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Abstract

A fundamental problem in statistics and learning theory is to test properties of distribu-
tions. We show that quantum computers can solve such problems with significant speed-ups.
In particular, we give fast quantum algorithms for testing closeness between unknown dis-
tributions, testing independence between two distributions, and estimating the Shannon /
von Neumann entropy of distributions. The distributions can be either classical or quantum,
however our quantum algorithms require coherent quantum access to a process preparing
the samples. Our results build on the recent technique of quantum singular value trans-
formation, combined with more standard tricks such as divide-and-conquer. The presented
approach is a natural fit for distributional property testing both in the classical and the
quantum case, demonstrating the first speed-ups for testing properties of density operators
that can be accessed coherently rather than only via sampling; for classical distributions our
algorithms significantly improve the precision dependence of some earlier results.

1 Introduction

Distributional property testing is a fundamental problem in theoretical computer science (see,
e.g. Goldreich (2017)). In such property testing questions the goal is to determine properties
of probability distributions with the least number of independent samples. This has intimate
connections and applications to statistics, learning theory, and algorithm design.

The merit of distributional property testing mainly comes from the fact that the testing of
many properties admits sublinear algorithms. For instance, given the ability to take samples
from a discrete distribution p on [n] := {1, . . . , n}, it requires Θ(n/ε2) samples to “learn” p,
i.e., to construct a distribution q on [n] such that ‖p − q‖1 ≤ ε with success probability at
least 2/3 (‖ · ‖1 being `1-distance). However, testing whether p = q or ‖p − q‖1 > ε requires
only Θ(max{n2/3

ε4/3
, n

1/2

ε2
}) samples from p and q (Chan et al. (2014)), which is sublinear in n and

significantly smaller than the complexity of learning the entire distributions. See Section 1.4 for
more examples and discussions.

In this paper, we study the impact of quantum computation on distributional property test-
ing problems. We are motivated by the emerging topic of “quantum property testing” (see the
survey of Montanaro and de Wolf (2016)) which focuses on investigating the quantum advantage
in testing classical statistical properties. Quantum speed-ups have already been established for a
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few specific problems such as testing closeness between distributions (Bravyi et al. (2011); Mon-
tanaro (2015)), testing identity to known distributions (Chakraborty et al. (2010)), estimating
entropies (Li and Wu (2018)), etc. In this paper we propose a generic approach for quantum
distributional property testing, and illustrate its power on a few examples. This is our attempt
to make progress on the question:

Can quantum computers test properties of distributions systematically and more efficiently?

1.1 Problem statements

Throughout the paper, we denote probability distributions on [n] by p and q; their `α-distance
is defined as ‖p− q‖α := (

∑n
i=1 |pi − qi|α)

1
α . Similarly, we denote n × n density operators1

(=quantum distributions) by ρ and σ; their `α-distance is defined via the corresponding Schatten
norm.

Input models. To formulate the problems we address, we define classical and quantum access
models for distributions on [n]. We begin with the very natural model of sampling.

Definition 1 (Sampling). A classical distribution (pi)
n
i=1 is accessible via classical sampling if

we can request samples from the distribution, i.e., get a random i ∈ [n] with probability pi. A
quantum distribution ρ ∈ Cn×n is accessible via quantum sampling if we can request copies of
the state ρ.

Now we define a coherent analogue of the above sampling model. To our knowledge this type
of query-access was not studied before in detail, especially in the context of density operator
testing. The motivation for this input model is the following: we can think about a density
operator as the outcome of some physical process. If we are able to simulate the corresponding
process on a fault-tolerant quantum computer, then it provides purified access to the density
operator. In the special case when we study a classical probability distribution coming from
some classical randomized process, we can simply simulate the classical randomized process on
a quantum computer.

Definition 2 (Purified quantum query-access). A density operator ρ ∈ Cn×n, has purified
quantum query-access if we have access to a unitary oracle Uρ (and its inverse) acting as2

Uρ|0〉A|0〉B = |ψρ〉AB =

n∑
i=1

√
pi|φi〉A|ψi〉B, (where 〈φi|φj〉 = 〈ψi|ψj〉 = (Kronecker) δij)

such that TrA(|ψρ〉〈ψρ|) = ρ. If |ψi〉 = |i〉, then ρ =
∑n

i pi|i〉〈i| is a diagonal density operator
which can be identified with the classical distribution p, so we can simply write Up instead of Uρ.
With a slight abuse of notation sometimes we will concisely write |ρ〉 instead of |ψρ〉.

We also define an even stronger input model that is considered in a series of earlier works,
see, e.g., (Bravyi et al. (2011); Chakraborty et al. (2010); Li and Wu (2018); Bun et al. (2018)).

1For readers less familiar with quantum computing, a density operator (=quantum distribution) ρ ∈ Cn×n is
a positive semidefinite matrix with Tr[ρ] = 1. Please refer to the textbook Nielsen and Chuang (2000) for more
information.

2|ψ〉 ∈ Cn denotes a “ket” vector and 〈ψ| = (|ψ〉)† stands for its conjugate transpose, called “bra” in Dirac
notation; |i〉=~ei is the ith basis vector. An `2-normalized |ψ〉 is called a pure state, and corresponds to density
operator |ψ〉〈ψ|. For A = Ck, B = Cn and |φ〉 ∈ A ⊗ B we denote by Tr[|φ〉〈φ|]A ∈ B ⊗ B

∗ = Cn×n the partial
trace over A.
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Definition 3 (Classical distribution with discrete query-access). A classical distribution (pi)
n
i=1,

has discrete query-access if we have classical / quantum query-access to a function f : S → [n]
such that for all i ∈ [n], pi = |{s ∈ [S] : f(s) = i}|/S. (Typically the interesting regime is when
|S| � n.) In the quantum case a query oracle is a unitary operator O acting on C|S| ⊗ Cn as

O: |s, 0〉 ↔ |s, f(s)〉 for all s ∈ S.

Note that if one first creates a uniform superposition over S and then makes a query, then
the above oracle turns into a purified query oracle to a classical distribution as in Definition 2.
Therefore all lower bounds that are proven in this model also apply to the purified query-access
oracles. In fact all algorithms that the authors are aware of do this conversion, so they effectively
work in the purified query-access model. Moreover, we conjecture that the two input models are
equivalent when |S| � n. For this reason we only work with the purified query-access model in
this work.

Another strengthening of the purified query-access model for classical distributions when we
have access to a unitary (and its inverse) acting as |0〉 7→

∑n
i=1

√
pi|i〉.

