
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.2019.DOI

Resource Efficient Authentication and
Session Key Establishment Procedure
for Low-Resource IoT Devices
SARMADULLAH KHAN1, AHMED IBRAHIM ALZAHRANI2, OSAMA ALFARRAJ2, NASSER
ALALWAN2 , ALI H. AL-BAYATTI1,
1School of Computer Science and Informatics, De Montfort University, Leicester, United Kingdom (e-mail: {sarmadullah.khan,alihmohd}@dmu.ac.uk)
2Department of Computer Science, Community College, King Saud university, Riyadh, 11437, Saudi Arabia (e-mail:{ahmed,oalfarraj,nalalwan}@ksu.edu.sa)

Corresponding author: Osama Alfarraj(e-mail: oalfarraj@ksu.edu.sa).

ABSTRACT The Internet of Things (IoT) can includes many resource-constrained devices, with most
usually needing to securely communicate with their network managers, which are more resource-rich
devices in the IoT network. We propose a resource-efficient security scheme that includes authentication
of devices with their network managers, authentication between devices on different networks, and an
attack-resilient key establishment procedure. Using automated validation with internet security protocols
and applications tool-set, we analyse several attack scenarios to determine the security soundness of the
proposed solution, and then we evaluate its performance analytically and experimentally. The performance
analysis shows that the proposed solution occupies little memory and consumes low energy during the
authentication and key generation processes respectively. Moreover, it protects the network from well-
known attacks (man-in-the-middle attacks, replay attacks, impersonation attacks, key compromission
attacks and denial of service attacks).

INDEX TERMS Internet of things, wireless sensor networks, resource-constrained device, authentication,
encryption, key establishment, security, IoT deployment, IoT scalability.

I. INTRODUCTION

The Internet of Things (IoT) consists of billion of devices
ranging from the very resource constrained (e.g., sensors) to
the more resource-rich (e.g., PCs) that are capable of sensing,
communicating, computing, and possibly actuating. Sensors
and resource-constrained-devices play an important role in
automating systems due to their low cost. For example, a
sensor is one physical entity of an IoT network that has the
ability to sense, gather surrounding data, and exchange data
with other devices within the IoT network.

Based on the nature of IoT network and its compatibility
in various applications like an indoor monitoring and local-
ization of people, control and management of heating and
water systems, transportation systems [1], [2], issuing disease
warnings in the smart cities, monitoring and controlling home
appliances from remote locations [3], [4], monitoring health
condition of persons in body area networks, analysing rele-
vant information using deep learning techniques [5], [6], [7]
and conveying all the relevant information to the physicians
[8] and/or central servers [9], the security an privacy of data

in such applications is very challenging [10], [11].
It is therefore necessary to assess the authenticity and

integrity of the transferred information, and improve the
resilience of the resource-constrained devices that enable
most IoT systems to various cyber attacks. Potential attackers
of IoT systems can take over the sensors either physically
(due to their open deployment in public environments) or
virtually (by gaining remote access to them). Attackers can
manipulate the information to misguide the decision taking
authority and damage the system operation [12], or can take
over a server or connect fake servers to attract network traffic.
In such scenarios, it is very important to achieve mutual
authentication of both sensors and servers before the start of
actual data exchange. The authentication procedure must be
lightweight and resistant to attacks (e.g., man in the middle).

Many lightweight authentication and key establishment
mechanisms based on the Elliptic Curve Cryptography
(ECC) have been introduced in the literature [4], [8], [12]
and an intrusion detection system [13] for IoT enabled v2x
network to detect any abnormality. However, they need some

VOLUME x, 201x 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

central certification authorities to manage keys and have no
mechanism to cope with man in the middle attacks, imper-
sonation attacks and Sybil attacks.

A. MAIN CONTRIBUTIONS
The main contributions of this article are:

• a mutual authentication mechanism based on the ECC
approach that is capable of protecting the system from
the well-known types of cyber attacks;

• reducing dependency on a central certification authority
to establish secret keys among devices for each session
in the IoT network, which is needed by typical PKI
approaches;

• a memory- and processing-efficient secure commu-
nication procedure that scales well from resource-
constrained devices to very large heterogeneous net-
works;

• a resource-efficient on-line symmetric key establish-
ment procedure to secure session communications,
which is suitable for resource-constrained IoT devices.

The rest of this article is organized as follows. Section II
discusses related work. Section III presents the threat model
and solution preliminaries. Section IV presents the network
model and the proposed solution for authentication and
mutual key establishment. Section V presents the security
analysis of the proposed solution against well known attacks.
The experimental results are discussed in Section VI, and
Section VII concludes the article.

II. RELATED WORK
Security of resource constrained embedded devices (e.g.,
sensors) is a major challenge, especially when used in the
IoT context due to their numerous real world applications to
automate monitoring and control operations [14]. Generally,
IoT networks consist of heterogeneous devices that support
different technologies and embedded platforms. This makes
communication security even more challenging.

Cryptography and key management are among the main
building blocks of communication security. In typical se-
curity approaches over the Internet, clients authenticate
servers using their digital signatures, while servers authen-
ticate clients using their usernames and associated pass-
words. These approaches are not suitable for most IoT de-
vices, which lack keyboards and screens, and are even more
challenging for resource-con- strained devices (for exam-
ple, sensors or smart IoT objects). Widely used public key
cryptography techniques (e.g., RSA, Diffie–Hellman) are ill-
suited because they require significant memory and process-
ing resources, while low-cost embedded devices (sensors)
have typically very limited memory, processing, and energy
resources. In comparison, public key cryptography based on
elliptic curves is less demanding, hence better suited for such
devices.

ECC, first proposed by Miller [15], can efficiently se-
cure communications of resource-constrained devices. For

TABLE 1. Notations used in the proposed approach of authentication and key
establishment

Parameter Size (Bits) Definition
SK 160 Secret (Private) Key
PK 160 Public Key
a, d, l, r, x 16 Additive factors
C1, C2 160 Cipher Texts
TTP 16 Trusted server
D 16 Device
NM 16 Network Manager
OTST 160 One Time Secret Token
e1, e2 160 Point on elliptic curve
SID 16 Session ID
ST 16 Secret Token
H(.) 160 collision resistant function

instance, NIST Elliptic Curve Digital Signature Algorithm
(ECDSA) is a widely used digital signature scheme based on
ECC. Liu introduced the TinyECC library [16] for MSP430
and AVR microcontroller families, used by various projects
to secure the communication architecture. Other works use
standard ECC implementations as well [17]. Wang used the
popular Texas Instruments 16-bit MSP430 microcontroller
series to implement a software-based ECC over a 160-bit
prime field and observed that the execution required 25 mil-
lion cycles for fixed-base scalar multiplication [18]. Sankar
[19] proposed an Elliptic Curve Diffie Hellman (ECDH)
based key exchange mechanism where each device of the
communication pair multiplies its private key and the other
device public key and the result is a symmetric key. In this
approach, symmetric key always remains same irrespective
of the session and time because the public/private key pair
of each device does not change. There is no mechanism to
update the symmetric key if it gets compromised.

Other research addressed the optimization of the most
energy-intensive set of arithmetic operations in ECC to re-
duce its impact on the limited resources of small IoT de-
vices [20]–[23]. For instance, Gura uses an efficient hybrid
multiplication technique based on a combination of operand
and product scanning methods implemented on 8-bit AVR
microprocessors [24].

III. THREAT MODEL AND SOLUTION PRELIMINARIES
The preliminaries include an overview of the threat model
and various stages involved in the proposed solution. The
notations used in this paper along with the proposed number
of bits for various security-related parameters are listed in
TABLE 1.

