1,748 research outputs found

    Station segmentation of Lisbon bicycle sharing system based on users demand and supply

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceBike-sharing systems are well known in the sustainable mobility field and have several aspects that need optimization and improvement. One of the most relevant aspects is station segmentation based on user demand and supply, and it is the focus of the thesis. The segmentation work has an enormous potential to reduce complexity in predicting the bicycle demand and supply, thus improving the overall quality of service. Several machine learning algorithms were used to investigate the aforementioned segmentation task. This work considers two popular and well-known clustering algorithms to extract and analyze interesting patterns, like the difference between arrivals and departures throughout time and stations: the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and the hierarchical clustering. The algorithms are applied to the specific case of GIRA, the bicycle sharing system (BSS) of the city of Lisbon. The obtained results suggest that considering the variables under analysis, the optimal number of clusters to be used in a second phase of the BSS optimization (demand and supply forecast) is the same as the number of stations in the Lisbon BSS. The results are very insightful and allow future work to focus either on the demand forecast or the enrichment of the variables under study

    Developing a representative driving cycle for paratransit that reflects measured data transients: case study in Stellenbosch, South Africa

    Get PDF
    Paratransit plays a critical role in meeting transportation needs in many cities in sub-Saharan Africa (SSA). However, it faces deep issues related to pollution, congestion, and safety. Understanding the driving patterns of paratransit in SSA can provide valuable insights into the transportation needs in the region, which is particularly relevant nowadays given the increasing focus on sustainable transportation solutions in Africa. Representative driving cycles, which provide a realistic simulation of the driving conditions a vehicle is likely to encounter, are key to framing policies for effective transportation management, vehicle design, and urban and regional planning. However, cycle development has been limited in SSA due to a lack of data and standardized testing procedures. This study develops a representative driving cycle using GPS data gathered on paratransit vehicles traveling around Stellenbosch, South Africa, providing a benchmark for evaluation and a platform for further research and testing in SSA’s dominant transport industry. A novel time series shape-based clustering methodology is employed that combines dynamic time warping and mixed integer programming to cluster micro-trips of varying length based on their time series shapes. Representative micro-trips from each cluster are stitched together with a maximum likelihood approach to curate the final cycle. By including transients from the measured data in cycle development, this novel approach to cycle development is particularly suited for capturing the notoriously unconventional and aggressive driving style of paratransit. The constructed cycle and several international cycles are assessed against the measured database on the basis of eight characteristic kinematic parameters. The constructed cycle emerges as the most fitting choice to represent paratransit operating conditions, with an average deviance of 3.65% across the parameters, compared to deviations of 23%–34% for the international cycles

    Trajectory Clustering and an Application to Airspace Monitoring

    Get PDF
    This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Nominal trajectories are determined and learned using data driven methods. Standard procedures are used by air traffic controllers (ATC) to guide aircraft, ensure the safety of the airspace, and to maximize the runway occupancy. Even though standard procedures are used by ATC, the control of the aircraft remains with the pilots, leading to a large variability in the flight patterns observed. Two methods to identify typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as standard. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is "healthy" when all aircraft are flying according to the nominal procedures. A measure of complexity is introduced, measuring the conformance of current flight to nominal flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure a safe separation between aircraft.Comment: 15 pages, 20 figure

    Towards better traffic volume estimation: Tackling both underdetermined and non-equilibrium problems via a correlation-adaptive graph convolution network