Definition 4 (Classical distribution with pure-state preparation access). A classical distribution
(pi)

n
i=1, is accessible via pure state preparation oracle if we have access to a unitary oracle Upure

(and its inverse) acting as

Upure : |0〉 7→
n∑
i=1

√
pi|i〉.

This is again strictly stronger than the purified query-access model. In order to simulate
purified queries we can first do a pure state query and then copy |i〉 to a second fresh ancillary
register using, e.g., some CNOT gates. Finally, for completeness we mention that one could also
consider a model similar to the above where one can only request samples of pure states of the
form

∑n
i=1

√
pi|i〉, as studied for example in Arunachalam and de Wolf (2017); Arunachalam

et al. (2018).
We will mostly focus on the first two input models and will only use the latter strengthenings

of the purified query-access model for invoking and proving lower bounds.

Property testing problems. We study three distributional properties: `α-closeness testing,
independence testing, and entropy estimation. These properties are highly-representative; clas-
sically, these testers motivate general algorithms for testing properties of discrete distributions
(Diakonikolas and Kane (2016); Acharya et al. (2017a)).

For brevity we only give the definitions for classical distributions; similar definitions apply
to quantum density matrices if we replace vector norms by the corresponding Schatten norms.

Definition 5 (`α-closeness testing). Given ε > 0 and two probability distributions p, q on [n],
`α-closeness testing is to decide whether p=q or ‖p−q‖α ≥ ε with success probability at least 2

3 .
Robust testing: decide whether ‖p−q‖α≤0.99ε or ‖p−q‖α ≥ ε with success probability at least 2

3 .

Definition 6 (Independence testing). Given ε > 0 and a probability distribution p on [n]× [m]
with n ≥ m, independence testing is to decide, with success probability at least 2

3 , whether p is
a product distribution or p is ε-far in `1-norm from any product distribution on [n]× [m] .

Definition 7 (Entropy estimation). Given ε > 0 and a density operator ρ ∈ Cn×n, entropy
estimation is to estimate the Shannon / von Neumann entropy H(ρ) = −Tr[ρ log(ρ)] within
additive ε-precision with success probability at least 2

3 .
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1.2 Contributions

We give a systematic study of distributional property testing for classical / quantum distribu-
tions, and obtain the following results for the purified quantum query model of Definition 2:

• Entropy estimation of classical / quantum distributions costs Õ
(√

n
ε1.5

)
and Õ

(
n
ε1.5

)
queries

respectively, as we prove in Theorem 12 and Theorem 13.

• Robust `2-closeness testing of classical / quantum distributions costs Θ̃
(

1
ε

)
andO

(
min

(√n
ε ,

1
ε2

))
queries respectively, as we prove in Theorem 14 and Theorem 15.

• `1-closeness testing of classical / quantum distributions costs Õ
(√

n
ε

)
and O

(
n
ε

)
queries re-

spectively, as we prove in Corollary 17.

• Independence testing of classical / quantum distributions costs Õ
(√

nm
ε

)
and O

(
nm
ε

)
queries

respectively, as we prove in Corollary 18.

For context, we compare our results with previous classical and quantum results in Table 1 and
Table 2. (Note that all of our results are gate efficient, because they are based on singular value
transformation and amplitude estimation, both of which have gate-efficient implementations.)

model
problem

`1-closeness testing (robust) `2-closeness testing Shannon / von Neumann entropy

Classical sampling
Θ
(

max
{
n2/3

ε4/3 ,
n1/2

ε2

})
Chan et al. (2014)

Θ
(

1
ε2

)
Chan et al. (2014) Θ

(
n

ε log n + log2 n
ε2

)
Jiao et al. (2015),

Wu and Yang (2016)
Classical with

quantum query-access
Õ
(√

n
ε

)
Θ̃
(

1
ε

)
Õ
(√

n
ε1.5

)
; Ω̃(
√
n) Bun et al. (2018)

Quantum state
with purification

O
(n
ε

)
O
(
min

(√
n
ε ,

1
ε2

))
Õ
(
n
ε1.5

)
Quantum state

sampling
Θ
(
n
ε2

)
Bădescu et al. (2017) Θ

(
1
ε2

)
Bădescu et al. (2017) O

(
n2

ε2

)
, Ω
(
n2

ε

)
Acharya et al. (2017b)

Table 1: Summary of sample and query complexity results. Our new bounds are printed in bold.
For classical distributions with quantum query-access3 we prove (almost) matching upper and
lower bounds for `2-testing, and improve the previous best complexity Õ

(√
n/ε2.5

)
for `1-testing

by Montanaro (2015) and Õ
(√
n/ε2

)
for Shannon entropy estimation by Li and Wu (2018).

We are not aware of prior work on testing quantum distributions with purified query-access.

Sample complexity (Purified) Query complexity

Classical Θ
(

n
log n

)
Valiant and Valiant (2011a) Θ̃(

√
n) Li and Wu (2018); Bun et al. (2018)

Quantum Θ
(
n2
)
Acharya et al. (2017b) Õ(n)

Table 2: Complexities of Shannon / von Neumann entropy estimation with constant precision.
It seems that the n-dependence is roughly quadratically higher for quantum distributions, while
coherent quantum access gives a quadratic advantage for both classical and quantum distribu-
tions. This suggests that our entropy estimation algorithm has essentially optimal n-dependence
for density operators with purified access, however we do not have a matching lower bound yet.

3Recent results of Chailloux (2018) imply that in this model quantum speed-ups are at most cubic.
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1.3 Techniques

The motivating idea behind our approach is that if we can prepare a purification of a quantum
distribution / density operator ρ, then we can construct a unitary U , which has this density
operator in the top-left corner, using only two queries to Uρ. This observation is originally due
to Low and Chuang (2016). We call such a unitary a block-encoding of ρ:

U =

[
ρ .
. .

]
⇐⇒ ρ =

(
〈0|⊗a ⊗ I

)
U
(
|0〉⊗a ⊗ I

)
.

One can think of a block-encoding as a probabilistic implementation of the linear map ρ: given
an input state |ψ〉, applying the unitary U to the state |0〉⊗a|ψ〉, measuring the first a-qubit
register and post-selecting on the |0〉⊗a outcome, we get a state ∝ ρ|ψ〉 in the second register.
Block-encodings are easy to work with, for example given a block-encoding of ρ and σ we can
easily construct a block-encoding of (ρ−σ)/2, see for example in the work of Chakraborty et al.
(2018).