A. THREAT MODEL
In the proposed threat model, we have a probabilistic poly-
nomial time attacker A who can access the communication
channel, intercept messages, modify messages and/or inject
fake messages. It is assumed that attacker can access the
device memory using attack [25] and can create multiple
instances of a device, D = {D1, D2, ..., Dl}.

2 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Internet

Trusted
server

Network-1 Network-2 Network-n

. . . .
NM1 NM2 NMn

FIGURE 1. Network architecture of the proposed solution and its components

B. SOLUTION OVERVIEW
The proposed solution consists of the following phases, 1)
network setup, 2) device initial authentication and registra-
tion, 3) authentication and key establishment, and 4) key
freshness and expiration. In the network setup phase, the
network manager (NM) is responsible for generating and
assigning all the necessary parameters which are used during
the initial authentication and registration phase, immediately
after deploying the network. During the registration phase,
each device generates secret parameters and securely shares
them with its NM which are then used during the mutual au-
thentication and key establishment phases with other devices.
The proposed solution uses ECC-based point multiplication
operations and hash functions. It also uses a session based
timestamps mechanism to ensure key freshness and protects
network from the replay attacks.

IV. THE PROPOSED SOLUTION
The proposed network architecture and various phases of our
proposed solution are discussed in the following subsections.

A. NETWORK ARCHITECTURE
The architecture of the proposed network is shown in FIG-
URE 1. In the proposed network, we have one or more
instances of (1) a device that utilizes the services of (2)
network manager that provides services to devices and that
can be either a resource constrained device or resourceful
device, (3) a trusted server that provides trust certificates to
the NMs.

B. SETUP PHASE
The setup phase consists of the following steps:

Step-1: Each device is given a non-singular elliptic curve
EP (a, b) : y2 = x3 + ax + b (mod P) over a finite field

Hello

Device Network Manager Network Coordinator TTP

Join Resp. + Auth. Code

Ep(a , b) and eNM

W=dDeNM and eD
Select dD and eD

Select EP(a,b)
and eNM

Select dNM
V=dNMeD

Calculate E1=eNM+V Calculate E2=dDV+W

E2

EP(a, b), E1, E2

FIGURE 2. Authentication procedure

ZP , where a and b are constants and satisfy the condition
4a3 + 27b2 6= 0 (mod P) and ZP = {0, 1, 2, ..., P − 1}

Step-2: Each device selects a group generator G of order n
such that n.G = ϑ where ϑ is the point at zero or infinity and
a collision resistant function H(.).

Step-3: Each device of the network is equipped with OTST
along with its hash by the network administrator, an ST, a
list of other devices OTSTs and a public key of the network
administrator.

Step-4: Each device selects randomly e1 over EP (a, b) and
generates randomly l as its own SK to calculate e2 = le1.
The device announces (EP (a, b), e1, e2) as its PK.

C. REGISTRATION PHASE
Step-1: Once the network is deployed by the network admin-
istrator, the network manager starts broadcasting Hello mes-
sages to devices in its vicinity. Each Hello message includes
OTST and its hash. The hash is used to check authenticity
and integrity of the OTST as attacker can modify it during its
transmission.

Step-2: Each device decrypts Hello messages that it re-
ceives from the NM using the NM’s public key, then checks
the integrity of the OTST using the hash as follows:
• the device generates the hash of the decrypted OTST and
• compares it with the hash extracted from the message,

which was generated by the NM.
Upon successful verification of the OTST, both the end

devices register each other. It is important to mention here
that the OTST is used only once, for device registration after
network deployment. Then the OTST is permanently deleted
to prevent replay attacks.

Step-3: After the initial authentication and registration,
the devices and the NM proceed with the creation of their
authentication materials as follows:

VOLUME x, 201x 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

D-1 Credentials + Req. D-2 Credential
Req. to Establish session with Device 2

Nonce -2 Ack

C1, C2, Nonce -1
C1, C2, Nonce -1 Ack, Nonce -2

D-2 Credentials

Device-2 Network Manager-2 Network Manager-1 Device-1

D-2 Credentials D-1 Credentials

Calculate C1, C2, Nonce -1 Calculate C1, C2, Nonce -2

FIGURE 3. Authentication process between the two devices of different
networks through their network managers and a network coordinator

1) the NM selects EP(a, b) and eNM;
2) the NM sends EP(a, b) and eNM to D;
3) the D selects a random number dD and eD over EP(a, b)

that it has received from the NM;
4) the D calculates W as follows:

W = dDeNM (1)

5) the D sends eD to the NM;
6) the NM selects a device-specific dNM;
7) the NM calculates V as follows:

V = dNMeD (2)

and sends V to the D;
8) the D calculates

E2 = dDV +W (3)

and sends E2 to the NM;
9) the NM calculates E1 as follows:

E1 = eNM + V (4)

10) the NM records EP(a, b), E1 and E2 as D’s authentica-
tion materials.

These pre-shared authentication materials avoid the repeti-
tion of these calculations each time a communication session
needs to be established.

D. AUTHENTICATION AND KEY ESTABLISHMENT
PHASE
Any two IoT devices mutually authenticate each other using
their generated materials (EP (a, b), e1, e2) that are made
public through the NMs.

For example, let us consider that device 1 in FIGURE 3
needs to establish a secure session with device 2, which
belongs to a different network. The authentication steps are
as follows:

1) device 1 sends to its own (NM1) a session establishment
request with another network device;

2) NM1 uses the authentication materials of NM2 (the net-
work manager of device 2) if available, otherwise NM1

and NM2 proceed to establish mutual trust between
them using the procedure described above;

3) NM1 sends to NM2 the authentication materials of
device 1 and NM2 sends to NM1 the authentication
materials of device 2;

NM-1 NM-2

Device-1
Device-2

Key establishment request
Sharing NM shares b1V1 and b2V2
Sharing devices share
a1(b1V1 + b2V2) and a2(b1V1 + b2V2)

1
2

3
NM Shares

Network-1 Network-2

FIGURE 4. Sequence of messages exchanged for symmetric key
establishment between two IoT devices

4) NM1 forwards to device 1 the authentication materials
of device 2 and NM2 forwards to device 2 the authenti-
cation materials of device 1;

5) device 1 uses device 2 authentication materials to gen-
erate C1 using r as follows:

C1 = rE1 : 1M (5)

The cost of calculating C1 is one scalar multiplication,
i.e., 1M . C2 is calculated using a random nonce as
follows:

C2 = nonce + rE2 : 1M + 1A (6)

The cost of calculating C2 is one scalar multiplication
operation and one scalar addition operation, i.e., 1M +
1A.
C1 and C2 are the parts of cipher text that contain the
encrypted nonce and are generated using the private key
of device 1 and the public key of device 2.

6) the two devices exchange their own generated C1 and
C2 with each other;

7) each of the two devices extracts the nonce from the
received material as follows:

nonce = C2 − dNC1 : 1M + 1A (7)

8) each device sends back the extracted nonce after encryp-
tion to the other device to prove its own authenticity.

After successfully authenticating each other, two IoT de-
vices establish a mutual symmetric key for secure communi-
cation. In our proposed solution, the symmetric key is based
on four parts:
• share of device 1 (a1(b1V1 + b2V2));
• share of network manager of device 1 (b1V1);
• share of device 2 (a2(b1V1 + b2V2));
• share of network manager of device 2 (b2V2).
Dependency on both device and network shares prevents

impersonation attacks. In fact, a successful impersonator
would need to know the shares, the SK and randomly gen-
erated parameters of the D and of the NMs (i.e., a, d, l, r).

