such as news articles. This

issue is known as the context-awareness machine translation.

Previous researches have tackled the context-awareness problem with another Trans-

former encoder that embeds the additional sentences into the context representation

[17, 31]. They have introduced the context encoder where the each additional sentence

is encoded into the word-level vectors and the remaining decoder part of Transformer

use the vectors to generate the translation. If multiple sentences are given as the ad-

ditional contexts, their context encoder project the additional sentences into a long
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sequence of word-level vectors, by concatenating all word-level vectors from the mul-

tiple sentences.

However, these methodologies has a critical disadvantage in processing a wider

range of context information. The computational efficiency of Transformer increases

quadratically with the length of tokens N in each context sentence and the number of

context sentences M . Furthermore, Transformer is also empirically known to have lim-

itations in capturing long-distance dependencies in translation tasks. [32, 33]. There-

fore, naively concatenating multiple sentences and treating as one long sentence is

not only computationally inefficient, but also weakens the context-awareness when the

number of context sentences M is large.

To strengthen the context-awareness of Transformer encoder, I propose Hierar-

chical Context Encoder (HCE) which first encodes each sentence into a sentence-

level vector and then hierarchically encodes the sentence-level vectors into a context-

level tensor. HCE extract a sentence-level vector from each sentence by the attentive

weighted sum module which is a pooling layer with the self-attention. Since each sen-

tence embedding vector contains the contextual information of each contextual sen-

tence, it enables building a context representation tensor by concatenating sentence-

level embedding vectors. Then, HCE passes the context representation into another

Transformer encoder in order to compute correlative information between contexts.

The final output tensor is obtained as a combination of the source tensor and the final

encoder output. HCE processes each context sentence separately instead of a long con-

catenated sentence, hence it shows efficiency in computational complexity. The com-

putational complexity of HCE increases linearly as the number of context sentences

increase and HCE shows the fastest running time among standard baseline models in

the experiments.

To generate more precise translation, I also propose the fusion of HCE and the

memory networks, Hierarchical Memory Context Encoder (HMCE). With HMCE,

each context sentence is vectorized using self-attention in the lower stage, which is
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the same as HCE. Then, in the upper stage of the HMCE, the source embedding in-

formation is utilized by referring to the context-input attention of the memory context

encoder as well as self-attention. In the final stage of HMCE, the result of the encoder

is emitted through source-context attention similar to HCE.

I conduct a series of extensive experiments on NMT with various language pairs

to empirically show that HCE properly yields better translation with multiple context

sentences. The experiments include public OpenSubtitles corpus in English-German,

English-Turkish and the web-crawled movie subtitles corpus in English-Korean. On

all language pairs, I observed that the translation qualities of HCE and HMCE outper-

form all the other models measured in BLEU score. Also, experiments on document

embedding shows that our HMCE outperforms the baseline machine translation mod-

els.

Furthermore, I have constructed an English→Korean evaluation set by crowd-

sourcing in order to analyze how well HCE and HMCE exploits contextual informa-

tion. The evaluation set consists of two parts, a part where contextual information is

helpful for translation and another part where contextual information is unhelpful. I

measure translation performances in each part and analyze the effects of contextual

encoders by evaluating the performance gap of the two parts. The results from this

evaluation set also show that HCE and HMCE outperforms the baseline models.

Overall, the main contributions on this chapter can be summarized as follows:

• I propose a novel architecture for embedding multiple sentences into a tensor in

order to exploit contextual information in machine translation tasks.

• I empirically show the effectiveness the proposed HCE by BLEU score, crowd-

sourced helpful/unhelpful evaluation set and a pronoun resolution test suite.

• I extend HCE with memory attention which shows higher performance in document-

level machine translation tasks.
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3.1 Related Works

3.1.1 Using Multiple Sentences for Context-awareness in Machine Trans-

lation

When designing context-aware machine translation models, it is important to focus on

additional contexts. In Statistical Machine Translation (SMT), context-awareness is

explicitly modeled designed for the specific discourse phenomena [34]. For example,

in translation, anaphora resolution typically involves identifying previously mentioned

nouns, numbers, and genders in the source document and manipulating the restoration

of the target sentence accordingly.

With the advance of deep learning, neural machine translation models overpow-

ered the previous SMT models. To address context-awareness in NMT models, one

can consider either context of the source or the target language. Using the source side

of the context requires an encoder for efficient representation of multiple context sen-

tences [35, 17]. On the other hand, the use of target-side contexts often involves multi-

pass decoding, which initially translates parts of a document or discourse, and then

subdivides translations that use previous translations as target contexts [36, 37]. In this

chapter, the proposed models, HCE and HMCE, focus on exploiting the source side of

context-awareness only.

The simplest approach to incorporating context into a source document is to con-

catenate all contextual sentences together and deliver them to a sentence-level model

[38]. Additional encoders for contexts have recently been introduced. Additional en-

coder modules for contextual sentences are natural extensions because the original

sentence and context sentence do not have the same importance in translation. In those

studies, context sentences are encoded separately and then incorporated into source

sentence representations using context-source attention and gating network on encoder

[17], decoder [39] or both [31].
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3.1.2 Structured Neural Machine Translation Models for Context-awareness

Furthermore, structured modeling of context sentences is also suggested to capture

complex dependencies between a source sentence and context sentences. For exam-

ple, [40] uses Recurrent Neural Networks (RNN) encoders that operate at the sentence

and document levels. [35] introduces a hierarchical attention network that encodes

context sentences and then summarize the context using hierarchical structures. [41]

introduces a memory network augmented model that summarizes and stores context

sentences. Because the proposed encoder incorporates hierarchically structured ab-

stractions of encoded context sentences, the proposed method in this chapter is closely

related to such approaches. [42] suggests a context attention module that participates

in both word and sentence-level contexts. It uses mean word embeddings as sentence-

level representations, while ours generates sentence-level tensors with transformer en-

coders, providing richer sentence representations.

3.1.3 Evaluating Context-awareness with Generated Translation

On the other hand, how to obtain the quality of translation with contextual information

is another major research question [39, 43]. Such research focuses primarily on the

design of evaluation tasks that evaluate the performance of translation models deal-

ing with discourse phenomenon problems such as pronoun resolution [17, 44]. [37]

also suggests that because standard metrics such as BLEU are insensitive to measur-

ing context-to-translation consistency, a carefully designed test suite is important to

evaluate context-aware translation models.

3.2 Proposed Approach: Context-aware Hierarchical Text

Encoder with Memory Networks

In this section, I briefly describe common parts of encoders in the context-aware NMT

framework. I also review other context-aware encoder-decoder structures as our base-
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line models. Then I describe a detailed explanation of Hierarchical Context Encoder

(HCE) and Hierarchical Memory Context Encoder (HMCE). In addition, I borrow the

computational complexity analyses of proposed encoder and other baseline structures

from my previous paper.

3.2.1 Context-aware NMT Encoders

NMT models without contexts take an input sentence x in a source language and return

an output sentence y′ in a target language. I denote a target sentence as y which is used

as a golden truth sentence in supervised learning. Each of x, y, and y′ is a tensor that

is composed of word vectors, also learnable weights during training.

I especially focus on attention based dense models like Transformer [3] which has

recently been a standard model for machine translation thanks to its overwhelming

performance. Transformer consists of an encoder module and a decoder module, an

encoder extract features in x using self-attention and a decoder generate an output y′

from the extracted features using both self-attention with itself and attention with the

encoder.

Through a single layer in Transformer encoder, an input tensor passes a self-

attention layer using multi-head dot product attention and a position-wise feed-forward

layer [3]:

TransformerEncoder(x) = FFN(MultiHead(x, x)). (3.1)

The position-wise feed forward layer, denoted as FFN(x), is composed double linear

transformation layer with a ReLU activation in between. The multi-head dot product

attention MultiHead and the dot product attention DotProduct are given as follows;

MultiHead(q, v) =

[DotProduct(q, v)1, ..., DotProduct(q, v)H ]W,
(3.2)

DotProduct(q, v) = softmax(
qW qW kvT√

D
)vW v, (3.3)
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where all W denote learnable weights, D is a dimension of hidden space, and H is

a number of heads. Both the self-attention layer and position-wise feed-forward layer

are followed by skip connection and layer normalization. In addition, a stack with

multiple TransformerEncoder is generally used in order to capture more abundant

representations.

With N many additional context sentences [c0, ..., cN−1] are given, an encoder has

to capture contextual information among them then combine the contextual informa-

tion with source sentence representations. I list four previously suggested models as

follows, which are also baseline models in the experiments;

• Transformer without contexts (TwoC): As a baseline, I have experimented

with Transformer without contexts (TwoC) model which has the same structure

as [3]. TwoC completely ignores given additional context sentences and only

incorporates with the input x and the target y. The computational complexity is

O((Ls)
2), where Ls is a length of input x.

• Transformer with contexts (TwC): The simplest approach is concatenating all

context sentences and an input sentence and consider the concatenated sentence

as a single input sentence;

x′ = Concat([x, c0, ..., cN−1]). (3.4)

Then, the output of TwoC encoder is the output of a stacked transformer encoder

with x′. The computational complexity is O((Ls +NLc)
2), where Lc is a fixed

length of context sentences. The complexity becomes quadratically expensive as

N grows.

• Discourse Aware Transformer (DAT) [17]: DAT handles context sentences

with an extra context encoder which is also a stacked transformer encoder. I

slightly modified DAT to make it available at handling multiple context sen-

tences since [17] is originally designed for handling a single context sentence.

18



The context encoder has the same structure and even shares its weights with

the source encoder through NLayer − 1 layers. In the last layer, the context

encoder has another transformer encoder module without sharing its weights.

The last layer of the source encoder takes an intermediate output tensor h′ which

is resulted from NLayer − 1 stacked transformer encoder, processes both self-

attention and context-source attention with t using MultiHead;

t =Concat([StackedTransformerEncoder(c0), ...,

StackedTransformerEncoder(cN )]),
(3.5)

hcontext = MultiHead(h′, t), (3.6)

and

hsource = MultiHead(h′, h′). (3.7)

the final output tensor of encoder h is given with the gated sum as follows;

h = σ(W h[hsource, hcontext] + bh), (3.8)

where W h is a learnable weights and bh is a learnable bias term.

The computational complexity of DAT is O(L2
s + NL2

c), which is comparable

to HCE. However, in order to process context-source attention with multiple

context sentences, it concatenates all tensors from each context encoders to a

long tensor where long-range dependencies of transformers may be limited.

• Document-level Context Transformer (DCT) [31]: The encoder of DCT is

similar to the DAT, except for the integration of the context and source encoder.