Example application to `3-testing. The problem is to decide whether ρ = σ or ‖ρ− σ‖3 ≥
ε, with query complexity O

(
ε−

3
2

)
. The first idea is that if we can prepare a purification of ρ and

σ, then by flipping a fair coin and preparing ρ or σ based on the outcome, we can also prepare
a purification of (ρ + σ)/2. The second idea is to combine the block-encodings of ρ and σ to
apply the map ρ−σ

2 to the purification of (ρ+ σ)/2, to get∣∣∣∣ρ+ σ

2

〉
7→
(
ρ− σ

2
⊗ I
)∣∣∣∣ρ+ σ

2

〉
|0〉+ . . . |1〉.

Finally, apply amplitude estimation with settingM = Θ(ε−
3
2 ). This works since if ‖ρ− σ‖3 ≥ ε,

then the |0〉 ancilla state has probability Tr
[
(ρ− σ)2(ρ+ σ)

]
/8 ≥ Tr

[
|ρ− σ|3

]
/8 ≥ ε3/8.

Working with singular values. The above is a promising approach because it directly makes
the density operator in question operationally accessible. However, it turns out that using this
simple block-encodings is often suboptimal for distribution testing, because a query in some
sense gives access to the square-root of ρ, whereas this unitary has ρ itself in the top-left corner.
Since the problems often heavily depend on smaller eigenvalues of ρ, the square root of ρ is more
desirable since it has quadratically larger singular-/eigenvalues.

Therefore, we show how to efficiently construct a unitary matrix whose top-left corner con-
tains a matrix with singular values √p1, . . . ,

√
pn, given purified access to a classical distribution

p. To be more precise, we define projected unitary encodings, which represents a matrix A in
the form of ΠUΠ̃, where Π, Π̃ are orthogonal projectors and U is a unitary matrix. One can
think about U in a projected unitary encoding as a probabilistic implementation of the map
A : img

(
Π̃
)
→ img(Π). Take for example U := (Up ⊗ I), Π := (

∑n
i=1 I ⊗ |i〉〈i| ⊗ |i〉〈i|), and

Π̃ := (|0〉〈0| ⊗ |0〉〈0| ⊗ I). As we show in Appendix A these operators form a projected unitary
encoding of

A = ΠUΠ̃ =

n∑
i=1

√
pi|φi〉〈0| ⊗ |i〉〈0| ⊗ |i〉〈i|. (1)

We can use a similar trick for a general density operator ρ too. However, there is a major
difficulty which arises from the fact that we do not a prioiri know the diagonalizig basis of
ρ. Therefore we use slightly different operators. Let W be a unitary,4 mapping |0〉|0〉 7→

4This unitary is easy to implement, e.g., by using a few Hadamard and CNOT gates.
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∑n
j=1

|j〉|j〉√
n
. Let U ′ :=

(
I ⊗ U †ρ

)(
W † ⊗ I

)
, Π′ := (I ⊗ |0〉〈0| ⊗ |0〉〈0|) and Π̃ as above. As we show

in Appendix A these operators form a projected unitary encoding of

A′ = ΠU ′Π̃ =

n∑
i=1

√
pi
n
|φ′i〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈ψi|. (2)

As we can see, the case of general density operators is less efficient, it only gives operational
access to the “square root” of ρ/n. If the 1/

√
n factor could be directly improved, that would

speed up our von Neumann entropy estimation algorithm Theorem 13, which seems unlikely,
cf. Table 2.

General recipe. Our recipe to distributional property testing can be summarized as follows.

1.) Construct a unitary matrix / quantum circuit operationally representing the distribution.

2.) Transform the singular values of the corresponding matrix according to a desired function.

3.) Apply the resulting map to the purification of the distribution, or another suitable state.

4.) Estimate the amplitude of the flagged output state and conclude.

The above general scheme describes our approach to the problems we discuss in this paper.
Sometimes it is useful to divide the probabilities / singular values into bins, and fine-tune the
algorithm by using the approximate knowledge of the size of the singular values. This divide-
and-conquer strategy is at the core of our improved robust `2-closeness tester of Theorem 14.

1.4 Related works on distributional property testing

Classical algorithms. Many distributional property testing problems fall into the category of
closeness testing, where we are given the ability to take independent samples from two unknown
distributions p and q with cardinality n, and the goal is to determine whether they are the same
versus significantly different. For `1-closeness testing, which is about testing whether p = q or
‖p − q‖1 ≥ ε, Batu et al. (2013) first gave a sublinear algorithm using Õ(n2/3/ε8/3) samples to
p and q. The follow-up work by Chan et al. (2014) determined the optimal sample complexity
as Θ(max{n2/3

ε4/3
, n

1/2

ε2
}); the same paper also gave a tight bound Θ( 1

ε2
) for `2-closeness testing.

Besides closeness testing, a similar problem is identity testing where one of the distributions,
say q, is known and we are given independent samples from the other distribution p. For `1

identity testing, it is known that the sample complexity can be smaller than that of `1-closeness
testing, which was proved by Batu et al. (2001) to be Õ(

√
n/ε4) and then Paninski (2008) gave

the tight bound Θ(
√
n/ε2). More recently, Diakonikolas and Kane (2016) proposed a modular

reduction-based approach for distributional property testing problems, which recovered all close-
ness and identity testing results above. Furthermore, they also studied independence testing, i.e.,
whether a distribution on [n]×[m] (n ≥ m) is a product distribution or at least ε-far in `1-distance
from any product distribution, and determined the optimal bound Θ(max{n2/3m1/3

ε4/3
, (nm)1/2

ε2
}).

Apart from the relationship between distributions, properties of a single distribution also have
been extensively studied. One of the most important properties is Shannon entropy (Shannon
(1948)) because it measures for example compressibility. The sample complexity of estimating
H(p) within additive error ε has been intensively studied (Batu et al. (2005); Paninski (2003,
2004)); in particular, Valiant and Valiant (2011a,b) gave an explicit algorithm for entropy esti-
mation using Θ( n

ε logn) samples when ε = Ω(n−0.03) and ε = O(1); for the general case Jiao et al.