FIGURE 4 shows the steps for the establishment of a
mutual symmetric key between two devices on different
networks, as follows:

4 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• device 1 sends a key establishment request to device 2
through the network managers

• NM1 selects a random parameter b1 and generates b1V1

and NM2 selects a random parameter b2 and generates
b2V2. These generated parameters are shared with de-
vice 1 and device 2, where V1 and V2 are defined by (2)

• device 1 selects a random a1 and responds with its
own key share, a1(b1V1 + b2V2) while device 1 selects
a random a2 and responds with its own key share,
a2(b1V1 + b2V2)

• both devices use the received key shares to establish a
mutual symmetric key as follows:

Device 1 Key = a1{a2(b1V1 + b2V2)} (8)
Device 2 Key = a2{a1(b1V1 + b2V2)} (9)

E. KEY FRESHNESS AND EXPIRATION
Network-wide time synchronization is generally costly and
internal time reference accuracy can be limited for resource-
constrained devices that may enter often long deep sleep
modes to save energy. Although there are exceptions to this
rule (e.g., the Texas Instruments CC2538 circuit that we used
in our experiments, which has a precise low-power reference
oscillator on board), good security practice advises against
making key freshness or expiration decisions based only on
device time.

To address this need, our method generates the secret
symmetric session key using the network and device shares,
and a random point addition, which are all session-specific.
Thus, the key is implicitly invalidated at the end of its session,
irrespective of session duration.

V. SECURITY ANALYSIS
Dependable cryptographic systems strongly rely on effective
mechanisms for authentication and key management. These
mechanisms are even more challenging to implement in the
IoT due to its inherently distributed nature and the reduced
resources of many IoT devices. Numerous attacks are possi-
ble on a network, at different levels. We consider the most
vulnerable network attack points and an evil adversary with
the capabilities shown in FIGURE 5.

A. AUTHENTICATION PROCEDURE EVALUATION
Here we evaluate the attack model shown in FIGURE 6
during the authentication phase as described in section IV-D.
NMs retrieve the devices information from each other using
the other NM credentials received from the network coor-
dinator/central TTP server. The attacker’s influence in this
step is ignored because the communication between the NM
and central server is secured using their public private key
pair that was established before the network deployment
phase (and is considered secure). However, after network
deployment, an attacker can influence network operations.
FIGURE 6 represents the attack as man in the middle during
the authentication phase between the two devices. In this
case, the attacker is outside each network but between the

5

Device (D) NM TTP

Eve Eve
MMA, Replay,
Sybil, DoS…

MMA, Replay,
Sybil, DoS…

Message interception

Device (D) Device (D)

Message Replay

1-Hop away

n-Hop away

Wireless Link
Wired Link
Interceptor or MMA

FIGURE 5. Attack models

two networks. During the authentication phase, each end
device encrypts the nonce as shown in (5) and (6) using
the other device’s public parameter retrieved through NMs
and decrypts them using (7). Since the attackers are in the
middle, they can modify the information to find the actual
value of the nonce. We consider N1 and N2 as nonce of
device 1 and device 2, respectively, as shown in FIGURE 6.
Device 1 encrypts the N1 using device 2 public parameters
(EP (a, b), E1, E2) as

C1 = rE1 (10)
C2 = N1 + rE2 (11)

Device 2 encrypts the N2 using device 1 public parameters
(EP (a, b), E1, E2) as

C1 = rE1 (12)
C2 = N2 + rE2 (13)

These encrypted nonces pass through the attacker on their
way to the destination. The attacker modifies them to try and
make the authentication process unsuccessful as

C∗1 = C1 (14)
C∗2 = N + C2 (15)

Device 1 retrieves the nonce from the received C∗1 and C∗2 as

N2 +N = C∗2 − dNC
∗
1 (16)

Device 2 retrieves the nonce from the received C∗1 and C∗2 as

N1 +N = C∗2 − dNC
∗
1 (17)

Once the nonces are decrypted, each device adds its own
nonce with the received nonce to calculate the final nonce
for authentication and this results in

Resultant Nonce = N1 +N2 +N (18)

VOLUME x, 201x 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

NM1 NM2
Attacker

Device1 Device2

 C1*=C1,C2*=N*+C2 ,

 C1*=C1,C2*=N*+C2 ,

 C1,C2 =N1+dDE1

 C1,C2 =N2+dDE2

Calculate N+N1+N2 Calculate N+N1+N2

Server

Sharing devices E1,E2,EP(a,b)

Retrieving NM2 credentials Retrieving NM1 credentials

 C1,C2 =N+N1+N2+dDE1

 C1,C2 =N+N1+N2+dDE1

Received N+N1+N2

Received N+N1+N2

Attacker cannot decrypt
the message because it
was not encrypted with

attacker credential.
Attacker modeification

doesn’t affect the
authentication.

FIGURE 6. Attack scenario during authentication

where N is the nonce added by the attacker. Each device
sends the resultant nonce to the other for authentication
purposes. This resultant nonce passes through the attacker
but the attacker cannot decrypt it as it is encrypted using the
destination device public parameters, not with the attacker
public parameters.

Each destination end device decrypts the received resultant
nonce and compares it with the calculated nonce. If both
received and calculated nonce are identical, then the authen-
tication of the two devices is considered successful even in
the presence of an attacker as man in the middle.

Moreover, this procedure does not allow the attacker to
authenticate itself to the device. This is because, each device
encrypts the nonce using the other device’s public parameters
and the attacker cannot decrypt it using its own private key.
The modification also does not affect the authentication. But
if the attacker does change the resultant nonce, this will
be detected at the end devices because both calculated and
received nonces will not be identical and this will warn the
end devices about the presence of an attacker.

B. KEY ESTABLISHMENT PROCEDURE EVALUATION
During the key establishment process, as discussed in section
IV-D and shown in FIGURE 4, each secret key depends upon
the NM shares and device shares. The attacker could come in
the middle between the source node and its network manager
or between the network managers or between the destination
node and its network manager.

As shown in FIGURE 7, we consider an attacker between
device 1 and its network manager NM1. Device 1 sends a key
establishment request to its NM1. NM1 forwards this request
to device 2 through NM2 using its public parameters along
with b1V1 as:

C1 = dNM1E1 (19)
C2 = b1V1 + dNM1E2 (20)

In response, NM1 receives b2V2 and a2(b1V1 + b2V2) that
NM2 encrypted using NM1 public parameters as:

NM1 NM2Attacker
D1 D2

Server

Retrieving NM2 credentials Retrieving NM1 credentials

Key Establishment Request with D2 Calculate b1V1

C1,C2=b1V1+dNM1E1 Calculate b2V2
C1,C2=(b1V1,b2V2)+dNM2E1Calculate

a2(b1V1 + b2V2)

C1,C2=(a2(b1V1+b2V2))+dD2E1

C1,C2=(b2V2, a2(b1V1+b2V2))+dNM2E1

C1,C2=(b1V1, b2V2, a2(b1V1+b2V2))+dNM1E1

Attacker cannot decrypt
the message because it
was not encrypted with

attacker credential.
C1,C2=(b1V1, b2V2, a2(b1V1+b2V2))+dNM1E1Calculate

aCalculate
1(b1V1+b2v2) a1(b1V1+b2v2)

Attacker cannot decrypt
the message because it
was not encrypted with

attacker credential. a1(b1V1+b2v2)

FIGURE 7. Attack scenario during symmetric key establishment process

C1 = dNM2
E1 (21)

C2 = (b1V1||a2(b1V1 + b2V2)) + dNM2
E2 (22)

NM1 forwards b1V1, b2V2 and a2(b1V1+b2V2) to device 1
using its public parameters as

C1 = dNM1E1 (23)
C2 = (b1V1||b2V2||a2(b1V1 + b2V2)) + dNM1E2 (24)

But device 1 receives this message through the attacker.
Since device 1 public parameters are used to encrypt the
message, the attacker cannot decrypt it and hence can
only forward it unchanged to device 1. Device 1 encrypts
a1(b1V1 + b2V2) using NM1 public parameters and forwards
it to device 2 through NM1 as:

C1 = dD1
E1 (25)

C2 = a1(b1V1 + b2V2) + dD1
E2 (26)

Again the attacker cannot decrypt the message and for-
wards it as it is. The two devices establish the key using (8)
and (9).