Instead of context-source attention and gated sum at the output of both encoders,

each layer of the source encoder takes encoded contextual information t and

compute context-source attention followed by point-wise feed-forward layer;

hcontext = MultiHead(h′, t), (3.9)
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and

h = FFN(hcontext). (3.10)

Since the extensive use of the context-source attention in the encoder, the com-

putational complexity of DCT is O(NLcLs + L2
s +NL2

c). This can grow pro-

hibitively, especially on handling long context sentences or when the number of

context sentences is large.

• Hierarchical Attention Networks (HAN) [35]: HAN has a hierarchical struc-

ture with two stage at every HAN layer. At the first level of the hierarchy, a

single HAN layer encodes each context sentence ci to an intermediate tensor

ei ∈ RLc×D with context-source attention;

ei = MultiHead(h′, ci), (3.11)

where h′ denotes an output from a previous layer or an input x. Each ei is a

tensor with a length of Lc and let eji be the j-th vector of ei.

At the second level of hierarchy, eji in all context sentences are concatenated

through i dimension, resulting tensors sj ∈ RN×D;

sj = Concat([ej0, ..., e
j
N ]), (3.12)

where N is a number of context sentences. Then, an intermediate output tensor

t which contains contextual information queried by each word from the input

sentence can be given as follows;

t = MultiHead(h′, sj). (3.13)

All MultiHead layers are followed by position-wise feed forward layers and

normalization layers. Finally, the output tensor h of HAN encoder is computed

with a gated-sum module introduced by [45]. The aforementioned structure of a

single layer in HAN is stacked NLayer times.

20



The computational complexity of HAN encoder is O(NLcLs + L2
s + NL2

c)

which is also comparable to my proposed model. Nonetheless, HAN encoder

requires context-source attention two times at every layers. Also, since the sec-

ond context-source attention is performed on si = Concat([ej0, ..., e
j
N ]), HAN

does not take account of internal correlations among [e0i , ..., e
Lc
i ].

3.2.2 Hierarchical Memory Context Encoder

I propose a novel context encoder that hierarchically encodes multiple sentences into

a tensor. The proposed context encoder, Hierarchical Context Encoder (HCE), is de-

signed to capture correlations between sentences in contexts as well as correlations

between words in each sentence.

Each context sentence ci after word embedding layer is given as a tensor of order

2; ci ∈ RLc×D′
where Lc is a maximum length of each context sentence and D′ is a

dimension of word embeddeing vectors. In the lower part of hierarchy, HCE encodes

each of ci to sentence-level tensor ei using the stacked transformer encoder as [3];

ei = StackedTransformerEncoder(ci). (3.14)

Each encoded sentence-level tensor ei is also a tensor of order 2, ei ∈ RLc×D where

D is a hidden dimension.

I then compress each encoded sentence-level tensor into a sentence-level vector by

a self-attentive weighted sum module which is similar to that of [46]. The self-attentive

weighted sum module takes ei as an input tensor and computes a vector si as follows;

si =
∑
j

αjeij , (3.15)

α = FFN(MultiHead(ei, ei)). (3.16)

The output of the attentive weighted sum module si is a vector representing the

information of each i-th context sentence. Then I concatenate [s0, ..., sN ] to a context

embedding tensor s. The context embedding tensor s ∈ RN×D is fed into another

21



Figure 3.1: Hierarchical Context Encoder. Each Transformers encoder followed by

attention weighted sum layer in lower hierarchy encodes each context sentence into a

sentence-level vector. Transformer encoder in upper hierarchy takes the sequence of

sentence-level vectors as an input tensor and encodes into the context-level tensor.
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transformer encoder layer which is the upper part of the hierarchy to encode the whole

contextual information into a single tensor t;

t = TransformerEncoder(s). (3.17)

Finally, the contextual information tensor t is combined to source encoder by gated

sum as Equation 3.6, 3.7, and 3.8, which is the same process introduced by [17]. Full

structure of HCE is depicted in Figure 3.1.

The main difference between HCE and other baseline models especially HAN is

that HCE encodes each context sentence as the way of sentence embedding with self-

attention independent to the source word, while HAN uses context-source attention.

To explain more in detail, two main differences between the hierarchical transformer

structures of HAN and HCE are as follows: 1) at the bottom part of the hierarchy,

HCE encodes each context sentence to a tensor with self-attention while HAN en-

codes each context sentence with context-source attention using query words from in-

put sentences; and 2) at the upper part of the hierarchy, HCE first uses the self-attentive

weighted sum to encode a tensor into a vector which contains the whole information

from each context sentence, then encodes the whole contexts with self-attention again.

On the other hand, HAN uses context-source attention again. To summarize, HCE

only models the context-source relations at the upper part of the hierarchy resulting in

a simpler and clearer model structure.

HCE encodes each context sentence into a sentence-unit vector through a model

composed of two hierarchies, and then allows the vector to encode the whole context-

unit tensor through self-attention. In order to improve HCE, I leverage the memory

attention as source-context attention that refers source embedding in encoding these

vectors into a tensor containing the entire context information. Finally, I propose Hi-

erarchical Memory Context Encoder (HMCE) where each context statement is elab-

orately encoded through self-attention to affect the encoded context vector through

memory attention when referencing it in a subsequent input sentences.

Figure 3.2 describes the structure of HMCE. The encoding process of the context
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Figure 3.2: The overview of Hierarchical Memory Context Encoder. Upon HCE, Mem-

ory attention layer is added after the self-attention in upper hierarchy. The memory

attention layer takes its query value from the input representation as it computes the

correlation between the input representation and the context-level tensor. To generate

the translation, the output of HMCE is fused to the decoder with a gated sum module

after a enc-dec attention layer (Context-Source Attention).
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and source sentences in the lower hierarchy where the encoding of the sentence unit

is performed is the same as that of the HCE. Each contextn embedding is converted

into a tensor called Encoded contextn through a total of N self-attention layers. After

that, each encoded context is converted into a vector through the attention weighted

sum (average over time after self-attention) introduced by the HCE. An out tensor of

the lower hierarchy that collects all encoded contexts becomes the input of the hierar-

chy above. In the upper part, the tensor containing all context information first passes

through the self-attention layer and then through the memory attention layer that re-

ceives the source embedding as value. Since the memory attention is also multi-head

dot product attention, the effect of each context sentence from the word in the source

is additionally calculated through this process. Finally, context encoding is completed

through feedforward layer, and encoding is completed through source-context atten-

tion layer and gated sum.

The computational complexity of HCE and HMCE are both O(L2
s +NL2

c). HCE

and HMCE extract more compact context-level representation from each sentence-

level representation by self-attentive weighted sum over each ei, hence it complements

DAT [17] and DCT [31] whereas they take the whole contexts as a single sentence by

concatenation. Besides, the encoding procedure of context sentences is not dependent

on the input sentence x unlike HAN. This allows HCE to cache context-level represen-

tations t of frequently appeared context sentences, which is important in implementing

a real-time application.

3.3 Experiments

I evaluate HCE and HMCE by BLEU score, model complexity, and BLEU scores on

helpful/unhelpful set. All experimental results show the effectiveness of the proposed

structures compared to baseline models.
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Table 3.1: Bilingual subtitle samples from the web-crawled English-Korean test files
Start Time End Time English Korean

···

337733 339967 Daniel likes hanging out with his cousins. 다니엘은 사촌들과 노는걸 좋아했거든요

340035 341168 He's been going back and forth until Leith and I 양육권을 제대로 가질 수 있을때까지

341236 342303 can settle custody. 왔다 갔다 했어요

344373 345940 Listen, don't worry. 너무 걱정 마세요

···

3.3.1 Data

I experimented with HCE, HMCE and baseline models on English-German TED cor-

pus, English-German OpenSubtitles corpus, English-Turkish OpenSubtitles corpus,

English-German WMT19 corpus, and the web-crawled English-Korean subtitle cor-

pus.

English-German IWSLT 2017 Corpus

I use the English-German corpus from the IWSLT 2017 evaluation campaign [47],

which is publicly available on WIT3 website1. The corpus consist of transcriptions

and their translations of TED talks. I combine dev2010 and tst2010 into a de-

velopment(dev) set and tst2015 as a test set. I extract context-aware dataset where

each set consists of a source, a target sentence and multiple context sentences. Since

the corpus is aligned as sentence level, I assume that every 2 preceding sentences are

context sentences. I also include context sentences only within the same talk of the

source sentence, as the data is separated as talks. The resulting dataset consists of

211k, 2.4k, 1.1k examples of train, dev, test sets respectively. Also, I put a special

beginning of context token at the beginning of each context sentences to differentiate

from source sentences. Finally, I have used a byte-pair encoded vocabulary with about

16,000 tokens.
1https://wit3.fbk.eu/mt.php?release=2017-01-trnted
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OpenSubtitles Corpus

I also choose the OpenSubtitles corpus for English-German and English-Turkish tasks.

I use the 2018 version [48] of the data, each consist of 24.4M , 47.4M parallel sen-

tences respectively. Following the approach in [37], I first cleaned the data by picking

only pairs with a time overlap of subtitle frames at least 0.9. After cleaning, I take

7.5M and 20.2M sentences for English-German and English-Turkish corpus.

I then take the context sentences by using the timestamp of each subtitle. The

timestamps contain start time and end time in ms for each subtitle. I focus on the start

times to compile a set of data including a source sentence and preceding contextual

sentences. I assume that if the start time of a preceding sentence is within 3000 ms

from the start time of a sentence then that preceding sentence contains the contextual

information. I set the maximum number of preceding contextual sentences up to 2.

English-Korean Subtitle Corpus

Finally, for English-Korean experiments, I construct a web-crawled subtitle corpus

with 5,917 files. These files are English-Korean bilingual subtitle files of movies,

TV series, and documentary films from various online sources. I set randomly se-

lected 5.3k files for train, 500 files for dev, and 50 files for test set. The train set in-

cludes 3.0M sentences, the dev set includes 28.8k sentences, and the test set includes

31.1k sentences. The web-crawled English-Korean bilingual subtitle files include time

stamps for each subtitles. Thus I pre-process those files as similar as processing in Sec-

tion 3.3.1. The resulting data have 1.6M sets of serial sentences in train set, 155.6k

sets in dev set, and 18.1k sets in test set. I also have used a byte-pair encoded vocab-

ulary with about 16,500 tokens for English-Korean experiments. I display some raw

samples from the test set in Table 3.1.
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3.3.2 Hyperparameters and Training Details

Through my experiments, I use 512 hidden dimensions for all layers including words

embedding layers, transformer layers, and the encoded context layer. I set NLayer = 6

for all models and share the weights of the source encoder to context encoder for the

DAT, HAN, and HCE models. For all attention mechanisms, I set the number of heads

as 8. The dropout rate of each layers is set to 0.1.