(2015) and Wu and Yang (2016) gave the optimal estimator with Θ
(

n
ε logn + (logn)2

ε2

)
samples.
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Quantum algorithms. The first paper on distributional property testing by quantum algo-
rithms was by Bravyi et al. (2011), which considered classical distributions with discrete quantum
query-access (see Definition 3); it gives a quantum query complexity upper bound O(

√
n/ε6)

for `1-closeness testing and O(n1/3/ε4/3) for identity testing to the uniform distribution on [n].
Subsequently, Chakraborty et al. (2010) gave an algorithm for identity testing (to an arbitrary
known distribution) with Õ

(
n1/3/ε5

)
queries, and Montanaro (2015) improved the ε-dependence

of `1-closeness testing to Õ
(√
n/ε2.5

)
. More recently, Li and Wu (2018) studied entropy esti-

mation under this model, and gave a quantum algorithm for Shannon entropy estimation with
Õ
(√
n/ε2

)
queries and also sublinear quantum algorithms for estimating Rényi entropies (Rényi

(1961)).
Another type of quantum property testing results (O’Donnell and Wright (2015, 2016, 2017);

Bădescu et al. (2017); Acharya et al. (2017b)) concern density matrices, where the `1-distance
becomes the trace distance and the Shannon entropy becomes the von Neumann entropy. To
be more specific, for n-dimensional density matrices, the number of samples needed for `1 and
`2-closeness testing are Θ(n/ε2) and Θ(1/ε2) (Bădescu et al. (2017)), respectively. In addition
Acharya et al. (2017b) gave upper and lower bounds O

(
n2/ε2

)
,Ω
(
n2/ε

)
for estimating the von

Neumann entropy of an n-dimensional density matrix with accuracy ε.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce two important quan-
tum algorithmic techniques, amplitude estimation and singular value transformation. We give
entropy estimators of classical and quantum distributions in Section 3. In Section 4 we give
an (essentially) optimal quantum algorithm for robustly testing `2-closeness of classical dis-
tributions, and another efficient robust `2-closeness tester for quantum distributions. Proof
details of projected encodings, polynomial approximations for singular value transformation,
and corollaries about `1-closeness and independence testing are deferred to Appendix A, B, and
C respectively.

2 Preliminaries

2.1 Amplitude estimation

Classically, given i.i.d. samples of a Bernoulli random variable X with E[X] = p, it takes Θ(1/ε2)
samples to estimate p within ε with high success probability. Quantumly, if we are given a unitary
U such that

U |0〉|0〉 =
√
p|0〉|φ〉+ |0⊥〉, where ‖|φ〉‖ = 1 and (〈0| ⊗ I)|0⊥〉 = 0, (3)

then if measure the output state, we get 0 in the first register with probability p. Given access
to U we can estimate the value of p quadratically more efficiently than what is possible by
sampling:

Theorem 8. (Brassard et al., 2002, Theorem 12) Given U satisfying (3), the amplitude
estimation algorithm outputs p̃ such that p̃ ∈ [0, 1] and

|p̃− p| ≤
2π
√
p(1− p)
M

+
π2

M2
(4)

with success probability at least 8/π2, using M calls to U and U †.

7



In particular, if we take M =
⌈
2π
(

2
√
p
ε + 1√

ε

)⌉
= Θ

(√
p
ε + 1√

ε

)
in (4), we have

|p̃− p| ≤
2π
√
p(1− p)
2π

ε+
π2

4π2
ε2 ≤ ε

2
+
ε

4
≤ ε.

Therefore, using only Θ(1/ε) implementations of U and U †, we could get an ε-additive approxi-
mation of p with success probability at least 8/π2, which is a quadratic speed-up compared to
the classical sample complexity Θ(1/ε2). The success probability can be boosted to 1 − ν by
executing the algorithm for Θ(log 1/ν) times and taking the median of the estimates.

2.2 Quantum singular value transformation

Singular value decomposition (SVD) is one of the most important tools in linear algebra, gen-
eralizing eigen-decomposition of Hermitian matrices. Recently, Gilyén et al. (2018) proposed
quantum singular value transformation which turns our to be very useful for property testing.
Mathematically, it is defined as follows:

Definition 9 (Singular value transformation). Let f : R → C be an even or odd function. Let
A ∈ Cd̃×d have the following singular value decomposition

A =

dmin∑
i=1

ςi|ψ̃i〉〈ψi|,

where dmin := min(d, d̃). For the function f we define the singular value transformation on A
as

f (SV )(A) :=

{ ∑dmin
i=1 f(ςi)|ψ̃i〉〈ψi| if f is odd, and∑d
i=1 f(ςi)|ψi〉〈ψi| if f is even, where for i ∈ [d] \ [dmin] we define ςi := 0.

Quantum singular value transformation by real polynomials can be efficiently implemented
on a quantum computer as follows:

Theorem 10. (Gilyén et al., 2018, Corollary 18) Let HU be a finite-dimensional Hilbert
space and let U,Π, Π̃ ∈ End(HU ) be linear operators on HU such that U is a unitary, and Π, Π̃
are orthogonal projectors. Suppose that P =

∑n
k=0 akx

k ∈ R[x] is a degree-n polynomial such
that

• ak 6= 0 only if k ≡ n mod 2, and

• for all x ∈ [−1, 1] : |P (x)| ≤ 1.

Then there exist Φ ∈ Rn, such that

P (SV )
(

Π̃UΠ
)

=


(
〈+| ⊗ Π̃

)(
|0〉〈0|⊗UΦ + |1〉〈1|⊗U−Φ

)(
|+〉 ⊗Π

)
if n is odd, and(

〈+| ⊗Π
)(
|0〉〈0|⊗UΦ + |1〉〈1|⊗U−Φ

)(
|+〉 ⊗Π

)
if n is even,

where UΦ = eiφ1(2Π̃−I)U
∏(n−1)/2
j=1

(
eiφ2j(2Π−I)U †eiφ2j+1(2Π̃−I)U

)
.5

5This is the mathematical form for odd n; even n is defined similarly.
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Thus for an even or odd polynomial P of degree n, we can apply singular value transformation
of the matrix Π̃UΠ with n uses of U , U † and the same number of controlled reflections I−2Π, I−
2Π̃.

To apply singular value transformation corresponding to our problems, we need low-degree
polynomial approximations to the following functions, which we construct in Appendix B.