For an attack to become successful, the attacker needs to
be able to decrypt a1(b1V1 + b2V2) or a2(b1V1 + b2V2) and
find the correct value of a2 or a1 for the decrypted value
respectively, which is not possible in this case.

In the worst case, the attacker modifies the messages from
NM1 to device 1 and vice versa as:

C∗1 = C1 (27)
C∗2 = N∗ + C2 (28)

After decryption, device 1 gets

b1V1||b2V2||a2(b1V1 + b2V2) +N∗ (29)

6 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and device 2 gets

a1(b1V1 + b2V2) +N∗ (30)

Then device 1 generates the key as

key = a1(a2(b1V1 + b2V2) +N∗) (31)

And device 2 generates the key as

key = a2(a1(b1V1 + b2V2) +N∗) (32)

The generated keys are not the same because factor a1N
∗

in the device 1 key does not match factor a2N∗. This alerts
the end devices about the presence of an attacker and also
verifies integrity without the need of a hash function. Even
if the attacker changes its position and comes in the middle
between two NMs, it cannot hide its presence and change the
content of key messages. Both attacks are detected by the end
devices.

C. DENIAL OF SERVICE ATTACKS (DOS)
These usually attempt to isolate a device from the network
by sending fake messages or by replaying processing-heavy
messages in order to keep the receiving device always busy.
In the proposed network scenario and operation, DoS attacks
could be launched during (1) the initialization phase, (2) the
addition of a new node, (3) session establishment and (4)
during normal operation, by replaying old messages.

The initialization phase is normally more secure and ro-
bust against any types of attacks due to the presence of
network administrators and continuous monitoring of devices
and equipment. Hence the risk of DoS attacks during the
initialization phase is typically ignored. Also the addition
of a new node should involve network administrators and
continuous monitoring; hence DoS attacks are ignored also
in this phase either. New session key establishment requests
can be used to launch DoS attacks if the attacker knows the
previous SID that an authentic device has established with
other devices. But in the proposed solution, prior to session
establishment with the existing user, the authentication pro-
cedure is initiated. Each encryption procedure includes SID.
When authentication procedure is initiated, it also includes
SID along with the nonce N1 as

C1 = rE1 (33)

C2 = SID || N1 + rE2 (34)

The destination node decrypts the message to extract the
nonce and SID. If the SID is old, it discards the message and
informs the NM about possible DoS attacks or replay attacks.
Similarly, if the SID is unknown or not in sequence with
previous ID, the node informs the NM about the malicious
activity and possible DoS attacks.

The session key depends on the key shares as shown in (8)
and (9), where the values of a1 and a2 are selected randomly
by the end devices during each session key establishment.
If the attacker replays the previous session messages, they
will not be decrypted by the new session key due to the new

Man-in-the-middle NM

Device
M1…n=EKey{data,SessionID1,Pkt1…n}

M1

M1

Mn

Mn

Start session
SessionID=1
Pkt = 1…n
End session
Waiting for
messages with
SessionID=2

Copied M1…Mn
After some time
Replay=M1…Mn

Replayed=M1…Mn

Waiting for
SessionID=2

Received
messages,
M1…Mn

SessionID=1≠2
Ignored

FIGURE 8. Man-in-the-middle forward normal traffic (black lines). It can
launch DoS, Replay and MMA attacks (red lines)

value of a1 and a2. This alerts end devices about possible
DoS attack by an attacker using previous session messages
or unknown messages. Hence, successful DoS attacks are
not possible in our approach using the session establishment
requests or old data packets.

D. SYBIL ATTACKS
They are usually implemented by creating and registering on
the network multiple fake identities of an authentic device.
In the scheme that we propose, this attack is not possible
because the scheme authenticates all network devices using
public/private key pair. If an attacker creates multiple fake
devices with authentic devices ID, these fake devices will
only have the authentic devices ID and their public keys.
Fake devices will have no idea about the private keys of the
authentic devices that are required to decrypt the value of C1

and C2.
For example, if an attacker impersonates device 1 as shown

in FIGURE 7, it knows the public parameters of device 1,
i.e., E1, E2 and EP (a, b), where E2 = dDE1. Here, dD is
the private key of device 1 and it is only known to device 1.
The private key of the attacker is dA which is different
from dD. Since the attacker is impersonating device 1 to the
network manager/other device, it receives C1 and C2 that are
encrypted using the authentic device public key. The attacker
decrypts it as

data = C2 − dAC1 (35)
data = data + rE2 − dArE1 (36)

data = data + rdDE1 − dArE1. (37)

Since the attacker does not know the private key of the
authentic device 1, and its private key is different from the
device private key, it cannot cancel the term rdDE1 using
rdAE1. This shows that the attacker cannot launch Sybil
attacks successfully.

E. MAN-IN-THE-MIDDLE ATTACKS (MMA)
As the name implies, in these attacks the attacker manages
to intercept all exchanges among two communicating parties
without revealing its real identity to either of them. Hence,
in order to succeed, the attacker needs to successfully im-

VOLUME x, 201x 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

personate itself to each communicating party in the session.
The authentication phase during the network initialization
phase is normally secure due to the presence of network
administrators. Here we consider the authentication and key
establishment process for each session establishment after
the network initialization phase. As shown in 9, an attacker
impersonates itself as NM to a device and vice versa. Each
session establishment includes the authentication followed
by key establishment. During the session authentication, the
attacker receives the session establishment request from the
device, that includes the SID and is also encrypted with
the NM public parameters. The attacker cannot decrypt the
received request as it does not have the NM private key.
The attacker generates its own request with a random SID
(since it does not know the expected SID), encrypts it with
the NM public parameters and sends it to the NM. Upon
receiving message, the NM decrypts it and verifies the SID by
comparing it with the expected SID. Since it is very rare that
a randomly generated SID matches the expected SID, hence
the NM discards the message due to the mismatch among
SIDs.

This works similarly if the attacker sends fake (i.e. its own)
public parameters to the device along with its own generated
SID. The device decrypts the message and compares it with
its own SID to verify the authenticity of the session and mes-
sage. The device discards the message and received public
parameters upon mismatch in SIDs.

If an attacker performs an impersonation during the key
establishment process, it receives the key share requests from
the device that is encrypted with the NM public parameters
and includes the same SID. Hence the attacker cannot decrypt
it to know the SID as it does not have the NM private key.
It could only generate its own random SID for fake key
share request messages, that would be immediately detected
at both ends (NM and device) as described above during
the authentication process and shown in FIGURE 9. To
successfully launch impersonation attacks, it would need to
encrypt and decrypt the information correctly as well as guess
the correct value of SID, which is almost impossible.

F. REPLAY ATTACKS
The establishment of a new session with a device starts with
the authentication process, followed by the key establishment
process. During the authentication phase, each device shares
its nonce using (34) that also includes the SID. This SID is
unique for each new session and acts as timestamps in our
case. If the attacker replays the previous session authentica-
tion messages, they will be discarded due to the presence
of an old SID that has already expired. Also the attacker
cannot know/update/change the SID as it is encrypted by the
destination device public key and only the destination node
will know it after decrypting it with its private key using (7).