    Full text link
    Traffic volume is an indispensable ingredient to provide fine-grained information for traffic management and control. However, due to limited deployment of traffic sensors, obtaining full-scale volume information is far from easy. Existing works on this topic primarily focus on improving the overall estimation accuracy of a particular method and ignore the underlying challenges of volume estimation, thereby having inferior performances on some critical tasks. This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation. Here we demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues and perform accurate network-wide traffic volume estimation. Particularly, in order to quantify the dynamic and nonlinear relationships between traffic speed and volume for the estimation of underdetermined flows, a speed patternadaptive adjacent matrix based on graph attention is developed and integrated into the graph convolution process, to capture non-local correlations between sensors. To measure the impacts of non-equilibrium flows, a temporal masked and clipped attention combined with a gated temporal convolution layer is customized to capture time-asynchronous correlations between upstream and downstream sensors. We then evaluate our model on a real-world highway traffic volume dataset and compare it with several benchmark models. It is demonstrated that the proposed model achieves high estimation accuracy even under 20% sensor coverage rate and outperforms other baselines significantly, especially on underdetermined and non-equilibrium flow locations. Furthermore, comprehensive quantitative model analysis are also carried out to justify the model designs

    Route Identification Method for On-Ramp Traffic at Adjacent Intersections of Expressway Entrance

    Get PDF
    To determine the control strategy at intersections adjacent to the expressway on-ramp, a route identification method based on empirical mode decomposition (EMD) and dynamic time warping (DTW) is established. First, the de-noise function of EMD method is applied to eliminate disturbances and extract features and trends of traffic data. Then, DTW is used to measure the similarity of traffic volume time series between intersection approaches and expressway on-ramp. Next, a three-dimensional feature vector is built for every intersection approach traffic flow, including DTW distance, space distance between on-ramp and intersection approach, and intersection traffic volume. Fuzzy C-means clustering method is employed to cluster intersection approaches into classifications and identify critical routes carrying the most traffic to the on-ramp. The traffic data are collected by inductive loops at Xujiahui on-ramp of North and South Viaduct Expressway and surrounding intersections in Shanghai, China. The result shows that the proposed method can achieve route classification among intersections for different time periods in one day, and the clustering result is significantly influenced by three dimensions of traffic flow feature vector. As an illustrative example, micro-simulation models are built with different control strategies. The simulation shows that the coordinated control of critical routes identified by the proposed method has a better performance than coordinated control of arterial roads. Conclusions demonstrated that the proposed route identification method could provide a theoretical basis for the coordinated control of traffic signals among intersections and on-ramp. Document type: Articl

    Face pose estimation with automatic 3D model creation for a driver inattention monitoring application

    Get PDF
    Texto en inglés y resumen en inglés y españolRecent studies have identified inattention (including distraction and drowsiness) as the main cause of accidents, being responsible of at least 25% of them. Driving distraction has been less studied, since it is more diverse and exhibits a higher risk factor than fatigue. In addition, it is present over half of the inattention involved crashes. The increased presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk and modifies driving behaviour, and thus research on this issue is of vital importance. Many researchers have been working on different approaches to deal with distraction during driving. Among them, Computer Vision is one of the most common, because it allows for a cost effective and non-invasive driver monitoring and sensing. Using Computer Vision techniques it is possible to evaluate some facial movements that characterise the state of attention of a driver. This thesis presents methods to estimate the face pose and gaze direction of a person in real-time, using a stereo camera as a basic for assessing driver distractions. The methods are completely automatic and user-independent. A set of features in the face are identified at initialisation, and used to create a sparse 3D model of the face. These features are tracked from frame to frame, and the model is augmented to cover parts of the face that may have been occluded before. The algorithm is designed to work in a naturalistic driving simulator, which presents challenging low light conditions. We evaluate several techniques to detect features on the face that can be matched between cameras and tracked with success. Well-known methods such as SURF do not return good results, due to the lack of salient points in the face, as well as the low illumination of the images. We introduce a novel multisize technique, based on Harris corner detector and patch correlation. This technique benefits from the better performance of small patches under rotations and illumination changes, and the more robust correlation of the bigger patches under motion blur. The head rotates in a range of ±90º in the yaw angle, and the appearance of the features change noticeably. To deal with these changes, we implement a new re-registering technique that captures new textures of the features as the face rotates. These new textures are incorporated to the model, which mixes the views of both cameras. The captures are taken at regular angle intervals for rotations in yaw, so that each texture is only used in a range of ±7.5º around the capture angle. Rotations in pitch and roll are handled using affine patch warping. The 3D model created at initialisation can only take features in the frontal part of the face, and some of these may occlude during rotations. The accuracy and robustness of the face tracking depends on the number of visible points, so new points are added to the 3D model when new parts of the face are visible from both cameras. Bundle adjustment is used to reduce the accumulated drift of the 3D reconstruction. We estimate the pose from the position of the features in the images and the 3D model using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked points, which are not considered for pose estimation. POSIT is faster, while LM obtains more accurate results. Using the model extension and the re-registering technique, we can accurately estimate the pose in the full head rotation range, with error levels that improve the state of the art. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area, parameter which gives much information about the distraction pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis has been tested on a set of driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests. The driver?s fixation statistics obtained with the proposed system show how the utilisation of IVIS influences the distraction pattern of the drivers, increasing reaction times and affecting the fixation of attention on the road and the surroundings