Lemma 11. (Polynomial approximations) Let β ∈ (0, 1], η ∈ (0, 1
2 ] and t ≥ 1. There exists

polynomials P̃ , Q̃, S̃ such that

• ∀x ∈ [1
t , 1] : |P̃ (x)− 1

2tx | ≤ η, and ∀x ∈ [−1, 1] : − 1 ≤ P̃ (x) = P̃ (−x) ≤ 1,

• ∀x ∈ [−1−β
t , 1−β

t ] : |Q̃(x)− tx| ≤ η · (tx), and ∀x ∈ [−1, 1] : Q̃(x) =−Q̃(−x) ≤ 1,

• ∀x ∈ [β, 1] : |S̃(x)− ln(1/x)
2 ln(2/β) | ≤ η, and ∀x ∈ [−1, 1] : − 1 ≤ S̃(x) = S̃(−x) ≤ 1,

moreover deg(P̃ ) = O
(
t log

(
1
η

))
, deg(Q̃) = O

(
t
β log

(
1
η

))
, and deg(S̃) = O

(
1
β log

(
1
η

))
.

3 Entropy estimation

3.1 Classical distributions with purified quantum query-access

Recall that we introduced purified quantum query-access in Definition 2. In particular, for a
classical distribution p on [n], we are given a unitary Up acting on Cn×n such that

Up|0〉A|0〉B = |ψp〉 =

n∑
i=1

√
pi|φi〉A|i〉B. (5)

We use Up and U †p to estimate the Shannon entropy H(p):

Theorem 12. For any 0 < ε < 1, we can estimate H(p) with accuracy ε with success probability
at least 2/3 using O

(√
n

ε1.5
log1.5

(
n
ε

)
log
(

logn
ε

))
calls to Up and U †p .

Proof. The general idea is to first construct a unitary matrix with singular values √p1, . . . ,
√
pn.

We use the construction of Eq. (1) and apply singular value transformation (Theorem 10) by a
polynomial S̃ constructed in Corollary 11, setting η = ε

24 ln(2/β) and β =
√

∆ for ∆ = ε
4n ln(n/ε) .

Notice that this ∆ satisfies

∆
(

ln
( 1

∆

)
+ 1
)

=
ε

4n ln(n/ε)
· ln 4en ln(n/ε)

ε
≤ ε

4n ln(n/ε)
· ln n

2

ε2
=

ε

2n
, (6)

provided that n
ε ≥ 42. Note that the polynomial S̃ satisfies both conditions in Theorem 10.

Applying the singular value transformed version of the operator (1) to the state |ψp〉 results in

|Ψ̃p〉 =
n∑
i=1

√
piS̃(
√
pi)|φi〉A|i〉B|0〉+ . . . |1〉. (7)

Preparing |Ψ̃p〉 costs deg S̃ = O
(

1
β log

(
1
η

))
= O

(√
n
ε log

(
n
ε

)
log
(

logn
ε

))
uses of Up and U

†
p and

the same number of controlled reflections through Π, Π̃. Furthermore, Eq. (15) implies that for
all i such that pi ≥ ∆,∣∣∣pi ln(1/pi)

4 ln(2/β)
− piS̃(

√
pi)
∣∣∣ = pi ·

∣∣∣ ln(1/
√
pi)

2 ln(2/β)
− S̃(

√
pi)
∣∣∣ ≤ ηpi. (8)

9



For all i such that pi < ∆, we have∣∣∣pi ln(1/pi)

4 ln(2/β)
− piS̃(

√
pi)
∣∣∣ ≤ pi ln(1/pi) + pi

4 ln(2/β)
≤

∆(ln( 1
∆) + 1)

4 ln(2/β)
≤ ε

8n ln(2/β)
, (9)

where the first inequality comes from the fact that |S̃(x)| ≤ 1 for all x ∈ [−1, 1], the second
inequality comes from the monotonicity of x(ln(1/x) + 1) on (0, 1

∆ ], and the third inequality
comes from (6). As a result of (5), (8), and (9), we have∣∣∣∣(〈ψp| ⊗ 〈0|)|Ψ̃p〉 −

H(p)

4 ln(2/β)

∣∣∣∣ =

∣∣∣∣∣piS̃(
√
pi)−

n∑
i=1

pi log(1/pi)

4 ln(2/β)

∣∣∣∣∣
≤

∑
i : pi<∆

ε

8n ln(2/β)
+

∑
i : pi≥∆

ηpi

≤ ε

8 ln(2/β)
+

ε

24 ln(2/β)
=

ε

6 ln(2/β)
.

Therefore, |4 ln(2/β)(〈ψp| ⊗ 〈0|)|Ψ̃p〉 −H(p)| ≤ 2ε/3. By Theorem 8, we can use Θ(ln(1/β)/ε)

applications of the unitaries (and their inverses) that implement |ψp〉 and |Ψ̃p〉 to estimate
(〈ψp| ⊗ 〈0|)|Ψ̃p〉 within additive error ε

12 ln(2/β) . In total, this estimates H(p) within additive
error ε

12 ln(2/β) · 4 ln(2/β) + 2ε
3 = ε with success probability at least 8/π2. The total complexity

of the algorithm is

O
(

ln(1/β)

ε

)
· O
(√

n

ε
log
(n
ε

)
log

(
log n

ε

))
= O

(√
n

ε1.5
log1.5

(n
ε

)
log

(
log n

ε

))
.

3.2 Density matrices with purified quantum query-access

For a density matrix ρ, we also assume the purified quantum query-access in Definition 2, i.e.,
a unitary oracle Uρ acting as Uρ|0〉A|0〉B = |ρ〉 =

∑n
i=1

√
pi|φi〉A|ψi〉B. We use Uρ and U †ρ to

estimate the von-Neumann entropy H(ρ) = −Tr[ρ log ρ]:

Theorem 13. For any 0 < ε < 1, we can estimate H(p) with accuracy ε with success probability
at least 2/3 using Õ

(
n
ε1.5

)
calls to Uρ and U †ρ .

Proof. We use the construction of Eq. (2). The proof is essentially the same as that of Theo-
rem 12 proceeding by constructing singular value transformation via Theorem 10, with the only
difference that all probabilities are rescaled by a factor of 1/

√
n in (2); as a result, the number

of calls to Uρ and U †ρ is blown up to Õ
(√

n ·
√
n

ε1.5

)
= Õ

(
n
ε1.5

)
.

4 Robust testers for `2-closeness with purified query-access

First we give an `2-closeness tester for unknown classical distributions p, q.

Theorem 14. Given purified quantum query-access for classical distributions p, q as in Defini-
tion 2, for any ν, ε ∈ (0, 1) the quantum query complexity of distinguishing the cases ‖p− q‖2 ≥ ε
and ‖p− q‖2 ≤ (1− ν)ε with success probability at least 2/3 is O

(
1
νε log3

(
1
νε

)
log log

(
1
νε

))
.