Similarly, each session key depends on the value of
a1, a2, b1 and b2 randomly selected for each session by the
devices and NMs respectively as shown in (8) and (9). If the
attacker replays the old session messages that were encrypted

by the old session key having the old values of a1, a2, b1, b2,
it will not be decrypted by the new session key that has
new values of a1, a2, b1, b2. This shows the robustness of the
proposed solution against replays attacks.

G. KEY COMPROMISSION ATTACKS
In these attacks, the attacker manages to obtain the secret key
of a node and later uses it for secure communication within
the network, as would a legitimate node. In our scheme, each
communication session uses a new key, which effectively
prevents the attacker from reusing the compromised secret
key.

H. ROBUSTNESS
Integrity is one of the key features of security. Hashes are
the most common approach to ensure the integrity of the
messages. During the key establishment process, integrity of
the key is most important and needs to be preserved. In the
existing literature, a sender encrypts the symmetric session
key with the public key of the destination and sends it. The
destination uses its private key to decrypt it as

Enc. key = Enc{KRPublic}{Symmetric Key} (38)

Symmetric Key = Dec{KRPrivate}{Enc. key} (39)

where KRPublic and KRPrivate are the public key and pri-
vate key of the receiver respectively, Enc is the encryption
process and Dec is the decryption process. Since the private
key is known only by the receiver itself, this approach seems
secure, since a message is only decrypted by the correct
receiver. But the integrity of content is not guaranteed. This
is because, the attacker can also use the receiver public key
to encrypt a fake symmetric key and it is impossible for the
receiver to know whether the received key is authentic or not
because the receiver can successfully decrypt both authentic
and fake symmetric keys using its private key.

Enc. key = Enc{KRPublic}{Fake Symmetric Key} (40)

Fake Symmetric Key = Dec{KRPrivate}{Enc. key} (41)

To ensure the integrity of the message/key, a hash is used.
This hash is created from the message, encrypted with the
sender’s private key KSPrivate and sent with the message.

Enc. Hash = Enc{KSPrivate}{Hash of message} (42)

After the receiver gets the packet with the hash, the sender’s
public key KSPublic is used to decrypt the hash and the
receiver’s private key is used to decrypt the message. Another
hash is created from the received message and compared it
with the received decrypted hash to ensure the integrity and
authenticity of the message. The message is accepted if both
hashes are identical, otherwise it is discarded. Although the
attacker can also decrypt the hash using the sender’s public
key, it cannot decrypt the actual message as the attacker does
not know the receiver’s private key. This stops the attacker
from modifying either the hash or the message.

8 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

P
roposed K

ey E
stablishm

ent A
pproach

NM1 NM2Attacker
Device1 Device2

Server

Retrieving NM2 credentials Retrieving NM1 credentials

EK{D2 public parameters}
C1,C2=sessionID+dDENM1

EK{D2 public parameters}
C1,C2=sessionID+dAENM1

EK{D2 public parameters}
C1,C2=sessionID+dAED

Session ID doesn’t
Match

Cannot decrypt C1 and C2

Session ID doesn’t Match
Discard Message

P
roposed A

uthentication A
pproach

EK{Key Shares request}
C1,C2=sessionID+dDENM1

EK{Key Shares Request}
C1,C2=sessionID+dAENM1

EK{D2 public parameters}
C1,C2=sessionID+dAED

Session ID doesn’t
Match

Cannot decrypt C1 and C2

Session ID doesn’t Match
Discard Message

FIGURE 9. Man-in-the-middle launches an impersonation attacks during the session authentication and key establishment process

These hash functions are useful to ensure the integrity of
the messages and verify the sender as well, but they imply
an extra overhead. For example, if we consider only a key
exchange process, the length of a key is around 160 bits when
using ECC. The size of a hash for this key using SHA is 256–
512 bits, while using MD5 it is 128 bits. The overall packet
size becomes 160 + 256 bits or 160 + 512 bits or 160 + 128
bits, which can be a very significant overhead for the radio
packet size and increase the energy consumption of devices.

In hash based approaches, there is also a possibility that
two different messages result in same hash. To make it
easily understandable, we use a very simple example with a
simple hash function. Let us say that we have two messages
msg1=45924984 and msg2=68928120 and a hash function
with the following feature

Hash(message) = message mod 65536 (43)

The hashes of msg1 and msg2 using this function are

Hash(msg1) = 45924984 mod 65536 = 49784 (44)

Hash(msg2) = 68928120 mod 65536 = 49784 (45)

If the attacker replaces the content of msg1 with msg2, the
receiver will not be able to detect this change, since both
messages generates the same hash.

In our approach, we eliminate the need of hash function
and achieve message integrity using only an SID. For each
new session, the sender generates a new SID using a spe-
cific function and concatenates it with the message. After
receiving the message, the destination device decrypts the
received message and separates the SID and generates its

own SID using the same SID function. If both SIDs match,
the destination accepts the message otherwise it discards the
message. To show the robustness of the proposed solution,
consider the above example again. Let us say that after
concatenating the SID to a message, its content becomes
equal to msg1 (i.e., 0x2BCC278). During transit over the
channel, the attacker changes the content of msg1 to msg2
(i.e., 0x41BC278). The receiver receives the msg2 instead
of msg1. The receiver decrypts the received msg2 and ex-
tracts the SID (i.e., 0x41BC). The receiver also generates
the SID using specific function and output of that function
gives 0x2BCC. The receiver compares the received SID (i.e.,
0x41BC) with the generated SID (i.e., 0x2BCC) and finds
that they are not identical. Hence the receiver discards the
message. While this change was not detected in the hash
based approach, it is easily detected by the proposed solution.
FIGURE 10 shows how the device and the NM check the
integrity of messages, both with hashes and without hashes.

The SID is used to ensure the message and session in-
tegrity but it is only a session identifier. It is recommended
to set the SID length to at least to 16 bits (65536 possible
identifiers). This reduces the probability of correct guessing
and also imposes less overhead. For example, if we consider
160 bit key size and only 16 bit SID, the packet size would
become 160 + 16 bits, which are much fewer than with the
hash based approaches. As mentioned above, reducing the
packet size reduces the energy cost of sending a packet and
increases the lifetime of resource constrained devices.

VOLUME x, 201x 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

H
ash B

ased A
uthentication A

pproach

NM1 NM2Attacker
Device1 Device2

Server

Retrieving NM2 credentials Retrieving NM1 credentials

EK{D2 public parameters}
C1,C2=sessionID+dDENM1

EK{D2 public parameters}
C1,C2=sessionID+dAENM1

EK{D2 public parameters}
C1,C2=sessionID+dAED

Session ID doesn’t
Match

Cannot decrypt C1 and C2

Session ID doesn’t Match
Discard Message

P
roposed A

uthentication A
pproach

EK{Public Parameters}
C1,C2=sessionID+dDENM1,H(M)

EK{Public Parameters}
C1,C2=sessionID+dDENM1,H(M)

Cannot decrypt C1, C2 and Hash

Decrypt message but
cannot decrypt Hash
and verify Session ID

Discard Message

EK{Public Parameters}
C1,C2=sessionID+dDENM1,H(M)

Decrypt message but
cannot decrypt Hash
and verify Session ID

Discard Message

FIGURE 10. Integrity check in the presence of impersonation attacks with hash (literature) and without hash (proposed) approaches

I. AVISPA ANALYSIS

We validate the reliability of the proposed key management
solution for IoT devices using the Automated Validation
of Internet Security Protocols and Applications (AVISPA)
tool [26], [27]. AVISPA is an industrial-strength tool for
the analysis of large-scale security-sensitive Internet pro-
tocols and applications. It provides a High Level Protocol
Specification Language (HLPSL) [28] that provides suitable
human-readable formal semantics to model the communi-
cation patterns of secure protocols. HLPSL descriptions are
automatically converted to an Intermediate Format (IF) that
is suitable for the formal analysis of the security properties
using four AVISPA back-ends: CL-based Model-Checker
(CL-AtSe) [29], On-the-Fly Model-Checker (OFMC) [30],
TA4SP, and SAT-based Model-Checker (SATMC) [31].