For each language pair, I tokenize each text by the wordpiece model [49, 23] with

a vocabulary of about 16,000 tokens. Also, I put a special beginning of context to-

ken <BOS> at the beginning of each context sentences to differentiate from source

sentences.

I implement all the evaluated models using the tensor2tensor framework

[50]. I train all models with ADAM [51] optimizer with learning rate 1e-3 and adopt

early stopping with dev loss. Unlike [35, 31, 42], I do not use the iterative training

which trains the model on a sentence-level task first, then fine-tunes the model with

contextual information. All the models I have evaluated are trained from scratch with

random initialization.

For scoring BLEU, I use the t2t-bleu script2 which outputs the identical results

as Moses script [52].

3.3.3 Overall BLEU Evaluation

I measure performances of HCE and other five baseline models in English-German

(IWSLT’17 and OpenSubtitles), English-Turkish (OpenSubtitles), and English-Korean(The

Web-crawled corpus). Overall BLEU scores on all eight datasets are displayed in Table

3.2. HCE yields the best performances on all eight datasets. Especially on the Web-

crawled English-Korean, HCE shows superior performance compared to other models.

These results indicate that HCE and HMCE exploit given contextual sentences effec-

tively and translate better than all five baseline models in English-German, English-
2https://github.com/tensorflow/tensor2tensor
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Table 3.3: BLEU score on multiple context sentences.

Model En→De En→De

TwC 23.20 28.55

HCE with 2 context sentences 23.32 28.69

HCE with 2 context sentences + Document vector 23.59 29.27

HCE with 10 context sentences + Document vector 23.71 29.30

HMCE with 2 context sentences 24.56 28.85

HMCE with 2 context sentences + Document vector 24.82 29.63

HMCE with 10 context sentences + Document vector 24.96 29.61

Turkish and English-Korean translation tasks. HMCE also records comparable BLEU

score to HCE but slightly lower.

In document-level NMT using WMT 2019 En-De corpus, HMCE shows its ad-

vantages. Unlike the previous experiments where I use two preceding sentences as

contexts, I expand the context range up to 10 sentences. As a result of the experiment,

both HCE and HMCE show better performance than other baselines of the same num-

ber of learning times when fine-tuned by adding a document level vector. Although it is

not as dramatic as in En-Ko corpus, there is an improvement in BLEU score by about

5% compared to the Transformer in sentences based on En-De. On the other hand,

in comparison between HCE and HMCE, the addition of the memory attention mod-

ule and the document level vector shows a performance improvement of about 2-3%.

Therefore, it can be considered that the document level information helped improve

translation quality.

3.3.4 Model Complexity Analysis

I also observe that HCE is the most efficient in training speed and inference time

among all baselines. In Table 3.4, HCE records the fastest training speed and inference

time indicating that HCE has the most computationally efficient structure. As well
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Table 3.4: Training speed, inference time and number of parameters.

Model training speed inference time # of Params

(steps/sec) (tokens/sec)

TwC 4.07 62.10 61.0M

DCT 2.42 45.32 98.7M

DAT 4.59 65.07 69.9M

HAN 4.47 64.05 66.2M

HCE 4.67 65.12 66.7M

HMCE 4.65 65.07 68.8M

as HCE, HMCE also has more time-efficient structure than other baselines. HMCE

records comparable speed in both training and inference. These results also show that

the performance gain of HCE and HMCE is not only from the complexity of the model

but the structural strength because the number of parameters is comparable to others.

3.3.5 BLEU Evaluation on Helpful/Unhelpful Context

In order to verify that HCE and HMCE effectively utilize the contextual information

to improve translation quality, I conduct an additional experiment with a part of data

where contextual sentences are helpful for translating and the other part of data where

they are not. I randomly choose 10,000 sets of serial sentences from the test set of

En→Ko data and split them up into two parts by crowd-sourcing with Amazon Me-

chanical Turk [53]. The first part consists of 4,331 sets of which context sentences

are helpful for translating (e.g. context sentences include critical information, exact

referred object by pronouns, or residual parts of an incomplete source sentence). The

remaining part consists of 5,669 sets of which context sentences are unrelated to trans-

late the source sentences.

I examine BLEU scores of two parts separately to observe how well each model

uses helpful contexts. The results are displayed in Table 3.5. I observe a large gap
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Table 3.5: BLEU score evaluations with helpful contexts set and unhelpful contexts set

from En→Ko test data. All four baseline models have shown large gap between BLEU

score on helpful contexts set and BLEU score on unhelpful contexts set. On the other

hand, the proposed Hierarchical Context Encoder has almost closed the gap between

BLEU scores on two sets.
Model Total set helpful set unhelpful set BLEU gap

Transformer without contexts 7.46 6.69 8.04 +1.35

Transformer with contexts 8.29 7.45 8.92 +1.47

DAT [17] 8.22 7.48 8.77 +1.29

HAN [35] 8.34 7.44 9.01 +1.57

HCE 10.27 10.08 10.40 +0.32

HMCE 9.56 8.78 10.16 +1.38

between BLEU score on helpful set and that on unhelpful set with all four baseline

models, showing that helpful set is harder to translate because abstracting and exploit-

ing contextual information is likely to be mandatory to translate helpful set. On the

other hand, HCE closes the gap between BLEU scores on each set, indicating that

HCE understands the contextual information and is able to perform on helpful set as

well as on unhelpful set.

3.3.6 Qualitative Analysis

Table 3.6 shows context-aware translation examples from the test set. As in the first ex-

ample, HMCE is able to capture the context of ”didn’t know” from Context 1 and yields

the corresponding Korean translation “할줄알았거든요.” whereas Google Translator

does not concern such context. The second example also shows the strength of HMCE

that is able to complete the translation although the input sentence is a phrase rather

than a complete sentence. While Google Translator yields a Korean phrase which is

correspond to the word-by-word translation, HMCE captures the context of “did find
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Table 3.6: English→Korean Context-aware translation examples.

Example #1

Context 1 Yeah.

Context 0 See, I didn’t know that I was coming here

Input and we were gonna have a serious conversation.

HMCE 진지한대화를할줄알았거든요.

Google 그리고우리는진지한대화를나누기로했습니다.

Example #2

Context 1 Unfortunately, no.

Context 0 But I did find something

Input on the other recording that the killer left us.

HMCE 범인이남긴다른녹음에서뭔가찾았어요.

Google 살인자가우리에게남긴다른녹음에서.

Example #3

Context 1 I am just stating the facts, ma’am.

Context 0 Next time you talk to the AUSA,

Input I’d share that little fact.

HMCE 나라면그사실을공유하겠네.

Google 그작은사실을공유합니다.

Example #4

Context 1 What’d it say? I don’t know. I haven’t listened to it.

Context 0 I’ve been too afraid, you know, to hear his voice.

Input Well, do you want to listen to it right now?

HMCE 지금들어볼래?

Google 자,지금바로듣고싶으세요?
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something” from the preceding context sentence and generate the complete translation

sentence. In the third example, HMCE generates the translation in recommendation

style corresponding to ”I’d” in the context, yet Google Translator translates into the

meaning of “I will share ...” which is less proper than HMCE’s translation. Neverthe-

less, in few examples such as the fourth, HMCE often omits too much information (it

omits the meaning of “Well,” and “right”), which I suspect the reason is such omissions

are quite often in the web-crawled spoken-style dataset.

3.3.7 Limitations and Future Directions

Although I show that HCE and HMCE outperform other baseline architectures using

preceding sentences for machine translation, there still remain a few limitations of this

study. I compare these limitations with the latest studies one by one, and suggest the

direction to move forward.

• Decoder-friendly Architecture: HCE and HMCE are mainly focused on the en-

coder side of Transformer. Hence, HCE and HMCE are limited to use encoder-

side contextual information, such as the preceding sentences of input languages.

Additionally, this limitation may keep these architectures from leveraging the

power of big language models (e.g. GPT-3[7]), because most of big models

adopt decoder-only architectures. To overcome such limitation, I suggest a fu-

ture direction of this study as applying hierarchical structure and memory atten-

tion into the decoder-only architecture in future studies.

• Exploiting Following Sentences: In the experiments, I only utilize one to three

preceding sentences before the input sentence which is to be translated. There

may be benefits to use following sentences which come after the input sentence,

since there are often important information at the end of a paragraph or a docu-

ment particularly in spoken languages. However, when applying these methods

in real-life scenarios, one must take care of the inference phase where there are
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not given information of future unlike to the training phase. In order to utilize

various form of context information, deeper understanding of internal character-

istics of Transformer is mandatory. Therefore, I suggest to study further about

the characteristics of representation inside Transformer to achieve better under-

standing of attention layer. This directly leads to the next part of this dissertation,

the analyses on representational diversity of Transformer.

3.4 Conclusion

In this chapter, I have proposed Hierarchical Context Encoder (HCE) structure and

Hierarchical Memory Context Encoder (HMCE) which are able to efficiently exploit

multiple contextual sentences. Based on Transformer architecture, HCE and HMCE

outperform all baselines in various machine translation tasks including English-German,

English-Turkish and English-Korean translation tasks. Also the proposed models are

the most efficient in terms of computational complexity. I also have shown that HCE

closes the gap of translation quality between the sentences with helpful contexts and

the sentences with unrelated contexts, implying that HCE is better at exploiting the

helpful contextual information for translating than baseline models. In document-level

machine translation, HMCE also have recorded the highest performance among the

baseline models.
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Chapter 4

Optimizing Representational Diversity of Transformer

Architecture

Since multi-head attention has been introduced by Vaswani et al. [3], it has become

a standard setting across various Natural Language Processing (NLP) tasks. Vaswani

et al. have stated that multi-head strategy can collocate information from different

representation subspaces and thus improves the performance of attention mechanism,

whereas single-head attention averages the information. Most of the state-of-the-arts

models report that multi-head attention is helpful to increase their performances, in-

cluding BERT [4] and XLNet [6] for language understanding, Transformer [3] for

machine translation, and HIBERT [54] for document summarizing.

Despite its huge empirical success and dominant usage, few studies have explored

the roles of the multi-head strategy to give us a better understanding on how it enhances

a model’s performance. Clark et al. [8] have analyzed attention maps of multi-head

attention and showed that certain heads are relevant to specific linguistic phenomena.

