3,132 research outputs found

    Identification of the critical enablers for perishable food supply chain using deterministic assessment models

    Get PDF
    Today’s perishable food supply chains must be resilient to handle volatile demands, environmental restrictions, and disruptions in order to meet customers’ requirements. The enablers of the perishable food supply chain have not yet been explored. In this paper, a bibliometric systematic literature review has been conducted to identify the articles related to the perishable food supply chain. Next, with these identified articles, a map is created with bibliographic data using Vosviewer network visualization software, and then the enablers were identified by conducting keyword co-occurrence analysis. Later, a total interpretive structural modeling (TISM) is employed to analyze the interrelationships among enablers and then determine each enabler’s hierarchies, further representing them in a diagraph. Finally, the identified enablers are classified using cross-impact matrix multiplication applied to classification (MICMAC) analysis, and the graph is plotted. The results obtained from the deterministic assessment model provide the critical enablers for the perishable food supply chain. The obtained critical enablers and their hierarchies provide valuable insights for researchers in the context of perishable food supply chain for further study.The authors are grateful to FCT - Fundação para a Ciência e Tecnologia who financially supported this work through the RD Units Project Scope: UIDP/04077/2020 and UIDB/04077/2020

    Vulnerable Open Source Dependencies: Counting Those That Matter

    Full text link
    BACKGROUND: Vulnerable dependencies are a known problem in today's open-source software ecosystems because OSS libraries are highly interconnected and developers do not always update their dependencies. AIMS: In this paper we aim to present a precise methodology, that combines the code-based analysis of patches with information on build, test, update dates, and group extracted from the very code repository, and therefore, caters to the needs of industrial practice for correct allocation of development and audit resources. METHOD: To understand the industrial impact of the proposed methodology, we considered the 200 most popular OSS Java libraries used by SAP in its own software. Our analysis included 10905 distinct GAVs (group, artifact, version) when considering all the library versions. RESULTS: We found that about 20% of the dependencies affected by a known vulnerability are not deployed, and therefore, they do not represent a danger to the analyzed library because they cannot be exploited in practice. Developers of the analyzed libraries are able to fix (and actually responsible for) 82% of the deployed vulnerable dependencies. The vast majority (81%) of vulnerable dependencies may be fixed by simply updating to a new version, while 1% of the vulnerable dependencies in our sample are halted, and therefore, potentially require a costly mitigation strategy. CONCLUSIONS: Our case study shows that the correct counting allows software development companies to receive actionable information about their library dependencies, and therefore, correctly allocate costly development and audit resources, which is spent inefficiently in case of distorted measurements.Comment: This is a pre-print of the paper that appears, with the same title, in the proceedings of the 12th International Symposium on Empirical Software Engineering and Measurement, 201

    Resource Efficient Authentication and Session Key Establishment Procedure for Low-Resource IoT Devices

    Get PDF
    open access journalThe Internet of Things (IoT) can includes many resource-constrained devices, with most usually needing to securely communicate with their network managers, which are more resource-rich devices in the IoT network. We propose a resource-efficient security scheme that includes authentication of devices with their network managers, authentication between devices on different networks, and an attack-resilient key establishment procedure. Using automated validation with internet security protocols and applications tool-set, we analyse several attack scenarios to determine the security soundness of the proposed solution, and then we evaluate its performance analytically and experimentally. The performance analysis shows that the proposed solution occupies little memory and consumes low energy during the authentication and key generation processes respectively. Moreover, it protects the network from well-known attacks (man-in-the-middle attacks, replay attacks, impersonation attacks, key compromission attacks and denial of service attacks)

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy

    Get PDF
    The relationship between post-mortem state and changes of biological tissue impedance has been investigated to serve as a basis for developing an in-vitro measurement method for monitoring the freshness of meat. The main challenges thereby are the reproducible measurement of the impedance of biological tissues and the classification method of their type and state. In order to realize reproducible tissue bio-impedance measurements, a suitable sensor taking into account the anisotropy of the biological tissue has been developed. It consists of cylindrical penetrating multi electrodes realizing good contacts between electrodes and the tissue. Experimental measurements have been carried out with different tissues and for a long period of time in order to monitor the state degradation with time. Measured results have been evaluated by means of the modified Fricke-Cole-Cole model. Results are reproducible and correspond to the expected behavior due to aging. An appropriate method for feature extraction and classification has been proposed using model parameters as features as input for classification using neural networks and fuzzy logic. A Multilayer Perceptron neural network (MLP) has been proposed for muscle type computing and the age computing and respectively freshness state of the meat. The designed neural network is able to generalize and to correctly classify new testing data with a high performance index of recognition. It reaches successful results of test equal to 100% for 972 created inputs for each muscle. An investigation of the influence of noise on the classification algorithm shows, that the MLP neural network has the ability to correctly classify the noisy testing inputs especially when the parameter noise is less than 0.6%. The success of classification is 100% for the muscles Longissimus Dorsi (LD) of beef, Semi-Membraneous (SM) of beef and Longissimus Dorsi (LD) of veal and 92.3% for the muscle Rectus Abdominis (RA) of veal. Fuzzy logic provides a successful alternative for easy classification. Using the Gaussian membership functions for the muscle type detection and trapezoidal member function for the classifiers related to the freshness detection, fuzzy logic realized an easy method of classification and generalizes correctly the inputs to the corresponding classes with a high level of recognition equal to 100% for meat type detection and with high accuracy for freshness computing equal to 84.62% for the muscle LD beef, 92.31 % for the muscle RA beef, 100 % for the muscle SM veal and 61.54% for the muscle LD veal.  Auf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt
    • …
    corecore