We implement in AVISPA HLPSL the proposed solution
as follows:

1) First, we define the role of each device of the network
in terms of its public and private parameters and of the
existence of a direct inter-device connection.

2) While defining the role of each entity, the messages
sent by a device are labelled with a sequential number,
in protocol order. For example, if device 1 sends first
a message, waits for a reply and then sends a second
message, the numbers assigned to device 1 messages
are 1 and 3, while the reply from device 2 is assigned
number 2.

3) After this, the scope of a communication session is de-
fined in terms of the total number of message exchanges,
the number of message exchanges per device, and of the

parameters that are exchanged.
4) The next step is to define the role of an intruder that will

act as a man in the middle. In this quality, the intruder
will have knowledge of all public parameters and have
access to each exchanged message and its content, since
it is within communication range with all the entities of
the network.

5) In the next step, the actual verification environment is
set up by defining: (1) the public parameters that are
exchanged (E(a,b), eNM , eD, W, V, E1 and E2), (2) the
total number of devices, (3) the authentication and key
generation protocol used by each device, (4) the kind of
knowledge that an intruder is assumed to have, and (5)
the parameters of the communication session.

6) The last step checks whether the authentication proto-
cols can be breached in a given scenario.

Then we checked our protocol using OFMC and CL-AtSe.
OFMC builds part of the infinite tree defined by the protocol
analysis problem in a demand-driven way, i.e., on-the-fly,
and uses a number of symbolic techniques to represent the
state space. CL-AtSe provides a translation from any security
protocol specification written as transition relation into a set
of constraints that can be effectively used to find attacks on
protocols. Both translation and checking are fully automatic
and performed internally by CL-AtSe, i.e., no external tool
is used. In this approach, each protocol step is modelled
by constraints on the adversary knowledge. Both checks
succeeded, showing the safety of our approach.

10 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

NM-1 NM-2

Device-1 Device-2

DT
LS

/C
oA

P

DT
LS

/C
oA

P

IPv6/HTTP/TLS

FIGURE 11. Experimental setup for the evaluation of proposed solution

TABLE 2. ROM and RAM occupied by the proposed solution

Function ROM (text) RAM
(data+bss)

(Bytes) (Bytes)
Without code implementation 42016 222+6436
With code implementation 46204 282+6658
Actual code occupation 4188 60+222

VI. EVALUATION
We used the network setup shown in FIGURE 11 to evaluate
the performance of the proposed solution in terms of mem-
ory, processing and energy consumption.

A. MEMORY COST
To estimate the memory requirements of the proposed solu-
tion, we use contikiOS to implement the proposed solution
on top of Telosb motes. We observed that without includ-
ing the code implementing our algorithm that we discussed
above, standard contiki library functions occupy 42016 bytes.
This memory occupation grows to 46204 bytes by including
the code implementing our protocol. This shows a memory
requirement of 4188 bytes for the proposed solution imple-
mentation on a telosb mote using the parameters described
in tab. 1. According to NIST recommendations for the ECC
based approach, a 192 bit key size is used. TABLE 2 shows
the memory occupied in ROM and RAM, text shows the size
of the code section in bytes (typically ROM) and data and
bss show sections that contain variables, stored in RAM.

In the proposed solution, key shares fulfil the requirements
of integrity while previous, state-of-the-art approaches used
hashes to check message integrity. Hash functions also re-
quire additional code memory. Since the proposed solution
does not need hash functions to ensure the message integrity,
its memory requirement is low and well suitable for the
resource constrained devices.

B. ENERGY COST
We used the Contiki Energest module [32] to estimate the
total processing and radio time and energy usage. The mod-

TABLE 3. Energy consumption for authentication and key generation
materials in proposed solution

Function Energy
(µJ)

Authentication 32
Key generation 23

Device-2 Network Manager-2 Network Manager-1 Device-1

FIGURE 12. Energy consumption of each device during initial authentication
phase, authentication between devices and key establishment between
devices belonging to two different networks

ule uses a real-time clock and can split the reports by system
component.

The total energy of a module is calculated as follows:

Energymodule = V Itmodule (46)

where V = 2.1V is the supply voltage, I = 13mA is the
average supply current and tmodule is the active time of the
module (as reported by the Energest module). We can thus
calculate the total energy consumption (by both the processor
and the radio transceiver) as the sum of all module energies.

Using the Energest reports we obtained the results shown
in TABLE 3. While authentication is a rare event, key gen-
eration, which occurs much more often, requires much less
energy consumption than with the previous approaches.

FIGURE 12 shows the energy consumption of each device
involved in different phases of the proposed solution, in-
cluding the initial authentication phase shown in FIGURE 2,
the authentication between two devices belonging to two
different networks shown in FIGURE 3, and the key estab-
lishment between the two devices belonging to two different
networks shown in FIGURE 4. Since the RF transceiver is a
major component of total energy consumption, the difference
between the energy consumption of the two devices during
mutual authentication is due to the different number and sizes
of messages transmitted.

C. PROCESSING EFFORT DURING AUTHENTICATION
In the following we calculate the processing effort during the
authentication phase between the two devices belonging to
different networks using the following notations:
M effort for scalar multiplication
A effort for addition
H effort for hash function
MAC effort for message authentication code function

During the authentication process, each device performs
the operations given in (5), (6), and (7) that also reflect the

VOLUME x, 201x 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4. Comparison of processing cost during the key establishment phase
by the end devices using different algorithms

Algorithm Device 1 Device 2
Yang [33] 4M + 2A + 4H 4M + 2A + 4H
Yoon [34] 4M + 2A + 4H 4M + 2A + 4H
Debiao [35] 3M + 3H + 2MAC 3M + 2H + 2MAC
Goutham [36] 3M + 4H + 2MAC 3M + 3H + 2MAC
Wei [37] 2M + 1A + 4H + 3MAC 2M + 1A + 3H + 2MAC
Proposed 3M + 2A 3M + 2A

kinds of operations involved in authentication. To adhere to
literature conventions, we estimate that (5) uses one scalar
multiplication operation, and that (6) and (7) use one scalar
multiplication and one point addition operations. TABLE 4
summarizes the processing cost of the device authentication
phase in some previous approaches. Our proposed solution
performs better in terms of computational cost, since it does
not include hashing, that consumes even more computational
resources than simple encryption. This is because in hashing,
first a message digest is calculated using MD5 or SHA and
then it is encrypted with the private key of the sender.

D. LATENCY
Processing latency is a key performance aspect for IoT de-
vices. It indirectly limits how many messages per second can
be processed by an IoT device. High processing latencies can
negatively impact the authentication process and reduce the
data rate at which devices exchange messages.