Similarly, Voita et al. [9] has analyzed that certain heads are respectively sensitive to

various linguistic features by using layer-wise relevant propagation. Although these

studies imply that there exists diversity of representation subspaces among multiple

heads, their analyses are mainly focused on linguistic diversity.
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In order to inspect essential effects of multi-head attention in representational sub-

spaces, Li et al. [55] have proposed the disagreement score which measures cosine

similarity between two heads’ representation and maximized the disagreement score to

diversify inter-head representations. Li et al. have shown that maximizing the disagree-

ment score increases performance, which implies that inter-head statistics in multi-

head attention are closely related to the model’s performance. However, disagreement

score has its limitation since cosine similarity of two random vectors in high dimension

are close to 1, as known as the curse of dimensionality.

To overcome the limitations of previous studies, I seek answers to following three

fundamental questions: (1) Does multi-head strategy diversify the subspace represen-

tations of each head? (2) Can we finely optimize the degree of inter-head diversity

without changing model’s architecture? and finally (3) Does controlling inter-head di-

versity improve a model’s performance?

I measure the inter-head similarity of multi-head attention with Singular Vec-

tor Canonical Correlation Analysis (SVCCA) [10] and Centered Kernel Alignment

(CKA) [21], as they are recently developed tools to measure similarities of two deep

representations. Applying these similarity measures, I empirically show that the di-

versity of multi-head representations does increase as the number of heads increases

which is solid evidence supporting the statement of Vaswani et al. [3] that the multi-

head strategy utilizes diverse representational subspaces. Furthermore, I suggest three

techniques to optimize the degree of diversity among heads without architectural change

of a model.

I first focus on trainability of CKA because CKA is differentiable and its gradients

can be easily computed with popular frameworks such as Tensorflow [56]. I adopt

Hilbert-Schmidt Independence Criterion (HSIC) inspired by CKA as an augmented

loss in order to directly diversify the inter-head diversity of a model.

Then, I revisit the orthogonality regularizer that adds disagreement loss [55] be-

tween representations of heads. Surprisingly, opposed to the expectation of Li et al. [55]
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expected, I empirically show that the orthogonality regularizer does not force a model’s

inter-head diversity to increase measured in SVCCA and CKA. Instead, I find that it

helps a model by encouraging top-few SVCCA directions to be closer which can be

interpreted as core representations [57].

Lastly, I inspect Drophead method [58] by which a model randomly drops outputs

of each head at training to show that I also can decrease the inter-head diversity without

architectural change. Drophead reduces an effective number of heads at each training

step and hence increases the inter-head similarity, while a model also benefits from the

advantages of Dropout [59].

I test the methods on various tasks including De-En IWSLT17 corpus [60], Zh-En

in UN parallel corpus [61] on machine translation, and also PTB corpus on language

modeling. The experimental results show that the suggested three methods comple-

ment each other and find the optimal inter-head diversity. The models with the pro-

posed methods achieve higher performances compared to their baselines in all experi-

ments.

4.1 Related Works

4.1.1 Analyses of Diversity in Multi-Head Attention

As the multi-head strategy has shown its strength in many NLP tasks, there have been

several attempts to analyze it with various approaches. By evaluating attention weights

of ambiguous nouns in machine translation, Tang et al. [62] have shown that multi-

head attention tends to focus on ambiguous tokens more than general tokens. Clark et

al. [8] and Raganato et al. [11] also have analyzed attention weights and concluded

that each head plays different roles to understand syntactic features. Voita et al. [9]

and Michel et al. [13] have claimed that most of the heads can be pruned once the

model trained as they have analyzed the multi-head mechanism via layer-wise relevant

propagation and ablating heads respectively.
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On the other hand, several works have tried to analyze the similarity between

representation spaces of neural networks in favor of achieving interpretability. Li et

al. [12] have proposed alignment methods with a correlation of neurons’ responses

and claimed that core representations are shared between different networks while

some rare representations are learned only in one network. More recently, Raghu et

al. [10] have first applied CCA as a similarity measure and proposed SVCCA in or-

der to pick out perturbing directions from deep representations, and Morcos et al. [63]

have suggested Projection Weighted CCA (PWCCA) as a method to make SVCCA

more reflective to the subspaces of representations via projection. Kornblith et al. [21]

have proposed CKA as a more robust similarity measure to small numbers of samples

using a normalized index of HSIC with kernel methods.

4.1.2 Similarities between Deep Neural Representations

Towards the interpretability of the deep representation, some studies have utilized

similarity measures of deep representations. Maheswaranathan et al. [64] have ap-

plied CCA, SVCCA, and CKA to Recurrent Neural Networks (RNN) and discovered

that the geometry of RNN varies by tasks, but the underlying scaffold is universal.

Kudugunta et al. [65] have applied SVCCA across languages on multilingual machine

translation to show there are shared representations among language representations.

Bau et al. [57] also have applied SVCCA to identify meaningful directions in machine

translation and showed that top-few directions in SVCCA similarity are core represen-

tations since they are critical to a model’s performance when erased.

Closely related to the orthogonal loss, decorrelation methods have been proposed

in node level [66, 14, 67] and in group of nodes level [55, 68]. Rodriguez et al. [66],

Xie et al. [14], and Bansal et al. [67] have shown that decorrelating each node through

orthogonal constraint can achieve higher performances. Li et al. [55] have applied

the decorrelating term to multi-head attention, which inspires us to use orthogonal

constraints in order to control inter-head diversity. Gu et al. [68] have showed that

39



cosine similarity based constraint in group of nodes can achieve higher performances,

as it improves generalization capacity of the model.

4.2 Similarity Measures for Multi-Head Attention

4.2.1 Multi-Head Attention

Multi-head attention is first suggested by Vaswani et al. [3] as a strategy that diversifies

representation subspaces in order to fully utilize a model’s capability. I briefly review

how single-head and multi-head attention operates.

For single-head attention, an output matrix X ′ ∈ RL×d with its inputs (a query

vector q′ ∈ Rd, a key matrix K ′ ∈ RL×d, and a value matrix V ′ ∈ RL×d) is computed

as follows:

X’ = softmax(
q′K ′T
√
d

)V ′, (4.1)

where L is a length of key and value matrix and d is a hidden dimension size. The

single-head attention first computes attention weights by taking softmax function onto

similarity scores between a query vector and key matrix, then finally operates multipli-

cation with value matrix which can be considered as a pooling operation from a value

matrix with the attention weights.

On the other hand, multi-head attention operates H-many single-head attentions

in parallel with qi ∈ Rdh , Ki ∈ RL×dh , Vi ∈ RL×dh , where qi, Ki, Vi are projections

of q, K, V onto smaller dimension dh with weight matrices W q
i , WK

i , W V
i ∈ Rd×dh

respectively for each i-th head. The output of multi-head attention is calculated by

concatenating all outputs of H-many heads followed by final linear projection:

X = [X1, ..., XH ]WO, (4.2)

where Xi indicates an output of the i-th head and WO ∈ Rd×d is a weight matrix.

Figure 4.1 shows examples of self-attention weights in Transformer model. Given

the query word ”representation”, the single-head attention module outputs attention
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weights for other words (a). On the other hand, each head in multi-head attention

assigns different weights for other words as each head has its own weight matrix (b).

Although it has been believed that multi-head attention diversifies representation

subspaces, measuring the similarity among deep representations of each head has been

rarely studied. Measuring the inter-head similarity requires taking account of heads’

response over the entire dataset. To do so, I adopt the following advanced tools for

measuring similarity of representations in neural networks.

4.2.2 Singular Vector Canonical Correlation Analysis (SVCCA)

To measure the similarity between two deep representations, Raghu et al. [10] have

amalgamated Canonical Correlation Analysis (CCA) with Singular Value Decompo-

sition (SVD) into a novel method, Singular Vector Canonical Correlation Analysis

(SVCCA). Raghu et al. [10] has claimed that SVCCA is invariant to affine transform,

hence it can measure the similarity between unaligned deep representations.

SVCCA proceeds in two steps to seek correlation coefficients between two deep

representations with N samples Xi and Xj ∈ RN×d: (1) SVCCA performs SVD of

each representation to pick out core representations, then (2) computes CCA of the

core representations. Resulting SVCCA coefficients ρij are computed as follows:

ρij = max
a,b

corr(aTUiXi, b
TUjXj), (4.3)

where Ui and Uj are left orthogonal matrices computed from SVD of Xi and Xj

respectively. SVCCA similarity between two deep representations using SVCCA is

defined as a mean value over top SVCCA coefficients with a threshold such that covers

all meaningful subspaces. In this chapter, I measure inter-head similarity by averaging

SVCCA similarity between two heads over all possible pairs of heads.
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4.2.3 Centered Kernel Alignment (CKA)

Kornblith et al. [21] have introduced Centered Kernel Alignment (CKA) as a similarity

measure between deep representations. The authors have pointed out a limitation of

SVCCA that it is invariant to invertible linear transformation when dimension size

exceeds the number of data, whereas CKA shows robustness regardless of a small

number of data N .

CKA is calculated by normalizing an index of Hilbert-Schmidt Independence Cri-

terion (HSIC) [69] in order to keep invariance to isotropic scaling. For a pair of heads

Xi = (xi1, xi2..., xiN )T and Xj = (xj1, xj2..., xjN )T , I can define two matrices

Kikl = κ(xik, xil) and Kjkl = κ(xjk, xjl) where κ is kernel function. Then HSIC

between two heads is computed as follows:

HSIC(Ki,Kj) =
1

(N − 1)2
tr(KiCKjC), (4.4)

where C is a centering matrix CN = IN − 1
N 11T , where 1 is a vector of ones. CKA

of a pair of heads is computed by normalizing HSIC [70, 71]:

CKA(Ki,Kj) =
HSIC(Ki,Kj)√

HSIC(Ki,Ki)HSIC(Kj ,Kj)
. (4.5)

Finally, I define inter-head similarity using CKA as an average value over CKA of

every possible pair of heads:

CKAmulti =
1

# of pairs

∑
i<j

CKA(Ki,Kj). (4.6)

In this chapter, CKA similarity is used as not only a tool for analyzing inter-head

diversity as well as SVCCA statistics but also an augmented loss to control inter-

head diversity.

4.3 Proposed Approach: Controlling Inter-Head Diversity

In this section, I inspect three methods for multi-head attention to finely control inter-

head diversity in training. The three methods are architecture-agnostic, task-agnostic,
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and able to fine-tune so that they can be easily applied to any existing models with

multi-head attention.

4.3.1 HSIC Regularizer

Because Kornblith et al. [21] have demonstrated that CKA robustly performs even

with a small number of samples, I exploit it directly as an augmented loss term to

enforce inter-head representations to be diverse. While SVCCA similarity is inappro-

priate for a regularizer term to be used in training because it requires many samples,

CKA can properly operate within samples randomly drawn from a mini-batch. Since

CKA is fully differentiable function and its gradient can be properly back-propagated

through neural networks, I can directly use CKA as an additional loss term in training.

