9 research outputs found

    Distributional property testing in a quantum world

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. In particular, we give fast quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon / von Neumann entropy of distributions. The distributions can be either classical or quantum, however our quantum algorithms require coherent quantum access to a process preparing the samples. Our results build on the recent technique of quantum singular value transformation, combined with more standard tricks such as divide-and-conquer. The presented approach is a natural fit for distributional property testing both in the classical and the quantum case, demonstrating the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling; for classical distributions our algorithms significantly improve the precision dependence of some earlier results

    Sample Efficient Identity Testing and Independence Testing of Quantum States

    Get PDF
    In this paper, we study the quantum identity testing problem, i.e., testing whether two given quantum states are identical, and quantum independence testing problem, i.e., testing whether a given multipartite quantum state is in tensor product form. For the quantum identity testing problem of D(Cd) system, we provide a deterministic measurement scheme that uses O(dε22) copies via independent measurements with d being the dimension of the state and ε being the additive error. For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm) system, we show that the sample complexity is Θ(~ Πmi=1ε2di) via collective measurements, and O(Πmi=1ε2d2i) via independent measurements. If randomized choice of independent measurements are allowed, the sample complexity is Θ(d3ε2/2) for the quantum identity testing problem, and Θ(~ Πmi=1ε2d3 i/2) for the quantum independence testing problem

    Distributional property testing in a quantum world

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. We also introduce a novel access model for quantum distributions, enabling the coherent preparation of quantum samples, and propose a general framework that can naturally handle both classical and quantum distributions in a unified manner. Our framework generalizes and improves previous quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon/von Neumann entropy of distributions. For classical distributions our algorithms significantly improve the precision dependence of some earlier results. We also show that in our framework procedures for classical distributions can be directly lifted to the more general case of quantum distributions, and thus obtain the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling

    Improved quantum data analysis

    Full text link
    We provide more sample-efficient versions of some basic routines in quantum data analysis, along with simpler proofs. Particularly, we give a quantum "Threshold Search" algorithm that requires only O((log2m)/ϵ2)O((\log^2 m)/\epsilon^2) samples of a dd-dimensional state ρ\rho. That is, given observables 0A1,A2,...,Am10 \le A_1, A_2, ..., A_m \le 1 such that tr(ρAi)1/2\mathrm{tr}(\rho A_i) \ge 1/2 for at least one ii, the algorithm finds jj with tr(ρAj)1/2ϵ\mathrm{tr}(\rho A_j) \ge 1/2-\epsilon. As a consequence, we obtain a Shadow Tomography algorithm requiring only O~((log2m)(logd)/ϵ4)\tilde{O}((\log^2 m)(\log d)/\epsilon^4) samples, which simultaneously achieves the best known dependence on each parameter mm, dd, ϵ\epsilon. This yields the same sample complexity for quantum Hypothesis Selection among mm states; we also give an alternative Hypothesis Selection method using O~((log3m)/ϵ2)\tilde{O}((\log^3 m)/\epsilon^2) samples

    The Statistical Foundations of Entropy

    Get PDF
    In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems

    Quantum algorithms for machine learning and optimization

    Get PDF
    The theories of optimization and machine learning answer foundational questions in computer science and lead to new algorithms for practical applications. While these topics have been extensively studied in the context of classical computing, their quantum counterparts are far from well-understood. In this thesis, we explore algorithms that bridge the gap between the fields of quantum computing and machine learning. First, we consider general optimization problems with only function evaluations. For two core problems, namely general convex optimization and volume estimation of convex bodies, we give quantum algorithms as well as quantum lower bounds that constitute the quantum speedups of both problems to be polynomial compared to their classical counterparts. We then consider machine learning and optimization problems with input data stored explicitly as matrices. We first look at semidefinite programs and provide quantum algorithms with polynomial speedup compared to the classical state-of-the-art. We then move to machine learning and give the optimal quantum algorithms for linear and kernel-based classifications. To complement with our quantum algorithms, we also introduce a framework for quantum-inspired classical algorithms, showing that for low-rank matrix arithmetics there can only be polynomial quantum speedup. Finally, we study statistical problems on quantum computers, with the focus on testing properties of probability distributions. We show that for testing various properties including L1-distance, L2-distance, Shannon and Renyi entropies, etc., there are polynomial quantum speedups compared to their classical counterparts. We also extend these results to testing properties of quantum states
    corecore