To analyse processing latencies for the proposed solution
based on ECC, a software prototype was developed using the
pyCryptov2.7a1 libraries. A simple testbed was established
consisting of two IoT devices (sender and receiver). A signif-
icant portion of processing latency is due to the encryption
algorithm and it mainly depends on the message size and
device processing power. To this aim, encryption/decryption
latencies were measured for a wide range of data sizes. The
developed software prototype measures latencies by record-
ing timestamps before and after a message is encrypted and
decrypted. FIGURE 13 shows the variation of the encryption
latency with message size. We note that the latencies are low
even for large messages. The measured latencies for signature
calculation are low as shown in FIGURE 14. This is an extra
latency that is present in the existing literature and removed
in the proposed solution. Due to low encryption latencies, the
processing latencies are always less than 20 ms, which can be
considered suitable for resource-constrained IoT devices.

VII. CONCLUSION
Although DTLS is becoming a security standard for the IoT,
its reliance on resource-consuming PKI certification mecha-
nisms limits its usefulness for resource-constrained devices,
which are often found in IoT networks.

We propose a scalable mutual authentication and key es-
tablishment protocol that does not require a certification au-
thority and is computationally lightweight. We implemented
the proposed solution using resource-constrained devices in

 0

 1

 2

 3

 4

 5

 6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
a

te
n

c
y
 (

m
s
)

Message Size (Bytes)

KeySize = 128 KeySize = 256 KeySize = 512 KeySize = 1024

FIGURE 13. ElGamal encryption latencies with increasing message size.

 0

 1

 2

 3

 4

 5

 6

128 256 512 1024
 0

 100

 200

 300

 400

 500

 600

M
in

,
M

a
x
,

A
v
g

.
(m

s)

S
td

.
D

e
v
ia

ti
o
n
 (

µ
s)

Key Size

Minimum
Maximum

Average
Standard Deviation

FIGURE 14. Signature latencies averaged over 100 trials.

an IoT network to demonstrate its feasibility and its low
energy consumption, which is lower than that of similar
state of the art methods. A key performance and energy
improvement aspect of our approach is that it does not
require expensive hashes to be computed in order to ensure
message integrity, but uses a much shorter session ID. We
also successfully checked the reliability of the authentication
and cryptographic material creation and management using
an industrial-strength automated analysis tool for large-scale
Internet security-sensitive protocols and applications, namely
AVISPA.

In the future, we plan to design similar approaches for
other cyber security protocols, such as IPsec/IKE.

ACKNOWLEDGEMENT
The authors extend their appreciation to the Deanship of
Scientific Research at King Saud University for funding this
work through Research Group no. RG-1438-070. The authors
also extend their special thanks to Luciano Lavagno, Mihai
Lazarescue and Rafiullah Khan for their valuable feedback.

REFERENCES
[1] Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and M. Guizani,

“When mobile crowd sensing meets uav: Energy-efficient task assignment
and route planning,” IEEE Transactions on Communications, vol. 66,
no. 11, pp. 5526–5538, Nov 2018.

12 VOLUME x, 201x

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[2] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues, and L. Guo, “Mobile
edge computing-enabled internet of vehicles: Toward energy-efficient
scheduling,” IEEE Network, vol. 33, no. 5, pp. 198–205, Sep. 2019.

[3] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and
A. Oliveira, “Smart cities and the future internet: Towards cooperation
frameworks for open innovation,” in The Future Internet, J. Domingue,
A. Galis, A. Gavras, T. Zahariadis, D. Lambert, F. Cleary, P. Daras,
S. Krco, H. Müller, M.-S. Li, H. Schaffers, V. Lotz, F. Alvarez, B. Stiller,
S. Karnouskos, S. Avessta, and M. Nilsson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 431–446.

[4] P. K. Dhillon and S. Kalra, “Elliptic curve cryptography for real time
embedded systems in iot networks,” in 2016 5th International Conference
on Wireless Networks and Embedded Systems (WECON), Oct 2016, pp.
1–6.

[5] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez, “Ro-
bust mobile crowd sensing: When deep learning meets edge computing,”
IEEE Network, vol. 32, no. 4, pp. 54–60, July 2018.

[6] Z. Ning, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, Y. Guo,
J. Huang, B. Hu, and Y. Li, “When deep reinforcement learning meets
5g vehicular networks: A distributed offloading framework for traffic big
data,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2019.

[7] H. Meng, D. Chao, and Q. Guo, “Deep reinforcement learning based task
offloading algorithm for mobile-edge computing systems,” in Proceedings
of the 2019 4th International Conference on Mathematics and Artificial
Intelligence, ser. ICMAI 2019. New York, NY, USA: ACM, 2019, pp.
90–94. [Online]. Available: http://doi.acm.org/10.1145/3325730.3325732

[8] W. Zhang, D. Lin, H. Zhang, C. Chen, and X. Zhou, “A lightweight
anonymous mutual authentication with key agreement protocol on ecc,”
in 2017 IEEE Trustcom/BigDataSE/ICESS, Aug 2017, pp. 170–176.

[9] Z. Ning, Y. Feng, M. Collotta, X. Kong, X. Wang, L. Guo, X. Hu, and
B. Hu, “Deep learning in edge of vehicles: Exploring trirelationship for
data transmission,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 10, pp. 5737–5746, Oct 2019.

[10] J. Wu, M. Dong, K. Ota, J. Li, W. Yang, and M. Wang, “Fog-computing-
enabled cognitive network function virtualization for an information-
centric future internet,” IEEE Communications Magazine, vol. 57, no. 7,
pp. 48–54, July 2019.

[11] X. Lin, J. Li, J. Wu, H. Liang, and W. Yang, “Making knowledge trad-
able in edge-ai enabled iot: A consortium blockchain-based efficient and
incentive approach,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2019.

[12] N. Li, D. Liu, and S. Nepal, “Lightweight mutual authentication for iot
and its applications,” IEEE Transactions on Sustainable Computing, vol. 2,
no. 4, pp. 359–370, Oct 2017.

[13] H. Liang, J. Wu, S. Mumtaz, J. Li, X. Lin, and M. Wen, “Mbid: Micro-
blockchain-based geographical dynamic intrusion detection for v2x,”
IEEE Communications Magazine, vol. 57, no. 10, pp. 77–83, October
2019.

[14] M. Rezvani, A. Ignjatovic, E. Bertino, and S. Jha, “Secure data aggregation
technique for wireless sensor networks in the presence of collusion at-
tacks,” IEEE Transactions on Dependable and Secure Computing, vol. 12,
no. 1, pp. 98–110, Jan 2015.

[15] V. S. Miller, “Use of elliptic curves in cryptography,” in Lecture Notes
in Computer Sciences; 218 on Advances in cryptology—CRYPTO 85.
New York, NY, USA: Springer-Verlag New York, Inc., 1986, pp. 417–426.
[Online]. Available: http://dl.acm.org/citation.cfm?id=18262.25413

[16] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in 2008 International Confer-
ence on Information Processing in Sensor Networks (ipsn 2008), April
2008, pp. 245–256.

[17] H. Wang and Q. Li, “Efficient implementation of public key cryptosystems
on mote sensors (short paper),” in Proceedings of the 8th International
Conference on Information and Communications Security, ser. ICICS’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 519–528. [Online].
Available: http://dx.doi.org/10.1007/11935308_37

[18] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography based access
control in sensor networks,” Int. J. Secur. Netw., vol. 1, no. 3/4, pp.
127–137, Dec. 2006. [Online]. Available: http://dx.doi.org/10.1504/IJSN.
2006.011772

[19] R. Sankar, T. Subashri, and V. Vaidehi, “Implementation and integration
of efficient ecdh key exchanging mechanism in software based voip net-
work,” in 2011 International Conference on Recent Trends in Information
Technology (ICRTIT), June 2011, pp. 124–128.