As directly optimizing CKA loss, I expect representational subspaces of multi-head

attention to be diverse.

To prevent high computational cost in training, I only compute HSIC term (Equa-

tion (4.4)) as an augmented loss. HSIC regularizer term Lhsic is computed by average

of HSIC values with every possible pair of heads as follows:

Lhsic = λhsic ·
1

# of pairs

∑
i<j

HSIC(Xi, Xj), (4.7)

where Xi is a representation of the i-th head. HSIC is zero when two variables are

independent, hence I expect that HSIC regularizer increases inter-head diversity by

minimizing Lhsic in training.

4.3.2 Orthogonality Regularizer

I also revisit the orthogonality loss [55] which adds disagreement term on between

heads’ representations. The disagreement term can be interpreted as a weak orthogonal

constraint term since it is computed by cosine similarity between Vli and Vlj , where

Vli is the l-th vector in the i-th head. Therefore, the disagreement term orthogonalizes
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an orientation through minimizing the cosine similarity. I apply the disagreement term

to q, K, and V in my model, assuming that it can give variation to inter-head diversity

with SVCCA and CKA.

In line with orthogonality regularization, Bansal et al. [67] have suggested Spectral

Restricted Isometry Property (SRIP) regularization as a stricter orthogonal constraint.

SRIP regularizer minimizes a spectral norm of orthogonality to its target matrix more

strictly because the spectral norm requires all singular values of its target matrix to

be close to 1. Thus, by utilizing both SRIP regularizer and the disagreement regu-

larizer, I suggest an orthogonality regularizer for multi-head attention as a tool for

controlling inter-head diversity. The orthogonality term Lortho is computed as follows.

I first build Vall by collecting every l-th vector of value matrix V in every i-th head,

Vall = [V0, ..., Vi, ..., VH ]. Then, I take SRIP of Vall:

Lortho = λortho · σ(V T
allVall − I), (4.8)

where σ(W ) is the spectral norm of W .

Surprisingly, although Li et al. [55] has claimed that the disagreement regularizer

encourages inter-head diversity, I find it slightly decreases inter-head diversity mea-

sured with SVCCA and CKA. However, instead of encouraging inter-head diversity,

we observe that the orthogonality regularizer increases top-few SVCCA coefficients

that can be regarded as core representations. I report detailed results and discussion in

Section 4.5.

4.3.3 Drophead

I also inspect Drophead [58] as the very naive but effective method to control the di-

versity. Zhou et al. [58] have introduced Drophead as a regularizing method in order

to reduce overfitting similar to Dropout [59]. Zhou et al. have introduced Drophead

as a method that drops an entire attention head during training and shown that the

Drophead improves the model’s robustness and performance with carefully scheduled
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dropout rate. Unlike Zhou et al., I mainly focus on how Drophead controls and di-

versifies the inter-head similarity. I use more naive Drophead method that randomly

zero-out each head in training with a dropout rate γ, a real value ranged from 0.0 to

1.0. Drophead only requires a scalar hyperparameter γ while a model can keep its

architecture identical. Also, Drophead can be applied to training without additional

computational cost.

Drophead reduces the effective number of heads by randomly dropping it out in

training, hence it operates similarly to decreasing number of heads in training and

decreases inter-head diversity. Simultaneously, applying Drophead can benefit the ad-

vantages of Dropout as well as Zhou et al. have shown. In the experiments, Drophead

is applied independently to Dropout.

4.4 Inter-Head Similarity Analyses

In this section, I investigate how SVCCA and CKA values change with respect to the

number of heads. By analyzing the diversity of representation subspaces, I show that

how SVCCA and CKA reflect the dynamics of inter-head similarity in terms of the

numbers of heads.

4.4.1 Experimental Details for Similarity Analysis

• Data and Setups: I choose De→En IWSLT17 machine translation task [60] for

my analysis in this section. Training set consists of 223,162 sentences, devel-

opment set consists of 8130 sentences, and test set consists of 1116 sentences.

To tokenize the corpus, I use Byte Pair Encoding [22] with a vocabulary size

of 16,384. I use Transformer [3] architectures with various numbers of heads

and hidden dimension sizes for comparison. For all models, I use 6 layers for

encoder’s self-attention, decoder’s self-attention, and encoder-decoder attention

modules.
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• Performances of trained models: Table 4.1 shows BLEU scores of models

with various hidden dimension sizes and numbers of heads. As represented in

Table 4.1, increasing hidden size d results in higher BLEU performances with a

fixed number of heads, although increasing the number of heads does not always

assure higher performance with fixed hidden size.

4.4.2 Applying SVCCA and CKA

In order to verify whether the multi-head strategy affects models’ representation sub-

spaces, I examine SVCCA statistics between representations of heads in each model.

To utilize SVCCA and CKA, I collect responses X = [X1, ..., XN ] of each head at

the last layers of three modules (encoder’s self-attention, decoder’s self-attention, and

encoder-decoder attention) from development dataset consisting of num sentence sen-

tences, so that I have N = num sentence × token per sentence many d-dimensional

vectors. We compare nine models with a number of heads h = {2, 4, 8, 16} and hid-

den size d = {64, 128, 256, 512} in order to examine how those architectural parame-

ters change inter-head diversity. We report the results of the last layer of the encoder-

decoder attention module only, yet I find the same tendency through every layer of

every module.

4.4.3 Analyses on Inter-Model Similarity

I first examine SVCCA statistics of representations of five models versus representa-

tion of a single-headed model. I compare five models with varying numbers of heads

(H = 1, 2, 4, 8, and 16) and fixed hidden size d as 512.

As shown in Table 4.2, SVCCA similarities between multi-headed models and a

single-headed model, I can see that the response of a model is getting more dissimilar

to a single-headed model as the number of heads increases. SVCCA coefficient curves

also show similar results in Figure 4.2. SVCCA coefficients drop more rapidly with
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Figure 4.2: Singular Vector Canonical Correlation Analysis (SVCCA) coefficient

curves versus a single headed model.

large number of heads in every layer. These results indicate that multi-head strategy

can induce a model to find some representations uncorrelated to a single-headed model

while its core representations remain, as shown as top few SVCCA coefficients are

high.

4.4.4 Does Multi-Head Strategy Diversify a Model’s Representation Sub-

spaces?

Table 4.3 shows inter-head similarity using SVCCA and CKA of each model. Both inter-

head similarity measures using SVCCA and CKA show a persistent tendency that the

inter-head similarity of each model decreases as the number of heads increases. On the

other hand, I observe that increasing hidden dimension size d does not meaningfully

affect the inter-head similarity with a fixed number of heads.

In addition to Table 4.3, I plot SVCCA coefficient curves of inter-head similarity

in Figure 4.3. With various number of heads H = {2, 4, 8, 16} and fixed dim/head =

{32, 64} ((a) and (b) in Figure 4.3), I observe that increasing number of heads make

SVCCA coefficients smaller, indicating that inter-head diversity also increases. I also

observe the same tendency with fixed dim ((c) in Figure 4.3), while I cannot find

any consistency of inter-head similarity with fixed number of heads ((d) in Figure 4.3).
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Besides, I observed an interesting feature of SVCCA similarity curves that well-trained

models have steep slopes on top-few SVCCA coefficients. I later discuss the steepness

of top-few SVCCA coefficients in Section 4.5. My analysis of inter-head similarity

measured by SVCCA and CKA statistically support the hypothesis that multi-head

attention diversifies deep representations.

4.5 Experiments on Controlling Inter-Head Similarity Meth-

ods

To examine how the three methods affect multi-head attention, I analyze inter-head

similarity statistics on De→En machine translation task with IWSLT17 corpus. I also

report the experimental results through extensive experiments on machine translation

and language modeling tasks to empirically verify that the three methods can make a

model achieve higher performance than its baseline model.

4.5.1 Experimental Details

• Data and Setups: I test the proposed methods on machine translation tasks with

De-En WMT17 corpus [72], Ru-En UN corpus, and Zh-En UN corpus [61].

For WMT17 and UN corpus, I sample 2.5 M sentences randomly from each

training set for training and use the whole development/test sets, similar to the

setup of Voita et al. [9]. Each corpus has development set consisting of 16,573

and 4000 sentences respectively and test set consisting of 3004 and 4000 sen-

tences respectively. I also test the methods on a language modeling task with the

Penn Treebank corpus [73]. I follow the rest of details as mentioned in Section

4.4

• Model architectures: I set a baseline model as an encoder-decoder Transformer

with 6 layers, 512 hidden size, and 8 heads for every machine translation task.

For language modeling, I use only the decoder part of Transformer only with
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2 layers, 256 hidden sizes, and 4 heads. For each model named with ORTHO

and HSIC, I add each regularization term Lortho and Lhsic to Transformer’s de-

fault loss term. I choose the value of hyperparameters Drophead rate, λortho

and lambdahsic by grid search on De→En IWSLT17 task; Drophead rate= 0.1,

λortho = 1.0, and λhsic = 10−7. I apply the same values for other models.

4.5.2 Analysis on Controlling Inter-Head Diversity

I report the performances of the suggested methods in Table 4.4 and the controlled

inter-head similarity with the suggested methods in Table 4.5. I also plot SVCCA

coefficient curves in Figure 4.4.

With Drophead, all models show increased inter-head similarity compared to the

baseline. As γ increases to 0.0 to 0.5, inter-head similarity indeed increases to 0.397

to 0.709, indicating that Drophead affects inter-head similarity by reducing the num-

ber of effective heads as desired. I observe this clear tendency by comparing SVCCA

coefficient curves (a) in Figure 4.4 to (b) in Figure 4.3. The curve of 8 H 512 d with

γ = 0.3 is very similar to that of 4 H 256 d, and as the rate increases γ = 0.5, the

curve becomes similar to that of the model with fewer heads 2 H 128 d.

In addition, as opposed to the expectation of Li et al. [55] have expected, I find

that the orthogonality loss does not diversify inter-head similarity. For +ORTHO and

+HSIC, every model shows average disagreement score [55] as 0.999, which implies

that two vectors from different heads are orthogonal. However, instead of diversify-

ing, the orthogonality loss slightly increases inter-head similarity measured in both

SVCCA (from 0.397 to 0.420) and CKA (from 0.199 to 0.366). Nevertheless, the

model only with the orthogonality loss performs better than a baseline as it records

34.03 BLEU score (+ORTHO ONLY in Table 4.4). I suspect that the performance im-

provements are caused by steep rises of top-few SVCCA coefficients. The affects of

the orthogonality loss on top-few SVCCA coefficients are depicted in (b) and (d) in

Figure 4.4 (as comparing curves of baseline, ortho 0.1, ortho 1.0, and ortho 10.0).
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Table 4.4: BLEU evaluation with controlled inter-head similarity on En-De IWSLT17

corpus.

