5,812 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    A Chemistry-Inspired Framework for Achieving Consensus in Wireless Sensor Networks

    Full text link
    The aim of this paper is to show how simple interaction mechanisms, inspired by chemical systems, can provide the basic tools to design and analyze a mathematical model for achieving consensus in wireless sensor networks, characterized by balanced directed graphs. The convergence and stability of the model are first proven by using new mathematical tools, which are borrowed directly from chemical theory, and then validated by means of simulation results, for different network topologies and number of sensors. The underlying chemical theory is also used to derive simple interaction rules that may account for practical issues, such as the estimation of the number of neighbors and the robustness against perturbations. Finally, the proposed chemical solution is validated under real-world conditions by means of a four-node hardware implementation where the exchange of information among nodes takes place in a distributed manner (with no need for any admission control and synchronism procedure), simply relying on the transmission of a pulse whose rate is proportional to the state of each sensor.Comment: 12 pages, 10 figures, submitted to IEEE Sensors Journa

    Stuck in Traffic (SiT) Attacks: A Framework for Identifying Stealthy Attacks that Cause Traffic Congestion

    Full text link
    Recent advances in wireless technologies have enabled many new applications in Intelligent Transportation Systems (ITS) such as collision avoidance, cooperative driving, congestion avoidance, and traffic optimization. Due to the vulnerable nature of wireless communication against interference and intentional jamming, ITS face new challenges to ensure the reliability and the safety of the overall system. In this paper, we expose a class of stealthy attacks -- Stuck in Traffic (SiT) attacks -- that aim to cause congestion by exploiting how drivers make decisions based on smart traffic signs. An attacker mounting a SiT attack solves a Markov Decision Process problem to find optimal/suboptimal attack policies in which he/she interferes with a well-chosen subset of signals that are based on the state of the system. We apply Approximate Policy Iteration (API) algorithms to derive potent attack policies. We evaluate their performance on a number of systems and compare them to other attack policies including random, myopic and DoS attack policies. The generated policies, albeit suboptimal, are shown to significantly outperform other attack policies as they maximize the expected cumulative reward from the standpoint of the attacker

    Energy-Optimal Scheduling in Low Duty Cycle Sensor Networks

    Get PDF
    Energy consumption of a wireless sensor node mainly depends on the amount of time the node spends in each of the high power active (e.g., transmit, receive) and low power sleep modes. It has been well established that in order to prolong node's lifetime the duty-cycle of the node should be low. However, low power sleep modes usually have low current draw but high energy cost while switching to the active mode with a higher current draw. In this work, we investigate a MaxWeightlike opportunistic sleep-active scheduling algorithm that takes into account time- varying channel and traffic conditions. We show that our algorithm is energy optimal in the sense that the proposed ESS algorithm can achieve an energy consumption which is arbitrarily close to the global minimum solution. Simulation studies are provided to confirm the theoretical results

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applications

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applicationm

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks
    corecore