Proof. The main idea is to first bin the x elements based on the approximate value of p(x) +
q(x), then apply fine-tuned algorithms exploiting the knowledge of the approximate value of
p(x) + q(x).
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Using amplitude estimation for any k ∈ N we can construct an algorithm Ak that for any
input x with p(x) + q(x) ≥ 2−k outputs “greater” with probability at least 2/3, and for any
x with p(x) + q(x) ≤ 2−k−1 outputs “smaller” and uses O

(
2
k
2

)
queries to Up and Uq. Using

O
(
log( 1

νε))
)
repetitions we can boost the success probability to 1 − O(poly(νε)). Since our

algorithm only needs to succeed with constant probability, and will use these subroutines at
most 1

poly(νε) times, we can ignore the small failure probability. Therefore in the rest of the
proof we assume without loss of generality, that Ak that solves perfectly the above question
with (query) complexity O

(
2
k
2 log( 1

νε))
)
.

Algorithm 1 Estimating log2(p(x) + q(x))

input x ∈ [n], θ ∈ (0, 1)
1: for k ∈ K :=

{
−1, 0, 1, 2, . . . ,

⌈
log2

(
1
θ

)⌉}
do

2: Run algorithm Ak on |x〉 if output is “greater” then return k
3: return “less than θ”

For any x with p(x)+q(x) ≥ θ, Algorithm 1 outputs a k such that p(x)+q(x) ∈ (2−k−1, 2−k+1).
However, note that this labeling is probabilistic; let us denote by sk(x) the probability that x is
labeled by k. Observe that sk(x) = 0 unless k ∈

{⌊
log2

(
1

p(x)+q(x)

)⌋
,
⌈
log2

(
1

p(x)+q(x)

)⌉}
. Now

let us express ‖p− q‖22 in terms of this “soft-selection” function s(x).

‖p− q‖22 =
∑
x

|p(x)− q(x)|2

=
∑
x

∑
k∈K

sk(x)|p(x)− q(x)|2 + η η ∈ [0, 2θ)

=
∑
k∈K

29−k
∑
x

sk(x)
p(x) + q(x)

2

2−k−2

p(x) + q(x)

(
p(x)− q(x)

2−k+3

)2

+ η, (10)

where the bound on η follows from the observation that

η ≤
∑

x : p(x)+q(x)<θ

|p(x)− q(x)|2 ≤
∑

x : p(x)+q(x)<θ

(p(x) + q(x))2 < θ
∑

x : p(x)+q(x)<θ

p(x) + q(x) < 2θ.

If for all k ∈ K we have a 2k−9 θ
|K| -precise estimate of

∑
x

sk(x)
p(x) + q(x)

2

2−k−2

p(x) + q(x)

(
p(x)− q(x)

2−k+3

)2

, (11)

then we get a 3θ-precise estimate of ‖p− q‖22. In particular setting θ := νε2/6, this solves
the robust testing problem, since if ‖p− q‖ ≥ ε then ‖p− q‖2 ≥ ε2, on the other hand if
‖p− q‖ ≤ (1− ν)ε then ‖p− q‖2 ≤ (1− ν)2ε2 ≤ (1− ν)ε2 = ε2 − νε2.

Now we describe how to construct a quantum algorithm that sets the first output qubit to
|0〉 with probability (11). Start with preparing a purification of the distribution of p(x)+q(x)

2 ,
then set the label of x to k with probability sk(x) using Algorithm 1 terminating it after using
Ak. Then separately apply the maps

√
2−k−2

p(x)+q(x) and p(x)−q(x)
2−k−3 to the state.

Note that we do not need to apply the above transformations exactly, it is enough if apply
them with precision say 2k−11 θ

|K| . We analyze the complexity of (approximately) implement-

ing the above sketched algorithm. To implement the map
√

2−k−2

p(x)+q(x) , we use the unitary of

11



Eq. (1), and transform the singular values by the polynomial P̃ from Corollary 11 using The-
orem 10. In order to implement the map p(x)−q(x)

2−k−2 , we again use the unitary of Eq. (1), but
now separately for p and q. We amplify both the singular values

√
p(x) and

√
q(x) by a factor√

2k−2 using the polynomial Q̃ from Corollary 11 in Theorem 10. Then we create a bolck-
encoding6 of both and 2k−2p(x) and 2k−2q(x) and then combine them to get a block-encoding
of p(x)−q(x)

2−k−3 . In both cases the query complexity of O(θ/|K|)-precisely implementing the trans-
formations is O

(
2k/2 log(|K|/θ)

)
= O

(
2k/2 log(1/θ)

)
. Since computing the label k also costs

O
(
2k/2 log(1/(νε))

)
, this is the overall complexity so far. Finally we estimate the probability of

the first qubit being set to |0〉 with setting M = O
(
|K|2−k/2/(νε)

)
in Theorem 8, and boost

the success probability to 1 − O(1/|K|) with O(log(|K|)) repetitions. Thus for any k ∈ K
the overall complexity of estimating Eq. (11) with sufficient precision has (query) complexity
O
(
|K|
νε log

(
1
νε

)
log(|K|)

)
= O

(
1
νε log2

(
1
νε

)
log log

(
1
νε

))
. Therefore estimating ‖p− q‖22 to preci-

sion νε2/6 with high probability has (query) complexity

O
(

1

νε
log3

(
1

νε

)
log log

(
1

νε

))
.

It is easy to see an Ω
(

1
ε

)
lower bound on the above problem even in the strongest quantum

pure state input model Definition 4. Indeed, consider the case n = 2, q = (1
2 ,

1
2) (the uniform

distribution on {1, 2}) and we want to test whether p = q or ‖p− q‖2 ≥ ε. This is equivalent to
test whether p1 = 1

2 or |p1− 1
2 | ≥

ε√
2
; due to the optimality of amplitude estimation in Theorem 8,

this task requires Ω(1
ε ) quantum queries to the unitary U preparing the state √p1|1〉+

√
p2|2〉.

Now we prove the following result on (robust) `2-closeness testing for quantum distributions:

Theorem 15. Given ε, ν ∈ (0, 1) and two density operators ρ, σ ∈ Cn×n with purified quantum
query-access to Uρ and Uσ as in Definition 2, it takes O

(
min

(√
n
ε ,

1
ε2

)
1
ν

)
queries to Uρ, U

†
ρ , Uσ, U

†
σ

to decide whether ‖ρ−σ‖2 ≥ ε or ‖ρ−σ‖2 ≤ (1− ν)ε, with success probability at least 2/3.