Models
Language Pairs

De→En En→De

Baseline Transformer 33.67 29.76

+ drophead only 34.26 30.13

+ ortho only 34.03 30.27

+ HSIC only 34.43 30.32

+ALL 34.53 30.38

The orthogonality regularizer makes the heads similar to each other in a prime direc-

tion while sustaining other directions diverse, hence it makes the model robust to both

general features and rare features.

Lastly, I observe that HSIC regularizer directly enforces each head to be diverse as

shown in both Table 4.5 and (c) in Figure 4.4. While the other two methods increase

inter-head similarity, HSIC regularizer is the only method to diversify inter-head simi-

larity without modifying a model’s architecture. Although increasing number of heads

H also diversify inter-head similarity, it has a critical downside that architectural mod-

ification must be accompanied.

4.5.3 Quantitative Evaluation

I report BLEU scores on every language pairs in Tables 4.4 and 4.6. These results

support my hypothesis that a multi-head attention model can extend its own capability

by controlling inter-head diversity with the suggested methods. Models with all three

suggested methods applied (+ALL) show the best performances on every language

pair.

I also verify the effect of the suggested methods on language modeling task in or-

der to show that the methods can be applied to tasks other than machine translation.
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Table 4.5: Controlled inter-head similarity with suggested methods.

Models SVCCA CKA

Baseline Transformer 0.397 0.199

+ drophead 0.1 0.415 0.207

+ drophead 0.3 0.534 0.317

+ drophead 0.5 0.709 0.527

+ ortho 0.1 0.408 0.208

+ ortho 1.0 0.407 0.223

+ ortho 10.0 0.420 0.366

+ HSIC 10−8 0.364 0.182

+ HSIC 10−7 0.338 0.158

+ HSIC 10−6 0.325 0.125

Table 4.7 shows perplexity score on language modeling task with PTB corpus. As

well as on the encoder-decoder Transformer, the methods applied to the decoder-only

Transformer also increases its performance on the language modeling task. Apply-

ing + HSIC only shows the best performance, even better than applying all methods.

Nevertheless, all of the methods clearly improve the perplexity of the decoder-only

Transformer. The experimental results show that the methods can easily be applied

to various model architectures that use multi-head attention. Note that the suggested

methods and my analyses in Section 4.4 do not relate to the size of the model (i.e., the

hidden size or the number of layers). I strongly believe that the methods can be applied

to larger language models such as BERT [4] or XLM-R [15], because they also exploit

the multi-head attention as the same way as the Transformer model in the experiments.

4.5.4 Limitations and Future Directions

In this chapter, I show that the multi-head attention increases the inter-head diversity

and the proposed methods can control the inter-head diversity in order to yield bet-
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Table 4.7: Perplexity with controlled inter-head similarity on PTB language modeling.

Models Perplexity

Baseline Transformer 120.38

+ drophead only 102.72

+ ortho only 102.62

+ HSIC only 101.89

+ALL 102.07

ter performances. Nevertheless, the improvements of BLEU are slightly larger than

marginal increment which undermine the benefits of optimizing the inter-head diver-

sity. Therefore, I recommend the future directions of this chapter as follows.

• CKA optimization for Multi-modality: Optimizing the inter-head diversity of

the head representing the same language may have smaller impact to the final

performance. However, in chapter 5 of this dissertation, I observe that the op-

timization technique for CKA show significant improvements on multi-modal

tasks. Because there is a large gap between representation spaces among various

modalities, I believe that maximizing CKA between two representation spaces

of different modalities can align two representation spaces and consequently

aids the cross-modality attention. In the next chapter of this dissertation, I extend

the CKA optimization method and apply it on the multi-modal video-question

answering task.

• CKA optimization for Few-shot Learning: Because CKA compute the robust

value despite of the lack of data, I suggest to optimize the inter-head statistics

for few-shot learning tasks. With only a few samples, a multilingual language

model or a machine translation model suffers a huge drop of performance. To

address such limitations, in my future studies, I plan to adopt the optimizing

methods on low-resource settings.
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4.6 Conclusions

In this chapter, I analyze the inter-head similarity of multi-head attention using SVCCA

and CKA to unveil representation of each heads’ subspaces. I show an empirical proof

that multi-head attention diversifies its representations as the number of heads in-

creases. Based on my observation, I hypothesize that there is an optimal degree of

inter-head diversity that fully utilizes a model’s capability. Then, I introduce three

methods to control the degree of inter-head diversity; (1) HSIC regularizer, (2) the

orthogonality regularizer revisited, and (3) Drophead method. The three methods are

all able to fine-tune the inter-head diversity without architectural change. I show that

HSIC regularizer diversifies the inter-head diversity and Drophead works the other

way, whereas the orthogonality regularizer gathers the core representations of multi-

head attention. Finally, we empirically show that controlling inter-head diversity can

make the model utilize its own capability better resulting in higher performances on

various machine translation and language modeling tasks. The three methods to control

inter-head diversity can be easily applied to every model that uses multi-head attention

including Transformer, BERT, and XLNet.
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Chapter 5

Modality Alignment for Cross-modal Attention

For deep learning researchers, multi-modality recently became an important keyword

as multi-modal models have shown the ability to collate plentiful information scat-

tered over various modalities [74, 75, 76]. In particular, Video-and-Language learning

which includes both video modality and text modality is attracting a huge attention

[2, 77, 78, 79, 80, 81]. Specifically, Video-and-Language learning such as video cap-

tioning or video question answering require the ability of reasoning over both time and

multiple modality. For example, a video question answering model should be able to

find appropriate visual information in a video frame sequence with a given question.

That is to say, capturing the relationship between video information and text informa-

tion is important for a multi-modal model for Video-and-Language learning.

Cross modality attention module which combines correlation over different modal-

ities becomes a critical component for Video-and-Language learning [82, 83, 84].Generally,

the attention mechanism induces a model to learn the most important representation

among the whole sequence with a given query. For single modality models, the atten-

tion module finds crucial parts to concentrate, greatly improves the performance of

the model [3]. However, the cross-modal attention mechanism in multi-modal models

is less effective than in single modality models because of the noticeable differences

characteristics between multiple modalities. Existing Video-and-Language models do
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not take this into account and merely utilize the attention mechanism as the same way

as in single modality models, which hinders the models to fully enjoy the strength of

the attention mechanism.

In this chapter, I propose a novel Modality Alignment method that optimizes the

alignment between representation structures of the video modality and the text modal-

ity. My method leverages Centered Kernel Alignment (CKA) as an auxiliary objective

to be maximized. As training the auxiliary loss via gradient descent frameworks, the

embedding representation structures of both modalities are also trained to be similar.

Therefore, Modality Alignment method enhances the cross modality attention module

inside a multi-modal model to be more aware of correlated information, eventually

improving the final performance.

CKA was originally designed to measure similarity between neural networks rep-

resentations [71]. Recently, [21] discovered the robustness of CKA, which comes from

the invariance to orthogonal transformations and isotropic scaling. In this work, I re-

veal another desirable property of CKA that can be directly optimized through gradient

descent frameworks. With the robustness and trainability of CKA, I utilize CKA in or-

der to align multi-modal representations. As far as I know, this is the first attempt to

exploit CKA as a training objective in handling multi-modality. Also, Modality Align-

ment method can be easily applied to various multi-modal tasks.

I validate the proposed method through various experiments with both synthetic

dataset and real-world dataset. Firstly, I show that aligning the embedding representa-

tions through maximizng CKA can effectively boost the performance on cosine sim-

ilarity learning, which is a basis of the attention mechanism. Then, in the real world

Video QA task, I empirically demonstrate that out method makes a multi-modal model

to effectively learn the cross-modal attention. For TVQA [1] and TVQA+ [2], which

are challenging benchmarks in Video QA, the models applied with the method outper-

forms the baseline models.

Namely, my contributions are listed as followings:
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• I show that Centered Kernel Alignment, a similarity measurement between neu-

ral network representations, can be exploited to align two embedding represen-

tations from different modalities.

• I demonstrate that Modality Alignment method which optimizes the similarity

between embedding representations is helpful for the cross-modal attention.

• I examine that Modality Alignment method, which can be easily applied to ex-

isting models, improves the performance in various multi-modal tasks through

extensive experiments.

5.1 Related Works

5.1.1 Representation Similarity between Modalities

Several works have attempted to analyze the similarity between representation in neu-

ral networks to achieve interpretability. The most fundamental measurements that can

be used with this neural network similarity are correlation and Canonical Correlation

Analysis (CCA) [85].

An alignment method using the correlation of neuron responses has been proposed

to share core representations between different networks [12]. Similarly, Singular Vec-

tor Canonical Correlation Analysis (SVCCA) [10] has been introduced in order to pick

out perturbing directions from representations with applying CCA as a similarity mea-

sure. [63] subsequently have proposed Projection Weighted CCA (PWCCA) which is

more reflective to subspaces of representations via projection. More recently, [21] have

shown that Centered Kernel Alignment (CKA) is a appropriate measure for represen-

tation similarity because CKA is robust to the lack of data.

Also, there have been studies that use these similarity measures between neural

networks directly or indirectly in deep representation learning. By applying CCA,

SVCCA, and CKA, [64] have discovered that the geometry of Recurrent Neural Net-
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work (RNN) architecture varies by task while the underlying scaffold is universal. On

multilingual machine translation task, [65] have leveraged SVCCA across languages

to show that there are shared representations among language representations. [57]

have applied SVCCA to identify meaningful directions in machine translation and

concluded that the top-few directions of SVCCA similarity indicates a key representa-

tion.

Unlikely, I propose a method that directly optimizes CKA between multi-modal

representation structures to be maximized. The robustness in CKA enables the method

in the way that CKA is reliable even in a mini-batch where the number of data is small.

5.1.2 Video Question Answering

Video-and-Language learning requires fine-grained interaction with information from

multiple modalities. To study the fusion of visual modality and text modality, Image

QA task which takes a single image input with a question in natural language has

attracted the attention of many researchers [75, 86, 87]. However, unlike single image

processing, video information is made up of a large number of image frames in a

sequence, which is much larger and includes additional temporal information.