[20] C. P. Gouvêa and J. López, “Software implementation of pairing-based
cryptography on sensor networks using the msp430 microcontroller,”
in Proceedings of the 10th International Conference on Cryptology
in India: Progress in Cryptology, ser. INDOCRYPT ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 248–262. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10628-6_17

[21] G. Hinterwälder, C. Paar, and W. P. Burleson, “Privacy preserving
payments on computational rfid devices with application in intelligent
transportation systems,” in Proceedings of the 8th International Confer-
ence on Radio Frequency Identification: Security and Privacy Issues, ser.
RFIDSec’12. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 109–122.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36140-1_8

[22] L. Marin, A. J. Jara, and A. F. G. Skarmeta, “Shifting primes: Extension of
pseudo-mersenne primes to optimize ecc for msp430-based future internet
of things devices,” in Availability, Reliability and Security for Business,
Enterprise and Health Information Systems, A. M. Tjoa, G. Quirchmayr,
I. You, and L. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 205–219.

[23] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab,
“Nanoecc: Testing the limits of elliptic curve cryptography in sensor
networks,” in Proceedings of the 5th European Conference on Wireless
Sensor Networks, ser. EWSN’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 305–320. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1786014.1786040

[24] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” in Cryptographic Hard-
ware and Embedded Systems - CHES 2004, M. Joye and J.-J. Quisquater,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 119–132.

[25] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in Advances in Cryptology —
EUROCRYPT 2001, B. Pfitzmann, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 453–474.

[26] L. Viganò, “Automated Security Protocol Analysis With the AVISPA
Tool,” Electronic Notes in Theoretical Computer Science, vol. 155, pp.
61–86, 2006.

[27] “Automated Validation of Internet Security Protocols and Applications
(AVISPA),” http://www.avispa-project.org/, Artificial Intelligence Labora-
tory, DIST, University of Genova, Italy.

[28] D. von Oheimb, “The high-level protocol specification language HLPSL
developed in the EU project AVISPA,” in Proceedings of APPSEM 2005
workshop, 2005, pp. 1–17.

[29] M. Turuani, The CL-Atse Protocol Analyser. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 277–286.

[30] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic model
checker for security protocols,” International Journal of Information Se-
curity, vol. 4, no. 3, pp. 181–208, 2005.

[31] A. Armando and L. Compagna, SATMC: A SAT-Based Model Checker
for Security Protocols. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 730–733.

[32] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based On-line
Energy Estimation for Sensor Nodes,” in Proceedings of the 4th Workshop
on Embedded Networked Sensors, ser. EmNets ’07. New York, NY, USA:
ACM, 2007, pp. 28–32.

[33] J.-H. Yang and C.-C. Chang, “An id-based remote mutual authentication
with key agreement scheme for mobile devices on elliptic curve
cryptosystem,” Computers and Security, vol. 28, no. 3, pp. 138 – 143,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167404808001120

[34] E. J. Yoon and K. Y. Yoo, “Robust id-based remote mutual authentication
with key agreement scheme for mobile devices on ecc,” in 2009 Interna-
tional Conference on Computational Science and Engineering, vol. 2, Aug
2009, pp. 633–640.

[35] H. Debiao, C. Jianhua, and H. Jin, “An id-based client authentication with
key agreement protocol for mobile client–server environment on ecc with
provable security,” Information Fusion, vol. 13, no. 3, pp. 223 – 230,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1566253511000029

[36] R. A. Goutham, G.-J. Lee, and K.-Y. Yoo, “An anonymous id-based remote
mutual authentication with key agreement protocol on ecc using smart
cards,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ser. SAC ’15. New York, NY, USA: ACM, 2015, pp. 169–
174. [Online]. Available: http://doi.acm.org/10.1145/2695664.2695666

[37] W. Zhang, D. Lin, H. Zhang, C. Chen, and X. Zhou, “A lightweight

VOLUME x, 201x 13

http://doi.acm.org/10.1145/3325730.3325732
http://dl.acm.org/citation.cfm?id=18262.25413
http://dx.doi.org/10.1007/11935308_37
http://dx.doi.org/10.1504/IJSN.2006.011772
http://dx.doi.org/10.1504/IJSN.2006.011772
http://dx.doi.org/10.1007/978-3-642-10628-6_17
http://dx.doi.org/10.1007/978-3-642-36140-1_8
http://dl.acm.org/citation.cfm?id=1786014.1786040
http://dl.acm.org/citation.cfm?id=1786014.1786040
http://www.avispa-project.org/
http://www.sciencedirect.com/science/article/pii/S0167404808001120
http://www.sciencedirect.com/science/article/pii/S0167404808001120
http://www.sciencedirect.com/science/article/pii/S1566253511000029
http://www.sciencedirect.com/science/article/pii/S1566253511000029
http://doi.acm.org/10.1145/2695664.2695666

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2955604, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

anonymous mutual authentication with key agreement protocol on ecc,”
in 2017 IEEE Trustcom/BigDataSE/ICESS, Aug 2017, pp. 170–176.

DR SARMADULLAH KHAN (M’12) is a lecturer
at De Montfort University, UK. He is currently
program leader of MSc cyber technology and its
pathways. Dr Khan received his PhD and MSc in
Electronics and Telecommunication Engineering
from Politecnico di Torino, Italy in 2013 and in
2009 respectively. Dr Khan was assistant professor
at CECOS University of IT and Emerging Sci-
ence, Peshawar Pakistan between 2013 – 2017. Dr
Khan is a member of academic board of studies,

curriculum revision committee, program management board and school
management group. Dr Khan’s research focuses on Internet of things secu-
rity, content centric networks security, cryptographic key establishment and
management and wireless sensor networks security. Dr Khan is guest editor
of two special issues in the journal of wireless communication and mobile
computing.

PLACE
PHOTO
HERE

DR AHMED IBRAHIM ALZAHRANI is cur-
rently an associate professor at computer science
department, community college, King Saud Uni-
versity. He acts as the head of the informatics re-
search group, and member of the scientific council
- King Saud University.

DR OSAMA ALFARRAJ Osama Alfarraj is an
Associate Professor of Computer Sciences at King
Saudi University in Riyadh, Saudi Arabia. He has
a PhD degree in Information and Communication
Technology from Griffith University in 2013. He
obtained a Master degree in the same field from
Griffith University in 2008. His current research
interests include eSystems (eGov, eHealth, ecom-
merce, etc..), Cloud Computing, Big Data. He also
served for 2 years as a consultant and a member of

the Saudi National Team for Measuring E-Government in Saudi Arabia.

PLACE
PHOTO
HERE

DR NASSER ALALWAN is an assistant profes-
sor of computer science at computer science de-
partment, Community College, King Saud Univer-
sity. His main research interests include database,
semantic web, ontology, electronic and mobile
services and information technology management.

DR ALI AL-BAYATTI is an Associate professor at
De Montfort University. He is the subject leader of
Cyber Security at the Cyber Technology Institute.
He was awarded his PhD in Computer Science at
2009, and worked with leading organisations such
as Deloitte, Airbus, Elektrobit Automotive and
Rolls-Royce, among others. Ali’s current research
is multi-disciplinary, it includes Vehicular Ad hoc
Networks, Driver Behaviour, Cyber Security and
Smart Technologies that promote collective intel-

ligence. Applications range from promoting comfort to enabling safety in
critical scenarios. Ali serves on multiple Editorial Boards and also, is on
the Scientific Advisory Boards of multiple institutes in Gulf and Europe. He
is also, a visiting professor at multiple institutes and member of the Oman
research council. Ali is one of the main factors behind a generated annual
income of £1.2 Million at the Cyber Technology Institute.

14 VOLUME x, 201x