Proof. We can combine the block-encodings of ρ and σ to apply the map ρ−σ
2 to the maximally

entangled state
∑n

j=1
|j〉|j〉√
n
, which gives

n∑
j=1

|j〉|j〉√
n
→
(
ρ− σ

2
⊗ I
) n∑
j=1

|j〉|j〉√
n
|0〉+ . . . |1〉.

The probability of measuring the |0〉 ancilla state is
n∑

i,j=1

〈i|〈i|√
n

(
(ρ− σ)2

4
⊗ I
)
|j〉|j〉√
n

=
1

4n

n∑
i=1

〈i|(ρ− σ)2|i〉 =
1

4n
Tr[(ρ− σ)2].

Thus it suffices to apply amplitude estimation with M = Θ
(√

n
νε

)
calls to Uρ, U

†
ρ , Uσ, U

†
σ.

On the other hand, we can estimate ‖ρ− σ‖22 by observing that ‖ρ− σ‖22 = Tr
[
(ρ− σ)2

]
=

Tr
[
ρ2
]
−2Tr[ρσ]+Tr

[
σ2
]
. Since the success probability of the SWAP test (Buhrman et al. (2001))

on input states ρ, σ is 1
2(1 + Tr[ρσ]), we can individually estimate the latter quantities with

precision O
(
νε2
)
using amplitude estimation (Theorem 8) with O

(
1
νε2

)
queries to Uρ, U

†
ρ , Uσ, U

†
σ.

As a result, we could decide whether ‖ρ−σ‖2 ≥ ε or ‖ρ−σ‖2 ≤ (1− ν)ε using O
(

1
νε2

)
queries.

The result of Theorem 15 hence follows by taking the minimum of the two complexities.
6If we have a projected unitary encoding of ΠUΠ̃ = A =

∑
i ςi|ψi〉〈0, i| with Π̃ = |0〉〈0|⊗ I we can immediately

turn it into a block-encoding of A†A =
∑
i ς

2
i |i〉〈i|, by e.g. applying Theorem 10 with the polynomial x2.
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5 Future work and open questions

Our paper raises a couple of natural open questions for future work. For example:

• Can we prove quantum lower bounds that match our upper bounds? For instance, can we
prove an Ω

(
n
ε

)
lower bound on estimating the von Neumann entropy in the purified quantum

query-access model for density operators? Is there a lower bound technique which naturally
fits our purified quantum query input model?

• For which other distributional property testing problems can we get speed-ups using the
presented methodology?
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A Projected unitary encodings used for singular value transfor-
mation

First we handle the case of classical distributions. Let Up be a purified quantum oracle of a classi-
cal distribution p as in Definition 2, and let U := (Up ⊗ I), also let Π := (

∑n
i=1 I ⊗ |i〉〈i| ⊗ |i〉〈i|),

Π̃ := (|0〉〈0| ⊗ |0〉〈0| ⊗ I), then

ΠUΠ̃ = Π(Up ⊗ I)Π̃ =
( n∑
i=1

I ⊗ |i〉〈i| ⊗ |i〉〈i|
)

(Up ⊗ I)
(
|0〉〈0| ⊗ |0〉〈0| ⊗ I

)
=

n∑
i=1

(
(I ⊗ |i〉〈i|)Up(|0〉〈0| ⊗ |0〉〈0|)

)
⊗ |i〉〈i|

=

n∑
i=1

(
(I ⊗ |i〉〈i|)

n∑
j=1

√
pj |φj〉|j〉〈0|〈0|

)
⊗ |i〉〈i|

=
n∑
i=1

√
pi|φi〉〈0| ⊗ |i〉〈0| ⊗ |i〉〈i|.

Now we turn to quantum distributions where we do not know the diagonalizing basis of
the density operator ρ. Let Uρ be a purified quantum oracle of a quantum distribution ρ as
in Definition 2, and W a unitary, mapping |0〉|0〉 7→

∑n
j=1

|j〉|j〉√
n
. Let U ′ :=

(
I ⊗ U †ρ

)(
W † ⊗ I

)
,

Π′ := (I ⊗ |0〉〈0| ⊗ |0〉〈0|) and Π̃ as above, then

Π′U ′Π̃ = Π′
(
I ⊗ U †ρ

)(
W † ⊗ I

)
Π̃ =

(
I ⊗ (|0〉〈0| ⊗ |0〉〈0|U †ρ)

) n∑
j=1

|j〉|j〉√
n

〈0|〈0| ⊗ I


=

(
I ⊗

n∑
i=1

√
pi|0〉|0〉〈φi|〈ψi|

) n∑
j=1

|φ′j〉|φj〉√
n

〈0|〈0| ⊗ I


=
n∑
i=1

√
pi
n
|φ′i〉|0〉|0〉〈0|〈0|〈ψi|,

where
∑n

j=1

|φ′j〉|φj〉√
n

=
∑n

j=1
|j〉|j〉√
n

is the Schmidt decomposition of the maximally entangled state
under the basis (|φ1〉, . . . , |φn〉).

B Polynomial approximations for singular value transformation

We use the following result based on local Taylor series:

Lemma 16. (Gilyén et al., 2018, Corollary 66) Let x0 ∈ [−1, 1], r ∈ (0, 2], ν ∈ (0, r] and let
f : [−x0−r−ν, x0 +r+ν]→ C and be such that f(x0 +x) =

∑∞
`=0 a`x

` for all x ∈ [−r−ν, r+ν].
Suppose B > 0 is such that

∑∞
`=0(r + ν)`|a`| ≤ B. Let ε ∈

(
0, 1

2B

]
, then there is an efficiently

computable polynomial P ∈ C[x] of degree O
(

1
ν log

(
B
ε

))
such that7

‖f(x)− P (x)‖[x0−r,x0+r] ≤ ε

‖P (x)‖[−1,1] ≤ ε+ ‖f(x)‖[x0−r−ν/2,x0+r+ν/2] ≤ ε+B

‖P (x)‖[−1,1]\[x0−r−ν/2,x0+r+ν/2] ≤ ε.
7For a function g : R→ C, and an interval [a, b] ⊆ R, we define ‖g‖[a,b] := maxx∈[a,b] |g(x)|.
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We can use the above result to construct the following useful polynomial approximations.
Lemma 11. (Polynomial approximations) Let β ∈ (0, 1], η ∈ (0, 1