To date, the de facto way to solve the Video QA task is to fuse and learn both

modality information using cross-modal attention after processing the video input and

text input respectively. The video processing part has been developed based on existing

video analysis schemes, such as recurrent networks of frame functions [88] or 3D

convolution operators for action recognition [89]. Video representation is then fused

via a co-attention module with textual input as query [90, 91], a hierarchical attention

[92, 93], or a memory networks module [94, 95]. These methods have applied their

novel methods on how to fuse two modality information well, but they all merely

combine multi-modality information without considering the differences in modality

characteristics.

I observe that there is a significant difference in characteristics between the two
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modalities which may aggravate the cross modality attention. Thus, Modality Align-

ment method increases the similarity between multi-modality representation structures

to enhance the fusion more effective. I validate the proposed method for synthetic

dataset first, and then apply it to a real-world VideoQA dataset which has significant

differences in characteristics between the two modalities.

5.2 Proposed Approach: Modality Align between Multi-modal

Representations

With a new use of CKA as a learning objective, I propose a novel Modality Align-

ment method that directly maximizes CKA to align representation structures between

various modalities.

5.2.1 Centered Kernel Alignment Review

As a tool to measure similarity between two deep representations, Centerend Kernel

Alignment (CKA) has been proposed [71, 70]. Recently, [21] bring CKA back to the

surface, addressing that CKA can aid in gaining a deep understanding of internal neural

network architectures.

CKA is obtained by normalizing Hilbert-Schmidt Independence Criterion (HSIC)

[69]. For a pair of neural network representations Xi = (xi1, xi2..., xiN )T and Xj =

(xj1, xj2..., xjN )T , I define two matrices Kikl = κ(xik, xil) and Kjkl = κ(xjk, xjl)

where κ is kernel function and N is a number of sampled data from each representa-

tion. Then, HSIC between two representations is computed as follows:

HSIC(Ki,Kj) =
1

(N − 1)2
tr(KiCKjC), (5.1)

where C is a centering matrix C = I − 1
N 11T (1 is a vector of ones and N is the

number of sampled data). For linear kernels (e.g. κ(x, y) = xT y), HSIC computes the
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squared Frobenius norm of the cross-covariance:∥∥cov(XT
i , X

T
j )

∥∥2
F
=

1

(n− 1)2
tr(XiX

T
i XjX

T
j ). (5.2)

Thus, HSIC can be interpreted as the similarity between the inter-example similarity

structures. Normalizing HSIC results CKA as follows:

CKA(Ki,Kj) =
HSIC(Ki,Kj)√

HSIC(Ki,Ki)HSIC(Kj ,Kj)
. (5.3)

The normalizing process makes the output value of CKA between 0 and 1 where

CKA(X,Y ) = 0 implies independence. Also, this process makes CKA invariant to

isotropic scaling.

5.2.2 Why CKA is Proper to Modality Alignment

CKA exhibits desirable properties for not only measuring similarity between two deep

representations but also training the alignment of inter-example similarity structures

with gradient descent. I list three properties that enable the methodology for the modal-

ity alignment.

• Invariance to orthogonal transformations: [21] especially pointed out that

CKA is invariant to orthogonal transformations of deep representation, i.e. CKA(X,Y ) =

CKA(XU, Y V ) for any orthonormal matrices U and V . Because neural net-

works are randomly initialized and trained by gradient descent with random

mini-batches, there is a high probability that neurons are permuted even in the

same networks. Therefore, invariance to orthogonal transformations, which in-

cludes permutations, is one of the essential characteristics required for the simi-

larity indexes.

Although other similarities such as CCA [85] or SVCCA [10] are invariant to

affine transformations, [21] spotted the limitation of invariance to affine trans-

formations that it requires more examples than the size of dimension to robustly

measure the similarity between representations. This limitation makes CCA and
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Figure 5.1: Main concept of Modality Alignment. (a): During training cross modal at-

tention module with a given mini-batch (inside the dotted circle), the model is trained

to increase the attention score based on cosine similarity between the vector of “dog”

and the correlated video frame vector. (b): After a training step, the model is updated

to narrow the gap. However, because the inter-example similarity structures are dif-

ferently formed, there is potential harm to examples outside of the mini-batch; the

cosine similarity between the “cat” vector and the correlated video vector decreases.

(c) and (d): Modality Alignment method keep the inter-example similarity structures

to be close to each other, significantly reducing such adverse effects.
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SVCCA unsuitable for training objective where the number of examples in a

mini-batch is usually smaller than the size of dimension. However, unlike CCA

or SVCCA, CKA shows robustness even with a small number of data (e.g. in a

mini-batch).

• Invariance to isotropic scaling: CKA is also invariant to isotropic scaling, i.e.

CKA(X,Y ) = CKA(αX, βY ) for any α, β ∈ R+. Invariance to isotropic scal-

ing implies that CKA value remains the same even if each representation is

scaled respectively, which often happens in neural networks training. [21] also

mentioned that invariance to non-isotropic scaling is not a desired property be-

cause a similarity index that is invariant to both orthogonal transformations and

non-isotropic scaling is invariant to any invertible linear transformation, which

lacks the robustness.

• Trainabilty via gradient descent methods: As CKA is calculated with fully

differentiable operations such as dot-product, CKA itself is also differentiable

with respect to the parameters of neural networks. That said, CKA itself can be

used as a training objective for gradient descent algorithms. [96] reported that

CKA between representations of different layers in a model can be minimized

or maximized via stochastic gradient descent. I exploit the trainability of CKA

in order to align each representation in different modalities.

Using above three properties of CKA, I set CKA between video representation

and text representation as an auxiliary training objective to be maximized. Note that

maximizing CKA does not assure two representations to be overlapped. Nevertheless,

it urges the inter-example structures of the two representations to be similar. For ex-

ample, maximizing CKA between video representation and text representation makes

the cosine similarity between a word “dog” and a word “cat” close to the similarity

between a video frame with a dog and a video frame with a cat.

Meanwhile, the cross modality attention module computes its attention score based
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on cosine similarity between two vectors. In other words, the cosine similarity be-

tween a frame-level video embedding vector and a word-level text embedding vector

becomes higher as the cross modality attention module is optimized, if there is seman-

tic correlation between the video frame and the word. Maximizing CKA can enhance

the training of the attention module since the inter-example structures of two different

modalities are kept aligned.

Figure 5.1 further depicts the main concept of Modality Alignment method. The

objective of a cross attention module is to narrow the gap between two vectors with

semantic correlation. Suppose fitting a cross attention module with a mini-batch which

includes a word “dog” and a video frame with the dog ((a) of figure 5.1). After one

training step, the parameters of networks are updated to narrow the angle between

“dog” and the frame with the dog ((b) of figure 5.1). However, the cosine similarity

between a word “cat” and a video frame with the cat decreases after the training step

due to the difference of inter-example similarity structures. On the other side, with

Modality Alignment, such adverse effects are significantly reduced because the inter-

example structures are also trained to be similar ((c) and (d) of figure 5.1). Hence,

maximizing CKA between multi-modal representations can boost the training of cross

modality attention, resulting fast convergence and higher performance.

5.2.3 Proposed Method

The proposed Modality Alignment method computes CKA between the output repre-

sentation of the video embedding module and that of the text embedding module in

each mini-batch and directly maximizes it as an auxiliary objective.

In Video-and-Language learning, a model usually consists of a video embedding

module, a text embedding module, and a video-text fusion module. Let V = [v1, ..., vL]

be a sequence of video frames vi and T = [t1, ..., tM ] be a sequence of word tokens tj .

A video embedding module fvid encodes the sequence of video frames into the video

embedding representation: fvid(V ) = X , where X ∈ RL×d is a sequence of embed-
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Figure 5.2: My proposed method. The input of each modality is embedded into the rep-

resentation vector through each encoder module. CKA between representation vectors

with different modalities is directly maximized to align the inter-example structure of

each representation.
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ded video representation vectors with dimension size of d. Similarly, a text embedding

module ftext encodes the sequence of tokens into the text embedding representation:

ftext(T ) = Y , where Y ∈ RM×d is a sequence of text representation vectors. I ran-

domly sample N -many representation vectors from both video representation tensor

X and text representation tensor Y in order to match the number of examples. Finally,

the modality alignment s between two representations is measured with equation (5.3).

I directly maximize the CKA as an auxiliary objective of the original loss to align

two representations. Specifically, with a scaling hyperparameter λcka, I construct the

final loss objective for minimizing by subtracting CKA loss term Lcka to the original

loss term Lorig as follows:

Lfinal = Lorig − λcka ∗ Lcka. (5.4)

Thus, the method can be applied to any model that handles multi-modality with cross

attention module based on cosine similarity. I search the appropriate value of λcka by

grid-searching in each experiment.

One can interpret Modality Alignment method as a new variant of contrastive

learning since the method takes account of relationships between data examples within

a mini-batch. The method has a novel strength in the respect that it can optimize the

whole representation structures at every training step because of the robustness of

CKA, while most of contrastive learning methods maximize the gap between irrel-

evant examples only in a mini-batch [97, 98].

5.3 Experiments

I conduct two experiments to verify Modality Alignment method. I show that the aux-

iliary CKA loss term boosts cosine similarity learning with a synthetic dataset. Then,

I manage the real-world experiment on Video QA task in which the method outper-

forms conventional baselines. All experiments demonstrate that Modality Alignment
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Figure 5.3: t-SNE visualization of my synthetic data distribution. I sampled two groups

from different distributions and set one-to-one alignments to emulate hard attention.

method enhances the cross modal attention module, consequently resulting higher per-

formance of the multi-modal model.

5.3.1 Cosine Similarity Learning with CKA

I empirically verify that optimizing CKA is helpful for cosine similarity learning. The

attention mechanism learns cosine similarity between two corresponding source repre-

sentation and target representation to be increased during training. However, because

there are no ground truth attention weights in most real-world datasets, directly evalu-

ating the performance of cross attention module is difficult. In order to verify that the

method improves the performance of cross attention module, I conduct an experiment

with a synthetic dataset in which a model is trained to maximize cosine similarity with

one-to-one correspondence.
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Experiment settings

I make a synthetic dataset which simulates two different modalities with completely

different characteristics as following three steps.

• I sample 10,000 class ‘A’ examples from a multivariate normal distribution with

dimension size of 64.

• I also sample 10,000 class ‘B’ examples from a intricately designed mixture of

multivariate normal distribution with the same dimension size.

• To simulate ground truth hard attention, I randomly make one-to-one correspon-

dences between each example of ‘A’ and ‘B’.

• The goal is to train two encoders for both ‘A’ and ‘B’ in the way that maximizes

cosine similarity between two corresponding embedded vectors.