    Face pose estimation with automatic 3D model creation for a driver inattention monitoring application

    Get PDF
    Texto en inglés y resumen en inglés y españolRecent studies have identified inattention (including distraction and drowsiness) as the main cause of accidents, being responsible of at least 25% of them. Driving distraction has been less studied, since it is more diverse and exhibits a higher risk factor than fatigue. In addition, it is present over half of the inattention involved crashes. The increased presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk and modifies driving behaviour, and thus research on this issue is of vital importance. Many researchers have been working on different approaches to deal with distraction during driving. Among them, Computer Vision is one of the most common, because it allows for a cost effective and non-invasive driver monitoring and sensing. Using Computer Vision techniques it is possible to evaluate some facial movements that characterise the state of attention of a driver. This thesis presents methods to estimate the face pose and gaze direction of a person in real-time, using a stereo camera as a basic for assessing driver distractions. The methods are completely automatic and user-independent. A set of features in the face are identified at initialisation, and used to create a sparse 3D model of the face. These features are tracked from frame to frame, and the model is augmented to cover parts of the face that may have been occluded before. The algorithm is designed to work in a naturalistic driving simulator, which presents challenging low light conditions. We evaluate several techniques to detect features on the face that can be matched between cameras and tracked with success. Well-known methods such as SURF do not return good results, due to the lack of salient points in the face, as well as the low illumination of the images. We introduce a novel multisize technique, based on Harris corner detector and patch correlation. This technique benefits from the better performance of small patches under rotations and illumination changes, and the more robust correlation of the bigger patches under motion blur. The head rotates in a range of ±90º in the yaw angle, and the appearance of the features change noticeably. To deal with these changes, we implement a new re-registering technique that captures new textures of the features as the face rotates. These new textures are incorporated to the model, which mixes the views of both cameras. The captures are taken at regular angle intervals for rotations in yaw, so that each texture is only used in a range of ±7.5º around the capture angle. Rotations in pitch and roll are handled using affine patch warping. The 3D model created at initialisation can only take features in the frontal part of the face, and some of these may occlude during rotations. The accuracy and robustness of the face tracking depends on the number of visible points, so new points are added to the 3D model when new parts of the face are visible from both cameras. Bundle adjustment is used to reduce the accumulated drift of the 3D reconstruction. We estimate the pose from the position of the features in the images and the 3D model using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked points, which are not considered for pose estimation. POSIT is faster, while LM obtains more accurate results. Using the model extension and the re-registering technique, we can accurately estimate the pose in the full head rotation range, with error levels that improve the state of the art. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area, parameter which gives much information about the distraction pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis has been tested on a set of driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests. The driver?s fixation statistics obtained with the proposed system show how the utilisation of IVIS influences the distraction pattern of the drivers, increasing reaction times and affecting the fixation of attention on the road and the surroundings
    • …
    corecore