2 ] and t ≥ 1. There exists
polynomials P̃ , Q̃, S̃ such that

• ∀x ∈ [1
t , 1] : |P̃ (x)− 1

2tx | ≤ η, and ∀x ∈ [−1, 1] : − 1 ≤ P̃ (x) = P̃ (−x) ≤ 1,

• ∀x ∈ [−1−β
t , 1−β

t ] : |Q̃(x)− tx| ≤ η · (tx), and ∀x ∈ [−1, 1] : Q̃(x) =−Q̃(−x) ≤ 1,

• ∀x ∈ [β, 1] : |S̃(x)− ln(1/x)
2 ln(2/β) | ≤ η, and ∀x ∈ [−1, 1] : − 1 ≤ S̃(x) = S̃(−x) ≤ 1,

moreover deg(P̃ ) = O
(
t log

(
1
η

))
, deg(Q̃) = O

(
t
β log

(
1
η

))
, and deg(S̃) = O

(
1
β log

(
1
η

))
.

Proof. For the construction of the P̃ and Q̃ polynomials see Corollary 67 and Theorem 30 of
Gilyén et al. (2018), respectively. It remains to construct the polynomial S̃ above.

Denote f(x) = ln(1/x)
2 ln(2/β) ; by taking ε = η/2, x0 = 1, r = 1 − β, ν = β

2 , and B = 1
2 in

Corollary 16, we have a polynomial S ∈ C[x] of degree O
(

1
ν log(Bε )

)
= O

(
1
β log( 1

η )
)
such that

‖f(x)− S(x)‖[β,2−β] ≤ η/2 (12)

‖S(x)‖[−1,1] ≤ B + η/2 ≤ (1 + η)/2 (13)

‖S(x)‖
[−1,β

2
]
≤ η/2. (14)

Note that B = 1
2 is valid because the local Taylor series of f(x) at x = 1 is 1

2 ln(2/β)

∑∞
l=1

(−1)lxl

l ,
and as a result we could take

B =
1

2 ln(2/β)

∞∑
l=1

(1− β/2)l

l
= − 1

2 ln(2/β)

∞∑
l=1

(−1)l−1

l
(−1 + β/2)l

= − 1

2 ln(2/β)
ln
β

2
=

1

2
.

However, S is not an even polynomial in general; we instead take S̃(x) = S(x) + S(−x) for all
x ∈ [−1, 1]. Then by (12) and (14) we have∥∥∥f(x)− S̃(x)

∥∥∥
[β,1]
≤
∥∥∥f(x)− S̃(x)

∥∥∥
[β,1]

+
∥∥∥S̃(−x)

∥∥∥
[β,1]
≤ η

2
+
η

2
= η. (15)

Furthermore, S̃ is an even polynomial such that deg(S̃) = O
(

1
β log( 1

η )
)
; hence (13) and (14)

imply ∥∥∥S̃(x)
∥∥∥

[−1,1]
=
∥∥∥S̃(x)

∥∥∥
[0,1]
≤ ‖S(x)‖[0,1] + ‖S(x)‖[−1,0] ≤

1 + η

2
+
η

2
≤ 1

given η ≤ 1/2. (Finally we can take the real part of S̃(x) if it has some complex coefficients.)

C Corollaries of our `2-closeness testing results

C.1 `1-closeness testing with purified query-access

Corollary 17. Given ε > 0 and two distributions p, q on the domain [n] with purified quantum
query-access via Up and Uq as in Definition 2, it takes Õ

(√
n
ε

)
queries to Up, U

†
p , Uq, U

†
q to

decide whether p= q or ‖p−q‖1 ≥ ε with success probability at least 2/3. Similarly for density
operators ρ, σ ∈ Cn×n with purified quantum query-access via Uρ and Uσ, it takes O

(
n
ε

)
queries

to Uρ, U
†
ρ , Uσ, U

†
σ to decide whether ρ=σ or ‖ρ−σ‖1 ≥ ε with success probability at least 2/3.
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Proof. By the Cauchy-Schwartz inequality we have ‖p−q‖2 ≥ 1√
n
‖p−q‖1, therefore Theorem 14

implies our claim by taking ε ← ε/
√
n therein. Similarly, Theorem 15 implies our claim for

quantum distributions ρ and σ.

C.2 Independence testing with purified query-access

Corollary 18. Given ε > 0 and a classical distribution p on [n]× [m] with the purified quantum
query-access via Up as in Definition 2, it takes Õ

(√
nm
ε

)
queries to Up, U

†
p to decide whether p

is a product distribution on [n] × [m] or p is ε-far in `1-norm from any product distribution on
[n]× [m] with success probability at least 2/3.

Proof. We define pA to be the margin of p on the first marginal space, i.e., pA(i) =
∑m

j=1 p(i, j)
for all i ∈ [n]. We similarly define pB to be the margin of p on the second marginal space, i.e.,
pB(j) =

∑n
i=1 p(i, j) for all j ∈ [m]. Assume the quantum oracle Up from Definition 2 acts as

Up|0〉A|0〉B|0〉C =
n∑
i=1

m∑
j=1

√
p(i, j)|i〉A|j〉B|ψi,j〉C ;

if we denote |φi〉 =
m∑
j=1

√
p(i,j)√
pA(i)
|j〉|ψi,j〉 for all i ∈ [n] and |ϕj〉 =

n∑
i=1

√
p(i,j)√
pB(j)

|i〉|ψi,j〉 for all j ∈ [m],

then we have

Up|0〉A|0〉B|0〉C =
n∑
i=1

√
pA(i)|i〉A|φi〉B,C =

m∑
j=1

√
pB(j)|j〉B|ϕj〉A,C .

As a result,

(Up ⊗ Up)(|0〉⊗6) =
n∑
i=1

m∑
j=1

√
pA(i)

√
pB(j)|i〉|j〉|φi〉|ϕj〉;

in other words, one purified quantum query to the distribution pA × pB can be implemented by
two queries to Up.

If p is a product distribution on [n] × [m], then p = pA × pB; if p is ε-far in `1-norm from
any product distribution on [n] × [m], then ‖p − pA × pB‖1 ≥ ε. Therefore, the problem of
independence testing reduces to `1-closeness testing for distributions on [n] × [m], and hence
Corollary 18 follows from Corollary 17.

Similarly, Corollary 17 implies that the quantum query complexity of testing independence
of quantum distributions is O

(
nm
ε

)
.
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