The main criterion for evaluation is the averaged cosine similarity between all corre-

sponding examples of class ‘A’ and class ‘B’. Figure 5.3 describes the t-SNE visual-

ization of my synthetic dataset.

Then, I build two neural networks models to substitute for embedding modules.

Each neural networks takes samples of each class as input respectively and encodes

them into output vectors. I regard the output of each networks as two different rep-

resentations of different modalities. Both encoders have the same architecture but do

not share the weights. Each encoder has three fully-connected layers with the hidden

size of 32, each layer followed by the ReLU activation and Batch Normalization. The

mini-batch size is set to 512 and λCKA value is 0.1. I train the model with ADAM

optimizer with initial learning late of 0.001, β1 = 0.9, and β2 = 0.999.

I test three methods for comparison; (a) directly maximize only the averaged cosine

similarity, (b) directly maximize CKA only, and (c) Modality Alignment method that

optimize both the criterion and CKA loss Lcka. In the experiment with the method,

I observe that pre-training CKA alone for few steps before optimizing the final loss
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Lfinal as a warm-up increases the performance. All experiments with the method in

this paper are also performed this warm-up.

Experiments Results

I summarize the results in Figure 5.4. The t-SNE visualizations of encoded represen-

tations over epochs reveals an interesting effect of the method (Left of Figure 5.4).

Comparing the first column (trained with only cosine similarity loss) and the second

column (trained with only CKA loss), only maximizing cosine similarity like exist-

ing multi-modal models does not make two representations similar as shown as CKA

value drops from 0.498 to 0.305. In contrast, training with only CKA loss makes two

encoders learn the inter-example structures extremely well. Also, it even increases the

average cosine similarity slightly implying that there is indeed a correlation between

inter-example structure similarity and cosine similarity. Finally, Modality Alignment

method which optimizes both CKA loss and cosine similarity outperforms the conven-

tional methods (CosSim only), showing that the method can boost the training of cross

attention module (Right top of Figure 5.4).

5.3.2 Modality Align on Video Question Answering Task

Lastly, I verify Modality Alignment method in Video Question Answering tasks as

real-world scenarios. Video QA is one of the most challenging among multi-modal

tasks because there exhibits a great deal of differences between the video and text

modalities, causing severe text bias problem. With two standard benchmarks, follow-

ing experiments demonstrate that Modality Alignment method also improves conven-

tional models even in video QA tasks as the method closes the gap between two modal-

ities.
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Datasets and Training details

I evaluate my approach on two benchmarks: TVQA [1] and TVQA+ [2]. TVQA is

a large-scale video question answering dataset based on six popular TV shows: The

Big Bang Theory, How I Met Your Mother, Friends, Grey’s Anatomy, House, Castle.

As a baseline model, I utilize TVQAabc which is proposed together with the TVQA

benchmark. I apply CKA loss between the video embedding representation and the QA

embedding representation of TVQAabc to apply Modality Alignment. The structure of

TVQAabc I borrowed

For TVQAabc, the pretrained Faster R-CNN and LSTM are used as visual embed-

ding modules, and word embedding with LSTM are used as text embedding modules.

And then CKA loss is configured before context matching information where cross

modal attention takes place as in figure 5.5. The details of implementations are the

same as the baseline model, λCKA value is 0.2, and the batch size is 32.

TVQA+ is a subset of TVQA that only uses The Big Bang Theory clips yet con-

tains additional bounding box annotation for visual region feature. The training, vali-

dation, and test-public set consist of 23,545, 3,017, and 2,821 questions, respectively.

I utilize STAGE as a baseline, a model proposed in TVQA+ benchmark paper. In

STAGE model, the input images are encoded with pretrained Faster R-CNN as a vi-

sual embedding module and the input texts are encoded with pretrained BERT encoder

as a text embedding module. Consequently, CKA loss is computed before the two pre-

sentations cross-modal attention is performed. I compute and maximize CKA between

video representation and text representation before the cross-modal attention layer.

The details of implementations are the same as the baseline model, λCKA value is 0.1,

and the batch size is 4. I apply the grid search method to find the best value of λCKA.

Additionally, I used a dense video captioning model MMT [99] to reduce the text

bias of the baseline model. I create dense captions from video information and use

them as additional information. I briefly describe in the right part of the figure 5.6 that

captured information is added as input stream.
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In both cases, linear kernel is used for computing CKA, based on the findings of

the previous study by [21] that there is no significant difference from other kernels

such as RBF kernel.

Experiments Results

I report the experimental results evaluated with QA accuracy in Table 5.2 and corre-

sponding CKA values in Table 5.1.

In experiments on TVQA dataset, QA accuracy of the baseline (TVQAabc) is

67.70%, while Modality Alignment method increases the accuracy up to 69.38%.

CKA value between video embedding representation and QA representation is also

increased significantly from 0.3907 to 0.7815. I suppose that the trained alignment

between two different modalities leads to the final performance improvement.

Similarly in experiments on TVQA+ dataset, comparing STAGE and STAGE+CKA

in Table 5.2 shows a significant accuracy improvement from 70.31 to 72.89 with

Modality Alignment method. CKA value also shows a large increase from 0.2694 to

0.6708 in Table 5.1, indicating the inter-example similarity structures of image repre-

sentation and text representation are well trained to be similar. Through these results,

I conclude that training the representational alignment between multiple modalities

improves a Video QA model by enhancing the cross attention module.

In addition to Modality Alignment method, I exploit the generated caption in order

to reduce the text bias by a video captioning model [99]. In Table 5.2, STAGE (video

only) indicates the result of the model using only video features without subtitle in-

formation, and STAGE (sub) is the result of vice versa. The significant accuracy drop

in STAGE (video only) implies that STAGE model is biased toward text modality as

known as the text bias problem [74]. I generate additional captions with Multi Modal

Transformer (MMT) model [99]. The generated captions are passed to the model as

additional text inputs. With the aligning method plus the generated captions, I achieve

the best result as shown at the bottom of Table 5.2 showing an additional 0.99 accuracy
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Table 5.2: VideoQA results evaluated with QA accuracy.

Model QA Accuracy (%)

TVQAabc 67.70

TVQAabc + CKA 69.38

STAGE (video only) 52.75

STAGE (sub only) 67.99

STAGE 70.31

STAGE + CKA 72.89

STAGE + CKA + Caption 73.88

improvement finally resulting 73.88 accuracy.

I also examine the impact of Modality Alignment method on embedding represen-

tation similarity of multiple modalities. As shown in Table 5.1, both CKA(Cptemb,QAemb)

and CKA(Subemb,QAemb) are high because the subtitles, the generated captions and

the QA pairs have the same text modality. However, CKA(Videmb,QAemb) values are

low without the method, indicating the different characteristics between two modal-

ities. Applying Modality Alignment, CKA(Videmb,QAemb) values become high as

CKA of a single modality. Thus, the aligning method closes the gap between the video

modality and the text modality.

In a nutshell, all three experiments verify that learning the representational align-

ment with CKA fits two different representations to have similar structures, enhances

the cross attention module, and eventually leads to the performance improvement in

Video-and-Language learning. In addition, my method can be easily applied to not

only Video QA models but also any models for multi-modal tasks.
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5.4 Conclusion

In this chapter, I propose Modality Alignment method which is based on CKA op-

timization in the previous chapter of this dissertation. In multi-modal tasks such as

Video QA, there is a difference in characteristics between the two modalities, which

reduces the effectiveness of cross-modal attention. To address this, I propose Modality

Alignment method that optimizes the similarity between two embedding represen-

tation structures of two different modalities. Specifically, I maximize the similarity

between representations by directly exploiting CKA as a training objective. In exper-

iments, I verify that Modality Alignment method boosts cosine similarity learning in

a synthetic environment, which is the basis of the attention method, and further im-

proves the performance of multi-modal models for real word tasks. In the future, I

will test the proposed method on various multi-modal learning tasks including Video-

and-Language learning in order to confirm that it improves state-of-the-art modality

alignment strategies.
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Chapter 6

Conclusion

The Transformer architecture consists of attention layers that show strengths in extract-

ing correlations between tokens and integrate the extracted information to produce ap-

propriate outputs. Many studies have reported that utilizing Transformer architectures

can yield new state-of-the-arts performance in various natural language processing

problems. These advances have recently presented a new challenge to exploit addi-

tional contextual information outside of input data given to deep learning societies. In

this dissertation, I propose a novel method to effectively utilize additional contextual

information in addition to the input given in various tasks. Since humans recognize

signals with much richer contextual information in their daily lives, using contextual

information is a step toward human intelligence. I first propose an encoder for utilizing

contextual representations that include contextual information from previous sentences

for machine translation. I then propose a novel optimization objective function by in-

depth analysis of representation similarities between contextual representations and

input representations. Finally, I extend the context representation utilization method-

ology presented above to the multi-modal problems, presenting a methodology that

significantly improves performance by simultaneously utilizing the context of visual

information and the context of text information.
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초록

최근 자연어 처리(NLP)를 위한 표준 아키텍처가 순환 신경망에서 트랜스포머

아키텍처로 발전했다. 트랜스포머 아키텍처는 토큰 간의 상관 관계를 추출하는 데

강점을 보여주고 추출한 정보를 통합하여 적절한 출력을 생성하는 attention layer

들로 구성된다. 이러한 발전은 최근 딥 러닝 사회에 주어진 입력 데이터 밖의 추

가컨텍스트정보를활용하는새로운도전을제시했다.본학위논문에서는다양한

자연어 처리 작업에서 주어진 입력 외에 추가적인 컨텍스트 정보를 효과적으로 활

용하는새로운방법과분석을 attention layer에초점을맞추어제안한다.먼저,이전

문장에대한컨텍스트정보를효율적으로내장하고,메모리어텐션메커니즘을통해

내장된문맥표현을입력표현에융합하는계층적메모리컨텍스트인코더(HMCE)

를제안한다.제안된 HMCE는다양한문맥인지기계번역작업에서추가문맥정보

를활용하지않는트랜스포머와비교하였을때더뛰어난성능을보인다.그런다음

문맥표현과입력표현사이의어텐션메커니즘을개선하기위해문맥표현과입력

표현사이의표현유사성을 Centered Kernel Alignment(CKA)를이용하여심층분석

하며, CKA를최적화하는방법을제안한다.마지막으로,문맥정보가시각양식으로

주어지는다중모달시나리오에대해 CKA최적화방법을모달리티정렬방법으로

확장한다. 이 Modality Alignment 방법은 멀티 모달간 표현 유사성을 극대화하여

비디오질문응답작업에서큰성능향상을가져온다.

주요어:딥러닝,자연어처리,문맥표현,멀티모달학습,크로스모달어텐션

학번: 2015-20956
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